DESENVOLVIMENTO DE DOSÍMETROS RADIOFOTOMÉTRICOS DE ALTA SENSIBILIDADE UTILIZANDO PLÁSTICO CINTILADOR COMO INTENSIFICADOR DE LUZ

Carlos Henrique de Nosquita e Margarida Nisue Hemada

Departamento de Proteção Radiológica Instituto de Pesquisas Energéticas e Mucleares Comissão Macional de Energia Muclear - São Paulo

Resumo

A proposta deste trabalho é desenvolver placas retangulares de plásticos cintiladores e avaliar seu efeito como conversor de luz, quando utilizados como porta-filme nos dosimetros fotográficos convencioanis. Neste do simetro a radiação que não chega a interagir na película fotográfica pode ser detectada pela geração de fotons de luz nos plásticos cintiladores, sensibilizando a película.

Introdução

Com o cresecente avanço no campo de aplicações das radiações ionizantes, observa-se na literatura uma preocupação constante quanto aos aspectos metodológicos, que conduzem ao desenvolvimento e aperfeiçoamento de do símetros, para medir as exposições a que estão sujeitas as pessoas diretamente ligadas a trabalhos com radiação (1,2,3).

Os requisitos almejados para qualquer tipo de dosímetro são: 1)sensibilidade; 2)confiabilidade; 3) faixa útil de energia; 4)grau de independência do ângulo de incidência da radiação; 5) linearidade das respostas em função da energia e 6)capacidade de documentação para posteriores análises.

Os filmes desimétricos atendem parcialmente estes requisitos, no entanto apresentam sensibilidade relativamente baixa e falta de linearidade das respostas em função de energia. Estas limitações podem ser contornadas utilizando-se da combinação de filme fotográfico com fluor orgânicos (cintiladores), no qual o filme fotográfico é colocado entre dois polímeros cintiladores (1,3). Estes cintiladores atuam como conversores de luz na ocorrência de interação da radiação com o dosímetro, sensibilizando assim a película fotográfica.

O propósito deste trabalho é desenvolver plástico cintilador para ser utilizado como porta-filme nos dosímetros fotográficos convencionais e verificar a eficiência da sua utilização como conversores de luz para aumentar a sensibilidade desses dosímetros.

Nateriais e Nétodos

Os plásticos cintiladores foram preparados pela polimerização de monômero de estireno misturados com fluor orgânicos como PPO (2,5 d:feniloxazol) e POPOP (1,4-di-2-(5 feniloxazolil)-benzeno) em proporções de 0,5 e 0,05% respectivamente. A polimerização foi induzida por elevação de temperatura, procedimento já descrito por Mesquita e Hamada (4).

A emissão máxima de fluorescência foi avaliada em espectrofotômetro de fluorescência, marca Perkin Elmer, modelo MPS-2A. Neste teste foram utilizados pequenos blocos de plásticos cintiladores com dimensões de 10mm de diâmetro por 1,5mm de espessura.

O indice de refração foi determinado pela técnica de excitação, usando-se um feixe de luz polarizada de Laser He-Ne.

Após a obtenção do bloco plástico cintilador foram confecciona-

des 7 pares de placas retangulares de dimensões 40 x 50mm² e espessuras que va riaram de 3, 4, 5, 7, 10, 15 e 20mm. Estas placas foram recobertas com tinta refletora a base de óxido de titânio e alumizadas para fins de proteção contra vazamento de luz.

Os filmes dosimétricos foram desencapados em câmara escura e colocados entre cada par de placas cintiladoras.

A seguir, estes dosimetros foram irradiados com radiação gama proveniente de uma fonte de 137 Cs padronizada de modo que a exposição fosse de 100mR.

Junto com os dosimetros acima descritos irradiava—se também filmes dosimétricos com porta—filme convencional e desprovidos de porta—filme (badge). Para fins de confiramção irradiava—se silmultaneamente, dosimetros termoluminescentes confeccionados com $CaSO_A$: Dy aglutinados com $Teflon^{(2)}$.

Repetiu-se o experimento, trocando-se os filmes sem retirar o seu involucro protetor de luz, a fim de verificar o efeito de "build up" de ca da bloco plástico.

Após as irradiações as filmes dosimétricos foram revelados, medindo-se as respectivas densidades óticas em um densitômetro modelo TD 502 da Macbeth-Ansco. Descontou-se de cada valor o resultado de um filme virgem revelado no mesmo barho e que não foi submetido à irradiação (branco). Tabelou-se os resultados da densidade ótica, descontada do branco.

A partir de cada valor "líquido" da densidade ótica leu-se a do se "virteral" (se a referida densidade ótica fosse a proveniente de um dosime tro convencional) na curva padrão de dose x densidade ótica.

Resultados e Discussão

A figura 1 mostra a curva de emissão de fluorescência do plástico cintilador. Dessa figura infere-se que o plástico assim produzido tem um aspecto de fluorescência com pico de 422nm, não apresentando espectro diferente daquele esperado para a combinação PPo e POPOP. Este resultado confirma que durante as etapas da confecção dos plásticos, os cintiladores não foram danificados.

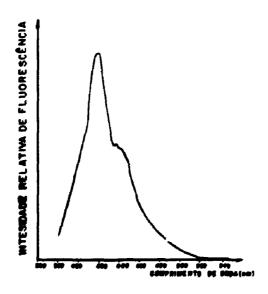


Figura 1: Espectro de fluorescência de uma amostra do plástico cintilador.

O Índice de refração do plástico cintilador acusou valor de 1,51.

Na tabela 1 encontra—se os resultados da densidade ótica para os diferentes materiais intercalados.

TABELA 1

Valor experimental da densidade ótica para cada espessura do plástico cintila dor e a respectiva exposição, considerando-se a curva de dose resposta do dosf-metro convencional utilizado.

Material	Densidade Ótica		Exposição
	Filme Aberto	Filme Lacrado	"Virtual" (mR)
P.C. 20 mm	33	22	177
P.C. 15 mm	31	21	159
P.C. 10 mm	28	20	142
P.C. 7 mm	26	21	130
P.C. 5 mm	21	19	100
P.C. 4 mm	22	21	106
P.C. 3 mm	21	22	96
Convencional	21	22	100
Só Filme	20	20	96

Como se infere dos valores da Tabela 1 a presença do componente cintilador contribui, efetivamente, quando sua espessura é superior a 7 mm. Utilizando um dosímetro confeccionado com 20 mm de espessura o mesmo resulta num aumento de eficiência da ordem de 77% em relação ao dosímetro convencional(sem a contribuição do efeito luminoso do bloco plástico).

Esses resultados são preliminares tendo em vista que seria necessário estudar a dependência da densidade ótica em função do nível energéti co da radiação, levando-se em conta a contribuição do plástico cintilador.

Por outro lado, outros filmes poderão apresentar melhores resultados em função das características de fluorescência do plástico cintilador e o perfil da sensibilidade do filme.

Concluindo, nossos resultados preliminares sugerem que a substituição do porta-filme convencional por um porta-filme construído com plástico cintilador poderá melhorar a sensibilidade da resposta dosimétrica dos filmes fotográficos.

Agradecimentos

Os autores expressam seus agradecimentos:

À M.Sc. Letícia L. Campos e à equipe da Divisão de Calibração pe las irradiações efetuadas e pelas inúmeras sugestões e discussão sobre o tema;

À B.Sc. Maura Vieira Barbosa pela colaboração presente no tocan te às revelações e leitura dos filmes fotográficos;

À B.Sc. Elizabeth K. Sonoda Dantas pela colaboração no levantamento experimental do espectro da fluorescência e

Ao B.Sc. Milton Aparecido Zuccolotti pelas medidas do indice de refração.

Referências Bibliográficas

1. ATTIX, F.H. & ROESCH, W.C. - Dosimetry with photographic emulsions.
IN: ATTIX, F.H.; ROESCH, W.C.; TOCHILIN, E., Radiation Dosimetry New York,

Academic Press, 1966.

- CAMPOS, L.L. & LIMA, N.F. Dominetric properties of CaSO₄:Dy Teflon pellets produced at IPEN. <u>Radiation Protection Dominetry</u>, 14 (4): 333-335, 1986.
- RIEFER, H. & MAUSHART, D. Personal dose monitoring.
 IN: KIEFER, H. & MAUSHART, D. Radiation protection measurement. New York, Pergamon Press, 1972.
- 4. MESQUITA, C.H. & HAMADA, M.M. Development of plastic scintillators for use in the field radioprotection and environmental monitoring.

10-1 1

IM: Associação Brasileira de Energia Muclear; Anais do I Congresso Geral de Energia Muclear, realizado no Rio de Janeiro, em março 1986. Rio de Janeiro, 1986.