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ABSTRACT -

The state of deformation, strain, and stress within a body
may be determined only when a sufficient set of boundary
conditions (displacement & traction) is defined. Sometimes, the
complete set of boundary tractions may not be available as in
the case of contact regions between two bodies. The solution of
the J1l-Posed Problem of Contact Stress Reconstruction, despite
its numerous physical applications, has received scant attention
in the literature so far. Techniques for the solution of such
problems, for examples, may be employed in characterizing
boundary tractions at inaccessible regions of critical
components in sensitive mechanical eqmpment or to determine
tractions in physical truncations needed in partial mesh
discretization of a body. The numerical solution of the IPP of
CSR simulates the exploitation of a combination of
experimental and pumerical techniques in a complementary
fashion. This paper presents a boundary element formulation
with explicit calculation of the sensitivities in an optimization
framework for the solution of the IPP of CSR from
measurements Jocated at discrete locations of a solid. The
magnitude, location,and extent of the contact stresses are
defined in terms of load and geometric parameters.

INTRODUCTION

The beginning of the space era has played an important role
in the development of numerical solutions for Ill-Posed Problem
(IPP) in engineering. It was impossible to place sensors directly
on the surface of spacecraft because the aerodynamic heating of
reentry vehicles was very severe. It was necessary to embed the
sensors beneath the surface of the vehicle. The problem of
estimating surface heat flux from interior temperature
measurements is known as the Inverse Heat Conduction
Problem (THCP) in the literature [1]. In solid mechanics, the
problem of Contact Stress Reconstruction (CSR), based on
measurements from sensors located on the boundary or at
interior points of the body, constitutes an IPP. This type of
problem can be found, for example, in characterizing tractions
at inaccessible regions of critical components in sensitive
mechanical equipment, or characterizing tractions on a portion
of the body embedded in a hazardous environment. Another
application is the determination of tractions in a physical
truncation such tractions may be needed in a partial mesh
discretization of the body. In such cases, the internal data are
generally not only more accurate, but easier to assess.
Techniques like strain gages, photoelasticity, coating, and
speckle interferometry, among others, are reliable experimental
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methods for the determination of deformation, strain and stress
tensors at the boundary of or inside a body [2). Computational
techniques for the solution of the IPP of CSR may provide an
cvaluation tool for identifying contact regions in neighboring
objects, as well as hybrid experimental and numerical methods
for the analyses of solids [2,3). Schnur et al. [4] presented the
boundary condition reconstruction for elastostatics application
using the FEM in conjunction with spatial regularization.. In
this paper, optimization approach was not employed and only
magnitudes of simple traction distributions at a fix location on
the surface of the body were determined. In the present paper,
the IPP of CSR is first explained and expressed in mathematical
terms. The problem is then formulated as a constrained
nonlinear optimization problem in a BEM framework. Using
function specifications for the unknown contact stresses, the
solution procedure adopted secks to minimize the difference
between the experimental data and the corresponding computed
quantities. Geometric constrains forcing on that CSR lies within
a specific portion of the boundary of the body are also imposed.
The design sensitivities required in the optimization procedure
are obtained by the implicit differentiation [S] of the BEM
integral equations. Examples involving the determination of the
magnitude, extent, and location of contact stresses are presented
in this paper.

DEFINITION OF THE PROBLEM

Consider that in Figure 1 the external boundary I' of the
solid Q got in touch with another body, and the contact traction
@ has its magnitude, extent, and location unknown. The
reconstruction of®, anywhere along the boundary I' of the
s0lid(2, based on internal or external experimental data in
terms of displacements, stresses, or strains constitutes an IPP.
In mathematical notation, this can be expressed as

0;,;(x)=-bj(x); VxeQ m
0 j(X) = A5jen(x)+2pey(x); VxeQ ()

sij(x)"%[ui. ix)+ uj_i(x)]; VxeQ &)}

oi(In(¥)=t;: YeI 4)
ui(Y)=1u;; Y€I;, and &)
Pa =Pix); xx €I°,0r x, €T (6)

where x and y are position vectors belonging to the body 2 and
to the boundary Tof the body, respectively.
Oij, €ij » bj, ui, t;, are; stress, strain, body force, displacement,



and traction, respectively. The overbar quantities T; and §; are
prescribed tractions and displacements, respectively. A and p
are the Lamé's constants, and 8 is the Kronecker's delta. The
quantities ¢, with (i = x,y) and (k =1,2,3..m) are simulated
experimental quantities along the direction *i" and at location
"k." Such expcrimental quantitics @, may be internal or
external data in terms of displacements, stresses, or strains. In
this paper, @, will be simulated from the solution obtained
from a boundary element analysis with the actual contact stress
applied. The approach followed in this paper to solve the IPP of
CSR is the best-fit method using optimization technique. A
residual function that measures the differences between the
model prediction and the measured data is minimized. A
number of metrics can be employed to express the residual
function. In this paper, the residual function f(z) to be
minimized is written as the Euclidean norm of the difference
between ¢, and the corresponding computed quantities @,
multiplyed by a weighting eter "w" to enhance numerical
sensitivity. The vector {6; refers to the data vector, and the
mapping Az = {} corresponds to the computed quantity. {¢}
is obtained in terms of the model vector y'={z1,22..20 }»
where 7z represents design vaniables specifying magnitude,
extent, and location of the contact stress. The objective function
to minimize can be written as

m 2
r(z)=w51_zi(q,‘*.5&)’ e

* Measurement locaton
Figure-1: IPP of stress reconstruction

MINIMIZATION OF THE RESIDUAL

The use of numerical methods in conjunction with digital
computers has enabled structural engineers in the last decades
to solve & wide variety of complex problems. The CSR based on
observations around or inside the body involves the
determination of the magnitude, extent, and location of the
contact stresses acting on I" and expressed by the model vector
t" ={z1,22...2zn}. The numerical procedure adopted in this
study for the solution of the IPP of CSR involves the
determination of the model vector §” ={z,,25...z,} such that
the function f(x) in Eq. (7) be 2 minimum. {(z) is referred to
as the residual or objective function to minimize. For the
solution of this IPP, suppose that the possible location of the
contact stress is limited to a bounded set of locations on the
boundary of the body, say on T, € I'y. Geometric constraints to
prevent contact stress from lying out of the feasible region is

adopted. The inequalities, denoting the geometric constraints,
may be written as Cj(z;) 2 0. To take C;(z) into account in
the minimization process, the internal penalty function method
is used since it assures at Jeast a minimum inside the feasible
region. Among the internal functions (in/inity, log and inverse
barrier function), the inverse penalty bamrier function has a
more desirable behavior because it gradually penalizes the
objective function as the search points approach the limits of

the feasible region. Making %R the penalty parameter, the new
sugmented objective function to be minimized is then given by

Fzi.%) = f(z) + 5 Ec;'(z.-) ®)

Fli=1

A number of methods are available in the literature for the
minimization of an objective function F(z)=F(z;,%). Of
broad use are the methods of first-order, such as the variable
metric method which is a quasi-Newton method, and is
considered to be & powerful optimization method [7). In the
variable method, for a fix R, it is postulated that F(z) may be
locally approximated, at any point Z , by a Taylor's expansion

F(z)=F(i)+2£(—il(z—i)+z~a~2’:(—i)(z-i)z+--- ©)
i 0z i 9ziz;

In matrix notation and including terms up to the quadratic
order, Eq. (9) can be rewritten as

F(z)=A+Bz’+-;-sz’ (10)

where the matrix A is a constant, B is the gradient vector, and
the matrix of the second order derivatives, H, is called the
Hessian of the function F{z). Taking the derivatives of Eq.
(10), the gradient of the function F(z) is VF(z)=Hz- 8. The
variable metric methods attempt to iteratively build up a good
approximation to the inverse of the Hessian matrix 4-!. That is,
it constructs, during an infinity number of iterations (k — ), 8
sequence of matrices 1(X) that will converge to the inverse of
H. If the minimum of F(z;) is achieved in N finite number of
iterations, then () can be used to update the vector Z.
Suppose that »* gives the minimum of F(z), then
VF(:*)=Hz*-B=0. At any iteration ) we can write
Hy®) = VF(3%)) - B. Subtracting this equation from the firts
one, and multiplying the resultant expression by the inverse of
the Hessian matrix H™!, it yields

2" -2®)= —H"[VF(:"")] in
The left-hand side of Eq. (11) represents a finite step needed to
take the vector 3%} towards the exact minimum »°. Subtracting
Egq. (11) at £%*) from the same equation at X) gives
10— 0 = - [VFEED)-VFE®)]  (12)

In the variable metric method, the sequence
RO, KM 1), &+ approaches 4! in a finite number of



iterations. In this paper, the recursive formulae from the BFGS
algorithm (due to Broyden, Flecher, Goldfarb, and Shanno) are
applied to update R**V[6). Substituting in Eq. (12) H™! for
R®+*) | and adopling the abbreviation S(z*)=g®)=
y.:fh')[w—'(,ﬂ*‘))-v&,ﬂ))] then, if we start from an initial
guess defined by the vector 3(%, the update of the vector g&)
in search of the minimum in the direction §®) can be written as

2E N = ;M) ,IgE) 3

where oK) is the step-length along a line search direction. In
the sub-minimization process of finding the appropriated o(¥)
to minimize F(z)=F(z,R), given the initial guess z(®, the
derivatives of F(z(®) and the search direction §(© are
calculated. Three values o) <o <o} corresponding to
three points 3 < ;® < 3(©) in Eq. (15), along the path s,
are found. These points are such that
Fz™) > FG™) < F(2®)). To ensure that the Jocation of the
vector () lies inside the feasible domain T, cTI, the step-
length (k) is successively contracted by 10%, when necessary,
until 3 lies inside the feasible domain. With the three initial
points ™) < o <) , Brent's method [7] is applied to find
the minimum of F(z) along §(® by approximating the function
F(z) by a parabola fitted through {a®,a®,a(). With
F®) = F(z®), F® = F(2™),and F) = F(3(©)), solving the
inverse interpolation problem, the variable o™ denoting the
minimum of the interpolating parabola, is found as

(a™- ut-))z[ F)_ F(-J]_(uﬂl_ail))’[ FO-FO]
(a™- nmI FOL F“’]— (™= ﬂ“’)[ FO-g®]

a™=g®

(14)

The above relation fails only if the three points are collinear.
Brent's method takes care of this situation by shifting the search
for the minimum to the Golden Section method [7] whenever
necessary. At the minimum (™), F(3™)) is evaluated.
F(z®), F(z®), and F(z®?) are compared with F(z(™)and the
one with the most difference is replaced by F(z(™). Thus, a
new triple set of points is obtained. A parabola is fitted through
this new set of points, and the process is iteratively applied
until the minimum of the function F(z) in the search direction
being pursued is found. Upon determining the appropriate X
that minimizes F(z) in the search direction corresponding to
iteration "k," the BFGS algorithm is applied to update p+1,
s&+D and ;(k*1)_ A check for convergence is performed, if
convergence has been achieved the program stops. If
convergence has not been achieved, the next iteration begins
with the updated values of R(k*1, g+1)_and g(x+1),

BEM AND SENSITIVITIES

The most widely used numerical techniques successfully
applied to direct problems are the FEM and the BEM[8]. A
recent review of the literature indicates that the FEM has been

systematically incorporated into numerical schemes for solving
IPP [9). During the last decade, though, the BEM has become
an alternative analysis method and has emerged as a powerful
tool for solving various complex problems. Despite its
shortcomings due to the mathematical complexity underlying
the method, there are many advantages that make the BEM an
attractive and competitive technique. The BEM has some
distictic advantages, especially for certain classes of linear
problems over "domain” type techniques such as the FEM. In
the BEM the dimensionality of the problem is reduced by one.
For example, 2D problems are reduced to line integrals. As a
"meshless” method the BEM is well suited for problems
involving continuous mesh updates. The contact stress
reconstruction is an example of such problem. In the IPP of
CSR, the extent and location of the contact stresses acting on T’
have to be found and for that the mesh at the boundary has to be
constantly updated. The use of BEM technique makes the mesh
update easier. The fundamental equation in the BEM is the
Somigliana's identity. Omitting the body force, the Somigliana's
identity can be written as

w=f T+ my-f Gu-f Gy a9
with o =c(c:8,keR-(v;Y,)/R})  (16)

1= (c_:,fR!}[c.;(nk Yi-nYi)+ (¢45u; +(2Y, Y, )/ Rz)anj]
a7

where ui=u(§.X), ;=10(EX), p= E![I(l +o)] is the
shear modulus, E is the Young's modulus and y is the Poisson's
ratio, ¢;=-1/[8xu(1-v)], ¢;=3-4v, c3=-1/[4x(1-v)],
and ¢4 =1-2v. The term Y; = x; +§; is the distance between
the point load x; on the boundary and the field point &,

R?=Y,Y;; and p; are the outward normals at boundary I'.
Similar to Eq. (15), the equation to determine the stresses can
be written as

0= jr[sz,‘k - o,—}k uk] ar  (18)

with €5, =65, (§,%) = (a3m Y1/ R*)[2828; Yy +2v(5; Y
+8; Y1) - 8Y,Y;Yi/R?)+ (a3/ R)[m@vY;Yi/R?
+828;)+ nj(2VY; Y/ R? +2283)] +(a3/ R?)
[ree2YiY;/R? - 0s8)) (19)

and o}, =0}y (5% = (a1 R)az (B Y+ 5 Yi - 8; Y1) /R
#2Y,Y;Yi /R’ (20)

where a)=-¢, a;=Ca» az=p/[2x(l1-v)], a,=1-4v.
Knowing the stresses, the strains can be obtained as

£j(8) = 0j(8)/ 21) - 28,;0u(8) /[2p(2p +32)] (21

For the discretization of Eq.(15), I' is approximated by
piecewise elements. The geometry, displacements, and tractions



at I"; (a piece of the boundary) can be expressed in the discrete
coordinates as

3 . 3 .
x,—(§)=}:lh‘(c)x§" 2). Uj(§)=_}:'h'(C)uﬁ’) (23)
1= i=
3 . i
and tj(§)=_‘_£Ih‘(§)t§" (24)

where xP are the Cartesian coordinates (, y in 2D Cartesian
planes) defining the geometry, of is the nodal displacement; (f°
is the nodal traction. =, o, and (P are nodal coordinates,
displacements and tractions, respectively, at the nodal point "i.”
»{® are interpolating functions, which are taken as quadratic
functions of the natural coordinate § . Introducing Egs. (22),
(23), and (24) into Eq. (15) and manipulating the resulting
equation as a system of matrix equation with the modal
displacements yPe{U} on one side and the nodal traction
1fPe{T}) on the other side, we get

[Fluy=[GkT} (29,

N

with  Gpq= 2 [luplhlidg  26),
k=1
NC

and qu=k§l]:.'lt;lh]-’d€ @7)

where G,, and f,, are the terms of the matrices [F) and [G],
respectively. The indices "p" and "q" denote node and element,
respectively, N is the total number of elements in the mesh.
Gw 8nd F,, are the interaction coeflicients relating node "q"
with all the nodes on the surface of the body. The matrix system
of Eq. (25) may be rearranged after all the prescribed boundary
conditions (tarctions T and displacements U) are imposed.
The manipulation of Eq. (25) is done to transfer all the
unknowns on the left-hand side and all the known quantities on
the right-hand side, resulting in the following equation
[A){v}={v}, where {+} represents the vector of unknowns and
{v} the vector of known boundary conditions multiplied by
some other matrix resulting from the manipulation operations
due to the application of the boundary conditions. Upon finding
the unknowns in {v}, the displacements at any location
(internal or external points) can be found from Eq. (15). In the
same way, applying the boundary values in the discretized form
of Eq. (20), the stresses (and by Eq. (23) also the strains) at any
point can be calculated. As explained in the section before, the
minimization of Eq. (8) by the variable method requires the
evaluation of the gradient of F(z;)=F(z;,®) with respect to

2 ={z1,22-2a }-

() FER) _, m2 . 09,
a & _2wt§‘li§1(‘pik ) o

LI 1 8Cim
-9 J 28
f’f.[cﬁw o ] 4

The Hessian matrix which is the second derivative of F(z;) is
approximated by the BFGS algorithm. This algorithm,

iteratively, builds up a good approximation to the inverse of the
Hessian and for such it needs only the first-order derivatives of
the function F(z;) in Eq(28 ). In that equation, 8¢, /Ot arc
the sensitivities of displacements, strains, and stresses
depending on what experimental quantities are used in the data
vector {@}. To find dp, /3 the first derivatives of the

boundary displacements and boundary tractions are needed. To
accomplish this, the implicit differentiation of Eq. (25) with
respect to the design variable, 2, leads to

[F(uy, +[F], (0 =[ckT),+[G],m 29
. N, +1l; . .
with qu.s=kZ_IL,{lu,-,,-_.lh]J+[uqlh]J,.}dC (0),

N,
d o= X LG 50000E 6D

The derivative of the kemnels u;—_, and li'j" with respect to
vector z are, respectively

ule = U5 &0 = 6[caR /R (Yia Y+ YY) /R
+2Y5YjR,.»’R’] (32)

and t7, =15 (5, = (csea’ R’anYi,z +0;:Yi-0; Y}z

- n.,:Y,') "'(Cs / R‘X2 Yi Y_,(Yk.zl'lk -Yx ﬂk.r.)
42(Yi2Yi+YiY5e) Yini-8Y; Y;YiniR o /K]

(263 RN ealn;¥i-m¥) - eada+ 2Y: Y ) RYRL 39

where R.l = R_’Yk Yk_l s N23 =J‘ZJ.|XI'| +J_1 Xz » and

ns=-J"2Jx22+3 %2, The singularities in the
evaluation of the sensitivities Gpq.2 and ppq 4 have been studied
by [5). Knowing the matrices [G], and [F], and manipulating
Eq. (29) we can write that [F]{U}.‘:[G}{T}‘-l-{r} with
{r} =[cl, {1} -[F],{u}. Afler applying the sensitivity
(derivative) boundary conditions in that equation one arrives to
[A)(v) ={e)+{r}, where (v}, contains both the boundary
displacement and boundary traction derivatives. With the
derivatives at the boundaries, the displacement, stress, and
strain sensitivities at any field point, can be found through the
derivatives of Egs. (15), (18), and (21), respectively. The
derivative of Eq. (15) needs the kernels' sensitivities as
expressed in Egs. (32) and (33). The stress sensitivity
(derivative of Eq. (18)) needs the strain and stress kemnel

derivatives as follows
el N
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Figure-2: Panel with contact stress to be reconstructed
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INITIAL YALUES
P = 300 psi
We75in
Z=50in

FINAL VALUES
P = 1000 psi

+ Wa=20in
Z=T70in

Upper Surface (in)
Figure-3: Parabolic contact stress reconstruction

When strains are the measured quantities in the data vector, the
strains sensitivities are needed in the minimization process.
Knowing the stress sensitivities, the strain sensitivities can be
obtained by deriving Eq.(21) w.r.t. vector Z .

NUMERICAL EXAMPLES

Two simple example problems are considered to evaluate
the formulation presented for IPP of CSR in this paper. In the
following examples, the experimental data vector ¢, will be

stresses and strains, respectively, for the first and second
example. The data vector were obtained from a prion direct
BEM analysis with the actual boundary tractions imposed on
the structures. These boundary tractions also served as the
"exact” solution for the purposes of comparison of the accuracy
of the present procedures.

A panel under parabolic tractions: A simply supported panel,
shown in Fig. 2 is considered to get in touch with another
structure. The panel has modulus of elasticity,
E =186x10%psi, and Poisson's ratio, v=0.3. At 39 internal
sensors (solid crosses at Fig. 2) the state of stress along "x-y"
direction is observed while the panel is subjected to an
"unknown" normal contact stress with a parabolic distribution

at its top edge. The location, Z, the span, W, and the peak
magnitude, P, of the parabololic contact stress distribution are
unknown and are desired to be reconstructed. Therefore, the
model vector z'={zw.P}. The normal distribution of the
parabolic  contact stress may be expressed as
o(s)=(—4Ps2+8PZs+ Pw2-4Pz2)rw2, where "s” is the distance along
the span of the parabola and (z-05W)<s<(Z+05w). The initial
guess for z@ was selected to be 7z = {50in,75in,300psi }. The
evalution of the missing traction distribution starting from the
initial guess, as the iteractions in the present analysis proceed,
is shown in Fig. 3 and 4. The exact traction distribution for this
case is also shown in bold line in that figure. As the missing
contact stress varied in position and span length after each
iteration, the BEM mesh for the upper boundary edge was
modified to acommodate such evolutions. The penalty
parameter R in Eq.(8) was varied during the analysis changing
from a value of 10° at the beginning to zero at the end. The
final solution was obtained in 26 iterations. Table 1 shows the
final results obtained with no error in the data vector and also
with 5% and 10% random error contaminating the data vector.

w 1100 T T 1 1
000 b P R p——

200

2

o

F(x1 0 91; Pr1000), W

200

0o

ool
Berabons
Figure-4: Convergence history of P, W, and Z

A roller under normal and tangential stresses: The contact
stresses acting on a roller at its interface with the workpiece are
analyzed. The geometry of the roller is represented in Fig. 5.
The roller material has E =1217N/mm?® and Poisson’s ratio
v=0.3. The boundary region coming in contact with the
workpiece was discretized with a finer mesh. The
measurements were obtained at 25 internal locations identified
by solid crosses at Fig. 4. The data vector in this case consists
of strains read at the 25 intrenal locations. The contact region is
characterized by the angle "y". The normal traction distribution
is assumed to be symmetric and the tangential traction assumed
antisymmetric. They are assumed to be N(x)= Asin{xy] and
T(x) = Bsin[(x - 0.8)y), Tespectively. A and B are amplitudes of the
corresponding traction distribution assumed. In Fig. 6, the
residual function to minimize is shown and the region of the
minimum can be easily identified. The parameters A, B, and y
define the mussing traction distributions and constitute the
model vector z' for this case. Starting with A =S5N/mm?,
B=SN/mm?, and y=10°, the normal and tangential contact
stress converges to the final solution afier 18 iterations and are
shown in Fig. 7 and 8, respectively.
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Figure-5: (a)Roller geometry, (b) sensors locations

Tabels 1: Panel with Parabolic Contact Stress

Data Error Standard Traction | Span | Position
Parameter Deviation Nipsi) W(in) Z(in)
n=0% a=000 1000.1 19.99 70.00
n=5% a1 =138 1001.1 1997 7111
82 =115
n=10% a1=27 1001.8 19.94 71
g3 =631

Figure-6: Function contour

CONCLUSIONS

An optimization-based boundary integral formulation for the
solution of the ill-posed problem of contact stress reconstruction
has been presented. The approach to reconstruct contact stress
is based on the minimization of the residual between
"experimental” data at discrete points and the corresponding
computed quantities. To keep the solution in feasible domains,
constraint equations are imposed. The inverse penalty function
was augmented to the objective function so that the constrained
problem was transformed into an unconstrained one. The
minimization is performed using a quasi-Newton method with
implicit differentiation of the kemels of the boundary element
integral equations. Parabolic and sinusoidal stress distributions
were assumed for the unknown contact stress. In this paper, the
magnitude, extent, and location of the unknown contact stresses
were closely predicted demostrating the validity of the present
approach to reconstruct contact stress from "experimental” data.
A prime limitation of the present approach arises from the fact

that the optimization procedure may converge to a local
minimum.

INITIAL YALUES L
N = 55 Nmm2 - Bl
Y= 100eg ’ RN

FINAL VALUES . “
N = 35 N'mm2 *
7=8dep

Contact Normal Strees (Nwvwr2)
cndr8RBREEZRS

Contact Angle 7ideg!
Figure-7: Evolution of normal contact stress-3variables
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Figure-8: Evolution of tangential contact stress-3variables
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