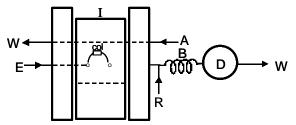
Sistema de análises em fluxo para pré-concentração de determinação de cobre em águas naturais

Patricia Antonio (PG)^{1,2}, Wanessa R. Melchert (PG)¹, Maria Cláudia F. C. Felinto (PQ)³, Maria Encarnácion V. Suárez-lha (PQ)¹, Fábio R. P. Rocha (PQ)^{1*}

1. Instituto de Química, Universidade de São Paulo, 2. Escola de Engenharia Mauá - Instituto Mauá de Tecnologia, 3. Instituto de Pesquisas Energéticas e Nucleares. *frprocha@iq.usp.br

Palavras Chave: análise por injeção em fluxo, cobre, XAD-7.


Introdução

A técnica de Extração em Fase Sólida (Solid Phase Extration-SPE)¹ tem sido considerada muito importante ao longo dos anos, devido ao fato de se poder determinar concentrações muito baixas do analito de interesse. A SPE tem sido acoplada a sistemas de análises em fluxo (FIA) apresentando vantagens como a automação, aumento de sensibilidade e melhoria de seletividade. A di-2-piridil cetona saliciloilhidrazona (DPKSH)² é uma hidrazona que pode ser aplicada à SPE, pois complexa íons metálicos.

Neste trabalho, é descrito o estudo sobre a pré-concentração e a extração de íons Cu(II) em resina polar, não iônica da série Amberlite XAD-7 modificada com DPKSH em análise por injeção em fluxo.

Resultados e Discussão

A resina XAD-7 foi modificada por contato com o DPKSH, sob agitação e temperatura (25±1)°C constantes por 10 minutos. Na Figura 1, está esquematizado o sistema de análises em fluxo com um injetor temporizado que permanece 40 segundos na etapa de pré-concentração e 20 segundos na etapa de eluição dos íons Cu²⁺ da resina. A coluna empregada no estudo apresenta 25mm de comprimento e 2mm de diâmetro interno.

Figura 1. Diagrama de fluxo para determinação de Cu²⁺. **A**=amostra, **E**=eluente (HNO₃ 0,05 mol L¹), **R**=reagente (DPKSH 1,04.10⁻⁴ mol L⁻¹) + tampão (HAc/Ac⁻ 0,3 mol L⁻¹), **col**=coluna com resina modificada (XAD-7), **D**=detector (espectrofotômetro, 382 nm), **B**=bobina e **W**=descarte.

Os parâmetros otimizados estão apresentados na Tabela 1.

Tabela 1. Otimização das variáveis do sistema.

Parâmetro	Faixa	Valor adotado
Vazão da amostra (mL/min)	0,8 - 2,3	2,3
Vazão do eluente (mL/min)	1,2 - 3,9	2,9
Vazão do reagente (mL/min)	1,2 - 3,9	2,3
Tempo de pré-concentração (s)	20 - 110	40
Tempo de eluição (s)	20 - 110	20
Tamanho da bobina (cm)	50 - 150	50

Resposta linear foi observada entre 2.10⁻⁶ e 2.10⁻⁵ mol L¹ (r=0,998). O coeficiente de variação (n=20) foi estimado em 1,6% e a freqüência de amostragem em 59 medidas/hora. A Tabela 2 mostra os resultados de um estudo de adição / recuperação de cobre em algumas amostras de águas naturais.

Tabela 2. Adição e recuperação de Cu²⁺ em amostras de água da represa de Pereira Barreto.

Amostra	Adicionado (mol L ⁻¹)	Recuperado (mol L ⁻¹)	Recuperação (%)
1	5,05 10 ⁻⁶	5,67 10 ⁻⁶	114
	1,02 10 ⁻⁵	9,91 10 ⁻⁶	99
2	5,05 10 ⁻⁶	4,88 10 ⁻⁶	98
	1,02 10 ⁻⁵	6,25 10 ⁻⁶	63
3	5,05 10 ⁻⁶	4,24 10 ⁻⁶	85
	1,02 10 ⁻⁵	1,08 10 ⁻⁵	108

Conclusões

O método proposto é uma alternativa para a pré-concentração de íons Cu^{2^+} em FIA. Além de apresentar características de procedimentos em fluxo como alta freqüência de amostragem, baixo consumo de reagente e automação, o sistema utiliza na etapa de eluição menor concentração do HNO_3 quando comparado ao método em batelada.

Agradecimentos

CNPq / FAPESP

¹ Saha, B *et al*; Reactive & Funcional Polymers, **2004**, 60, 233-244.

² Garcia-Vargas et al; J.A.- Applied. Spectroscopy, **1986**, 40(7), 1058-1062