Nanostructured Al₂O₃ - AINd Phosphors: OSL and TL Analyses and Morphological Investigations

A.Ventieri¹, S.H.Tatumi², J.F.S.Bitencourt¹, K.A.Gonçalves¹, J.C.R.Mittani² and <u>L.V.E. Caldas³</u>

¹ Escola Politécnica da Universidade de São Paulo, Av. Prof. Luciano Gualberto, Travessa 380, 05508-900, São Paulo-SP, Brazil

² Faculdade de Tecnologia de São Paulo (FATEC-SP), Praça Cel. Fernando Prestes, 30, 01124-060, São Paulo-SP, Brazil

³ Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN), Comissão Nacional de Energia Nuclear, Av. Lineu Prestes, 2242, 05508-000, Cidade Universitária, São Paulo-SP, Brazil

The present paper describes the morphogical and luminescent characterization of nanocrystals of Nd_2O_3 embedded on alumina - Al_2O_3 matrix. The samples were prepared using the sol-gel technique and thermally treated to high temperatures.

The phase of alumina as well as the morphology of the nanocrystal were characterized using X-ray diffraction (XRD), scanning transmission electron microscope (STEM) coupled to energy-dispersive X-ray spectroscopy (EDS). The luminescence properties were investigated using the Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) techniques. XRD results show intense peaks corresponding to the pattern of Al₂O₃ α -phase and to Al-Nd (Aluminum – Neodymium), resulting into the Al₂O₃ - AlNd phosphors; on the other hand, TEM images show that the AlNd nanocrystals (100-120 nm) locate on the surface of Al₂O₃ grains (70-90 μ m), and the EDS measurements confirmed the nanocrystals presence, showing the predominance of Al, Nd and O atoms.

TL measurements were taken in two regions of the spectra, one between 259 and 390 nm using a UV filter (U-340) and the other between 329 and 490 nm using a combination filter (BG-39+Kopp). In both regions of the spectra all doped samples presented a dosimetric peak at 200° C and peaks with low intensity at high temperatures. The sample doped with 2.5% of Nd₂O₃ shows the highest intensity in both regions of the spectra, when it is compared to undoped sample, the intensity is 9 times in the VIS region and 1.5 times in the UV higher. Concentration quenching phenomena were observed in samples doped with concentrations higher than 2.5%.

OSL was measured using blue stimulation (LEDs 470 nm) and detected in UV using the U-340 optical filter. OSL measurements show a similar behaviour to those found in TL, the sample doped with 2.5% of Nd_2O_3 supplied the OSL response 1.5 times higher than the undoped sample.

TL and OSL growth curves were performed for undoped and 2.5% of Nd_2O_3 doped sample and both samples presented a linear response to the dose in interval of 1 to 20 Gy. The minimum detectable dose using TL for an undoped sample was 760 mGy, and using OSL it was 260 mGy, while for Al_2O_3 – AlNd, the MDD was 54 mGy with TL and 76 mGy using OSL.