Diode-pumped, stimulated random emission using a powder of Nd:YVO₄

R.J.R. Vieira* and N.U. Wetter

Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, Av. Lineu Prestes 2242, 005508-000 São Paulo, Brazil. *Corresponding author e-mail: jamavi@usp.br *Corresponding author phone: 55(011)3133-9258

In random lasers, which refer to lasing in disordered media, strong multiple scattering plays a constructive role instead of being only a loss factor [1]. Random lasers have received considerable attention for several years due to its unique properties and its potential applications. Being demonstrated in a wide variety of media, including powders of rare-earth crystals, pulsed and continuous-wave lasing emission has been reported [2].

In this work, emission intensity and linewidth narrowing is experimentally analyzed in an optical pumped random media, observing a sharp threshold and pulsed emission on only one transition, namely, the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$.

The powder was obtained by grinding a 1.4mol% Nd^{3+} : YVO_4 laser crystal using an agate mortar and a pestle. The mean diameter of the particles was 390 nm (determined by laser diffraction technique). A sample with flat surfaces and dimension of $\Phi 5x1$ mm³ was obtained by compressing ~33.7 mg of powder with a manual punch tablet.

For the experiment, a QCW laser diode bar was used as the pump source, tuned to the maximum of the Nd³⁺ absorption for this sample (809 nm) with 100 μ s pulse width and 3 Hz of repetition rate. The excitation beam was focused to a square shape with area of 5.33 mm². The samples' backscattered luminescence, caused by the normal incidence beam from the diode bar, was separated from the pump excitation by a beam splitter, then collected and analyzed using a fast oscilloscope and a spectrometer.

Figure – (a) Sample emission spectra irradiated with powers of 0.8, 2.1 and 5.1 mW/mm² of average intensity. (b) Normalized peak emission intensity from optically excited Nd³⁺:YVO₄ powder at five wavelengths versus incident laser power. Observe that only the 1064 nm emission has an exponential increase. (c) Linewidth narrowing from the ${}^{4}F_{322} \rightarrow {}^{4}I_{11/2}$ emission transition.

At low pump intensity (0.81 mW/mm²), several fluorescent emissions from ${}^{4}G_{7/2} \rightarrow {}^{4}I_{9/2}$, ${}^{4}G_{5/2} \rightarrow {}^{4}I_{9/2}$, ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$, and ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ Nd³⁺ transitions were visible, as seen in **Figure a**. However, by increasing the pump intensity gradually, a threshold value is observed, accompanied by a sharp emission line at the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition (1064.12 nm). **Figure b** shows the exponential growth for this transition, demonstrating that stimulated random emission for this sample has been obtained. Other fluorescent emissions suffered a spectral quenching. The spectral width of this transition decreased as a function of pump power, from 1.30 nm to 0.48 nm (**Figure c**).

At higher duty cycles or longer pulses (400 μ s pulse width and 30 Hz of repetition rate), a spectral broadening of the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition with increased pump power is observed. This broadening is related to thermal effects that are more significant in a powder than in bulk crystal, on account of the poor thermal conductivity of the inhomogeneous structure. This temperature dependence is relatively strong for samples with a narrow gain spectrum, like the Nd³⁺:YVO₄ and much smaller in systems with broad gain spectra, such as ZnO powder [3].

[1] D. S. Wiersma, "The physics and applications of random lasers", Nature Physics 4, 359-367 (2008).

[2] B. Li and Stephen C. Rand, "Continuous-wave amplification and light storage in optically and electrically pumped random laser media", *Opt. Soc. Am. B* 24, 799-807 (2007).

[3] Y. Feng *et al*, "Thermal effects in quasi-continuous-wave Nd^{3+} : Y₃Al₅O₁₂ nanocrystalline-powder random laser", *Appl. Phys. Lett.* 84, 1040-1042 (2004).