THE ELECTRO-OXIDATION OF ISOTOPICALLY LABELED GLYCEROL AS A PROOF OF THE CLEAVAGE OF C-C CHAIN ON PT SURFACES

Pablo S. Fernández¹; María E. Martins ${ }^{1}$; Cauê A. Martins²; Giuseppe A. Câmara²

${ }^{1}$ Universidad Nacional de La Plata, La Plata, Argentina
${ }^{2}$ Universidade Federal do Mato Grosso do Sul, Campo Grande-MS, Brasil
giuseppe.silva@ufms.br
Palavras-chave: Glycerol electro-oxidation, in situ FTIR, isotopically labeled glycerol, production of CO_{2}
This work presents the first in situ FTIR study with isotopically labeled glycerol on polycrystalline platinum and reveals new information concerning the glycerol C-C bond cleavage and the behavior of $13 \mathrm{CO}_{2}$ and $12 \mathrm{CO}_{2}$ as electro-oxidation products. The electro-oxidation of isotopically labeled glycerol generates both $13 \mathrm{CO}_{2}$ and $12 \mathrm{CO}_{2}$ and indicates that glycerol is able to dissociate on Pt. The oxidation of $-13 \mathrm{CH}_{2} \mathrm{OH}$ is easier than that of the central group. Results are interpreted in terms of a more favorable position of $-13 \mathrm{CH}_{2} \mathrm{OH}$ groups to react with $\mathrm{Pt}-\mathrm{OH}_{\mathrm{ad}}$ species.

CAT-08 PREPARAÇÃO DE ELETROCATALISADORES PtAuSn/C VIA REDUÇÃO POR FEIXE DE ELÉTRONS PARA A OXIDAÇÃO ELETROQUÍMICA DO ETANOL
Adriana Napoleão Geraldes'; Dionisio Furtunato Silva¹; Mauro Coelho dos Santos ${ }^{2}$; Marcelo Linardi'; Estevam Vitorio Spinace ${ }^{1}$; Almir Oliveira Neto ${ }^{1}$
${ }^{1}$ Instituto Nacional de Pesquisas Espaciais, São Paulo-SP, Brasil
${ }^{2}$ Universidade Federal do ABC, Santo André-SP, Brasil
drinager@ig.com.br

Palavras-chave: PEMFC, etanol, eletrocatalisadores, Pt, Au, Sn, oxidação
PtAuSn/C electrocatalysts (20 wt.\% metal loading) were prepared in water/2-propanol using electron beam irradiation. The diffractograms of the PtSn/C and PtAuSn/C electrocatalysts showed peaks associated to Pt face-centered cubic structure. The materials were tested in the electro-oxidation of ethanol in an acidic PEMFC. The activity of the electrocatalysts for alcohol electro-oxidation in acid medium showed that PtAuSn/C electrocatalysts had a higher performance than PtSn/C E-TEK commercial.

