#### RELAÇÃO ENTRE A ORIENTAÇÃO CRISTALOGRÁFICA E A PRECIPITAÇÃO DE MnS NA LIGA Fe-3%Si

W.Monteiro<sup>(1)</sup>, V.Rodrigues<sup>(1)</sup>, N.Ferreira<sup>(1)</sup>, N.Lima<sup>(1)</sup>, M.Cunha<sup>(2)</sup>, A.S-Silva<sup>(3)</sup>, (1) IPEN/CNEN (2) IUE-Acesita (3) EPUSP-Depart de Eng.Metalúrgica.

#### Resumo

Foi feito o estudo da distribuição de partículas de MnS e da textura em ligas Fe-3%Si de grão orientado após processo de laminação a quente. A caracterização foi feita por MET e o gradiente de textura por difratometria de raios-X. As medidas de raios-X mostram dependência com a orientação em relação a espessura da tira, (110) e (100) paralelas à superfície. Isto se correlaciona com a distribuição de precipitados de MnS na amostra, inibindo o crescimento normal do grão, favorecendo o crescimento seletivo dos mesmos.

#### INTRODUÇÃO

O aço de grão orientado é utilizado para aplicações em energia elétrica como materiais magnéticos que compõem núcleos de transformadores, motores elétricos e geradores. Para esta aplicação é necessário que se tenha alta permeabilidade, mas o principal é se ter alta indução para fracos campos externos fracos aplicados e pouca perda magnética [1].

As propriedades magnéticas do aço silício GO depende principalmente da forte orientação de Goss {110} <001>, que é produzida na recristalização secundária com a inibição dos grãos através de partículas de segunda fase presentes durante a recristalização primária [2].

Na fase final do processo, a orientação dos grãos será do eixo <001>, que é o eixo de fácil magnetização para o cristal de ferro (cúbico de corpo centrado) e é paralelo à direção de laminação da tira.

Neste trabalho é feito o estudo da distribuição de partículas de MnS bem como o estudo da textura em ligas de Fe-3%Si, de grão orientado, laminadas a quente.

#### PROCEDIMENTO EXPERIMENTAL.

A composição química do aço utilizado neste trabalho é apresentado na tabela 1.

O aço foi fornecido pela Acesita Aços-Especiais Itabira.

| Elemento   | Peso(%) |
|------------|---------|
| Carbono    | 0,029   |
| Manganês   | 0,059   |
| Silício    | 3,19    |
| Fósforo    | 0,017   |
| Enxofre    | 0,022   |
| Cromo      | 0,024   |
| Níquel     | 0,014   |
| Molibdênio | 0,006   |
| Alumínio   | 0,0028  |
| Titânio    | 0,0021  |
| Estanho    | 0,0046  |
| Nitrogênio | 0,0028  |

Tabela 1 Composição Química do Fe-3%Si (peso %)

Para se caracterizar o gradiente de textura, foram preparadas amostras correspondentes ao início, 25, 50% e final da tira laminada a quente com desbaste de 200 em 200µm até a metade da espessura da amostra. As análises foram feitas pela técnica de difratometria de raios-X que possui área de feixe de 20mm2.

A caracterização das partículas de MnS foi feita em amostras correspondentes ao início, 25, 50% e final da tira na superfície e metade da espessura da amostra por meio de microscopia eletrônica de transmissão, utilizandose, para preparação de amostra, a técnica de réplica de extração de precipitados. Para a determinação do diâmetro dos precipitados de MnS analisados, foram feitas cópias de negativos que resultaram em um aumento global de 52000 vezes. As Figs.1 e 2, mostram micrografias eletrônicas de amostras do aço Fe-3%Si.



Fig.1. Micrografia referente a amostra de aço Fe-3%Si de grão orientado (superficie)





487 COMISSÃO NACIONAL DE ENERGIA NUCLEAR/SP IPER As medidas do diâmetro dos precipitados foram feitas com analisador de imagens (Mini-Mop). Estes dados foram elaborados em uma planilha eletrônica para microcomputador, o que permitiu a construção de histograma da distribuição dos precipitados de MnS.

## RESULTADOS E CONCLUSÕES RESULTADOS E CONCLUSÕES

### Resultados Experimentais (RDX)

As Figs.(3, 4, 5 e 6) mostram a mudança de orientação preferencial (da superficie para a metade da espessura da amostra) através do fator de comparação feito com a ficha da ASTM (JCPDS) da liga de ferro na fase ferrítica, estas amostras são correspondentes ao início, 25, 50% e final da tira com desbaste de 200, 400, 600, 800 e 1000 $\mu$ m.

Difração de R-X







Fig.4.Planos de orientação cristalográfica da amostra referente a distância de 25% do início da tira

# Difração de R-X 50% do Início



Fig.5.Planos de orientação cristalográfica da amostra correspondente à distância de 50% do início da tira.



Fig.6.Planos de orientação cristalográfica da amostra correspondente ao final da tira.

Observa-se que todas as amostras na superficie (sem desbaste), apresentam-se orientadas preferencialmente com orientação (110) ou (220) paralela à superficie de amostra. Para o desbaste de 200 e 400µm, além dessa orientação, apresenta-se a orientação (200). Este fato, não se apresenta na amostra correspondente ao final da tira. Para o desbaste de 600µm as amostras apresentam-se preferencialmente orientadas no plano (110) e no plano (100), inclusive a amostra correspondente ao final da tira. Para o desbaste de 800µm, a orientação que prevaleceu foi

(100). Para o desbaste de 1000µm (metade da espessura da amostra), apresenta-se a orientação (110), (100) e (211). Observa-se, em todas as amostras e em todas as regiões estudadas a presença da orientação (110) paralela à superfície da amostra.

#### Microscopia Eletrônica de Transmissão.

As Figs. (7, 8, 9 e 10) mostram histograma de distribuição de MnS referente as amostras da região do início, 25, 50% e final da tira (superficie e metade da espessura da amostra). Observa-se que na superficie da amostra encontram-se sulfetos, em maior quantidade cujo diâmetro está no intervalo de 500 a 1000Å, enquanto que na metade da espessura da amostra, aqueles cujo diâmetro está no intervalo de 300 a 800Å; o que mostra que o tamanho do MnS está diminuindo para a metade da espessura da amostra. Quanto a densidade de partículas de MnS, observa-se um aumento desta, da superficie para a metade da espessura da amostra.

#### ensidade de MnS/mm2-Inicio da Tira



Fig.7.Histograma referente aos dados da amostra correspondente ao início da tira (superficie e espessura intermediária).





Fig.8.Histograma referente aos dados da amostra correspondente à distância de 25% do início da tira (superfície e espessura intermediária).

neidade de MnS/mm2-50%Inicio da Tira



Fig.9.Histograma referente aos dados da amostra correspondente à distância de 50% do início da tira (superfície e espessura intermediária).

de Massimon?.Elions de Tire



Fig.10.Histograma referente aos dados da amostra correspondente ao final da tira (superfície e espessura intermediária).

Estas observações podem ser atribuídas ao efeito do resfriamento da camada superficial da tira em contato com os cilindros da laminação nos últimos passes de desbaste. A camada superficial é resfriada rapidamente quando entra em contato com os cilindros e retoma uma temperatura próxima da inicial após o passe. No desbaste há deformação do material gerando alta densidade de discordâncias como sítios para nucleação de partículas que pode induzir a um início de precipitação na camada superficial. Quando esta camada retoma a temperatura inicial, os sítios de nucleação formados podem ser redissolvidos total ou parcialmente, os núcleos não dissolvidos crescerão durante o restante do processamento, gerando partículas maiores que as da metade da espessura da amostra. As Figs.11 e 12 mostram a faixa de distribuição do MnS (incluindo desvio padrão) na superfície e metade da espessura da amostra. Nota-se que o diâmetro da partícula de MnS nas amostras correspondentes ao início, 25, 50% e final da tira na superfície é maior que na metade da espessura da amostra, bem como fica duplicada a sua faixa de dispersão.

#### Tam.Médic do MnS-Superficie



Fig.11.Tamanho médio do precipitado de MnS e faixa de dispersão referente ao início, 25, 50% e final da tira (superfície).



Fig.12. Tamanho médio do precipitado de MnS e faixa de dispersão referente ao início, 25, 50% e final da tira (espessura intermediária).

#### CONCLUSÕES

Os precipitados de MnS inibem o crescimento normal do grão, ocorrendo assim um processo de crescimento seletivo desses grãos, sendo esse fato função da orientação cristalográfica.

Observando-se os resultados de MET temòs que os precipitados de MnS apresentam-se em maior densidade na região correspondente à metade da espessura da amostra, consequentemente menor tamanho médio da partícula do que na camada superficial da amostra.

Com as medidas de difração de raios-X podemos verificar que na superficie das amostras (sem desbaste) (início, 25, 50% e final) os grãos apresentam orientação (110). Para o desbaste de 200µm, os grãos apresentam a orientação (110) e (100), exceto na amostra referente à parte final da tira. Este fato também ocorre para o desbaste de 400µm. Para o desbaste de 600µm todas as amostras apresentam orientação (110) e cubo (100). Para o desbaste de 800µm, temos uma baixa presença de grão com orientação (110), prevalecendo principalmente (100). No desbaste de 1000µm, metade da espessura da amostra, observa-se a forte orientação (110).

Há uma concordância destes resultados com os obtidos ao MET, uma vez que encontramos precipitados de MnS em maior densidade na região correspondente a metade da espessura da amostra inibindo o crescimento normal do grão e produzindo uma textura preferencial. Já na amostra correspondente ao final da tira, podemos observar que como ela se apresenta homogênea, a amostra não muda sua orientação preferencial com relação a sua espessura.

#### AGRADECIMENTOS.

Os autores agradecem a Acesita o material fornecido e a oportunidade de publicação desse trabalho.

Agradecemos ao CNPq pelo apoio financeiro à bolsista.

#### REFERÊNCIAS.

[1]Sun,W.P.;"Measurement and Analysis of MnS Precipitation in Electrical Steels";PhD.Thesis, McGill University, Department of Mining and Metallurgical Engineering, January-1991

[2]Abbruzzese, G., Fortunati, S., "On the Relationship between the Kinetics of Secondary Recrystallization and Magnetic Properties of Grain Oriented Silicon-Iron". Materials Science Forum, vols.113-115 (1993) pp.287-292.

#### **SUMMARY**

The texture and the MnS particles distribution was made in grain-oriented Fe-3%Si alloy after a hot rolling processing. The characterization of particles was made by transmission electron microscopy (200kV) and the texture gradient by X-ray diffractometry.

The X-ray measurements bring the following orientations, dependent of the deep of the thickness of sheet, (110) orientation and (100) orientation parallel to surface that