A LIBERAÇÃO DE HÉLIO DE METAIS DE ESTRUTURA CÚBICA DE FACES CENTRADAS

VALDIR SCIANI
Divisão de Danos de Radiação, IPEN-CNEN/SP

PETER JUNG
Institut für Festkörperforschung der Kernforschungsanlage Jülich GmbH
GEORGI LUCKI
Divisão de Danos de Radiação, IPEN-CNEN/SP

RESUMO

Neste trabalho, observou-se a liberação de Hélio de folhas de Ouro de espessuras entre 5 e 54 µm e concentrações de Hélio de 10-9 à 10-5 partes atômicas de Hélio durante recozimentos isotérmicos e lineares. O Hélio foi introduzido homogeneamente nas amostras pela implantação de partículas alfa, de energia variável, em ciclotron.

Observou-se a difusão livre de átomos de Hélio, onde o coeficiente de difusão obedo ce à uma lei do tipo Arrhenius.

O trabalho foi realizado no Departamento de Física do Estado Sólido (Institut für Festkörperforschung) do Centro de Pesquisas Nucleares (Kernforschungsanlage) em Jülich, na República Federal da Alemanha.

INTRODUÇÃO

Nos últimos anos inúmeros esforços tem sido dedicados ao estudo do comportamento do gás Hélio em metais. Nos reatores de fusão a gas Helio em metais. Nos reatores de fusão a sua presenção se torna particularmente importante, onde ele é produzido pela reação (n,d), pelo decaimento beta do Trítio, ou ainda pela injeção direta na região próxima à superfície da primeira parede. Como o Hélio tem uma solu bilidade extremamente baixa nos metais [1], é inevitável a sua precipitação em bôlhas em al tas temperaturas [2], onde os átomos de Hélio são móveis, resultando na degeneração das propriedades mecânicas e na falha prematura, limitando assim a vida útil dos componentes esmitando assim a vida útil dos componentes estruturais. Um exemplo típico é a fragilização em altas temperaturas [3]. Para um melhor entendimento dos processos de precipitação, tor na-se necessário o estudo da difusão livre de átomos de Hélio individualmente, sendo que no momento existem poucos dados na literatura[4]. Tal estudo deve ser feito com pequenas quanti dades de Hélio, para evitar sua aglomeração, não sendo possível a observação direta através de um microscópio eletrônico. Uma alterna tiva, no caso, é caracterizar o comportamento de sua liberação (He-release), determinando se de que maneira, variáveis como a temperatu ra, concentração, composição do material, etc, afetam a taxa na qual o Hélio é liberado da a mostra [5]. É de extrema importância o estudo

de um sistema simples He-Metal, com baixas concentrações de Hélio, onde possam ser deter minados os mecanismos básicos de sua difusão.

No caso do presente trabalho o Hélio criado pela reação (n,*) foi simulado pela im plantação homogênea de partículas alfa em um ciclotron compacto, modelo CV-28, e sua liberação foi observada em temperaturas acima da temperatura ambiente, durante recozimentos lineares e isotérmicos.

Foi verificada a ocorrência da difusão livre de átomos de Hélio individualmente, e se parada dos processos de aglomeração, investigando-se a dependência do espectro da liberação do Hélio da amostra com o tempo, temperatura, espessura e concentração.

PARTE EXPERIMENTAL

O método experimental foi descrito na ref. [6].

As amostras consistiram de folhas de Ouro, com pureza 99,999%, com espessuras entre 5 e 54 µm, as quais foram recozidas, antes da implantação por uma hora à 800°C em vácuo dinâmico de 10°C Torr.

O Hélio foi introduzido homogeneamente na amostra pela implantação, à temperatura ambiente, de partículas alfa de um ciclotron em concentrações de 10^{-9} à 10^{-5} partes atômicas de Hélio.

O feixe de partículas alfa, com 28 MeV, proveniente do ciclotron, passava através de uma janela de Alumínio, e por um degradador de energia, antes de alcançar as amostras. A janela de Al separava o vácuo do ciclotron do gás Hélio, no compartimento das amostras, com o qual elas eram refrigeradas. A densidade do feixe foi limitada em cerca de 0,15 µA/cm².

Para se obter uma energia variável das partículas alfa, foi usado um degradador de e nergia, que consistiu em uma roda acionada por um motor, na qual foram colocadas folhas de Al de espessuras entre 18 e 281 µm, sendo o feixe gradativamente freiado, permitindo uma implantação homogênea entre 0 e 83 µm, com passos na profundidade de 1,7 µm.

Após a implantação as amostras foram colocadas em um dispositivo que possibilitou a medição da liberação do Hélio (He-release). O forno deste dispositivo consistiu de um tubo

de alumina, envolvido por um elemento aquece - dor de Tântalo, que era aquecido pela passagem de corrente, transmitida por dois guias refrigerados à água. As amostras eram armazenadas em um suporte que possuía um movimento que per mitia a queda, amostra por amostra, no forno. Durante a execução do experimento com uma amostra, as demais ficavam confinadas em uma blindagem, refrigerada à água, que as mantinham na temperatura ambiente.

A quantidade de Hélio que era liberado da amostra foi acompanhada por um espectrôme - tro de massa e medida durante recozimentos iso térmicos e lineares, com taxa de aquecimento de 50 K/min. Durante as medições o sistema per manecia isolado das bombas de vácuo, sendo por tanto medida a quantidade acumulada de Hélio que era liberada da amostra, sendo mantida a pressão total do sistema em um intervalo conveniente (10 Torr), com a utilização de uma bomba de sublimação de Titânio.

RESULTADOS E DISCUSSÃO

A grandeza importante (fração liberada) neste tipo de experimento é a razão entre a quantidade acumulada de Hélio que foi liberada da amostra num determinado tempo ou temperatura e a quantidade total de Hélio contida inicialmente. A liberação total do Hélio foi garantida pela fusão da amostra.

Na figura l são mostradas curvas da li-

Na figura l são mostradas curvas da liberação de Hélio de amostras de Ouro de 5, 10, 18 e 54 µm de espessura, com diferentes concentrações, em função do inverso da temperatura. Pode-se dividir a liberação em algumas etapas:

a) No intervalo de temperatura entre 150 e 400°C verifica-se um aumento muito pequeno na liberação, onde para uma determinada temperatura, a fração liberada é indepen -

temperatura, a fração liberada é indepen - dente da concentração inicial, co, e é aproximadamente proporcional ao inverso da

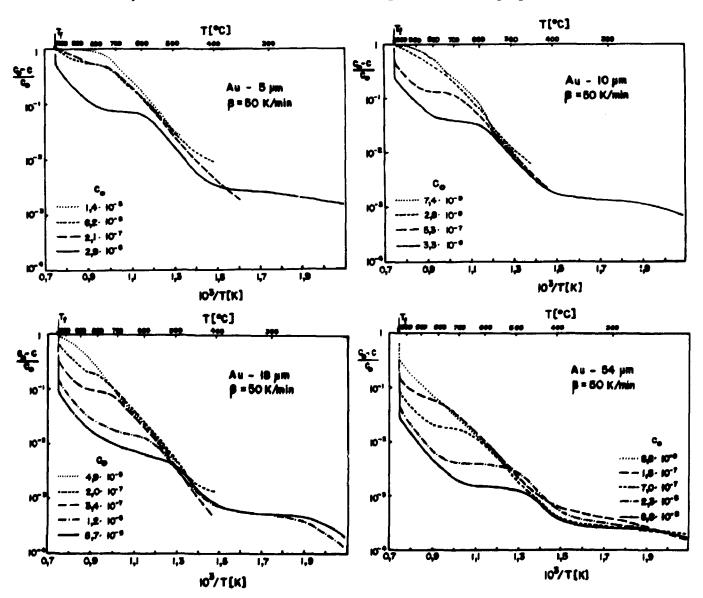


Fig. 1: Curvas da fração liberada de Hélio do Ouro, com diferentes espessuras e concentrações iniciais de Hélio, em função do inverso da temperatura.

espessura, d.

b) Em 400°C nota-se um aumento mais pronuncia do na liberação. Para concentrações meno res que 10-8 partes atômicas de Hélio as curvas se superpõem, dentro do erro experi mental (representadas pelas curvas ponti - lhadas na figura). Neste caso, a quantidade liberada varia exponencialmente com 1/T e é independente da concentração inicial, co, e inversamente proporcional à espessura, d.

c) No mesmo intervalo de temperatura do b), para concentrações maiores que 10-8, o corre um desvio do comportamento citado. Com o aumento da concentração este desvio ocorre em temperaturas cada vez menores. Também, para uma determinada concentração, o ponto de desvio é deslocado para tempera turas menores, com o aumento da espessura da amostra.

d) A partir de aproximadamente 850°C observase um aumento similar ao ítem b), novamente exponencial com 1/T.

e) O restante do Hélio que permanece na amos

tra é liberado no ponto de fusão. Considerando somente pequenas concentr<u>a</u> ções de Hélio, conforme item b), a figura 2

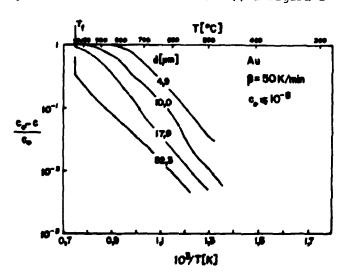


Fig. 2: Curvas da fração liberada de Hélio do Ouro, de diferentes espessuras, contendo concentrações iniciais me nores que 10-8 partes atômicas.

mostra curvas experimentais extraídas da figu ra 1. Pode ser identificado como difusão li vre, resolvendo-se analiticamente a liberação de gás de uma folha [6,7], sendo representado dentro de 0,1% de erro pela equação:

$$\frac{c_o - c}{c_o} = 2\left(\frac{4Dt}{d^2}\right)^{\frac{1}{2}} \quad \text{para} \quad \frac{c_o - c}{c_o} \le 0.5 \quad (1)$$

onde: D - coeficiente de difusão

d - espessura da amostra t - tempo

Os desvios deste comportamento, conforme mencionado no ítem c), podem ser explica - dos qualitativamente pela imobilização dos átomos de Hélio por aglomeração. No Ouro, o Hé lio difunde-se livremente, não afetado por aglomeração, quando o produto da espessura pela concentração inicial for menor que 4,6 . 10-13 m.

Para complementar os resultados obtidos na figura 2, são mostradas na figura 3 curvas

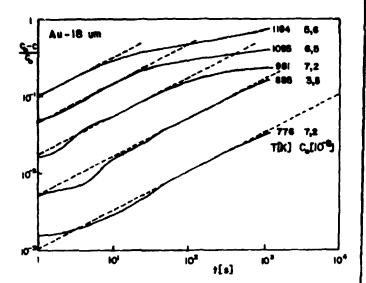


Fig. 3: Fração liberada de Hélio do Ouro, de 18 µm de espessura, durante re cozimentos isotérmicos.

referentes à liberação de Hélio durante reco-zimentos isotérmicos [8]. As linhas traceja das correspondem às preditas pela teoria da difusão, de acordo com a equação (1), no qual se supõe que a difusão livre ocorre quando a fração liberada é proporcional à √t. Na figura 4 são mostradas as constantes

de difusão calculadas à partir da equação (1) e de acordo com as figuras 2 e 3. Os resultados são comparados com a auto difusão [9] e a difusão do Hidrogênio no Ouro [10]. Os resultados obtidos em recozimentos isotérmicos e lineares estão em bom acordo, dando em média um comportamento tipo Arrhenius para as constantes de difusão:

$$D=10^{-1.0^{+}0.4}[cm^{2}/s]exp(-1.7 0.1[eV]/kT)$$
 (2)

Para análise da difusão livre do Hélio, supõe-se inicialmente que, após a implantação à temperatura ambiente, todo o Hélio é aprisionado em lacunas, sendo a mobilidade tratada por dois mecanismos [4,8]:

a) o primeiro é o mecanismo via lacunas, que

é suposto operar na maioria das ligas subs titucionais, no qual se espera uma energia de ativação (AHL) da ordem da energia de auto-difusão. Ela pode ser situada no se quinte intervalo:

$$Q_{2L} - E_L^F \leq \Delta H_L \leq Q_L$$
 (3)

onde: Q2L - contribuição das bilacunas para a auto-difusão - energia de formação da lacuna

- energia de auto-difusão

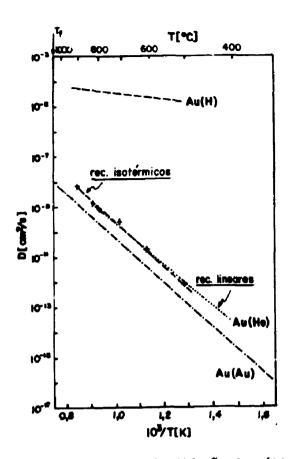


Fig. 4: Constantes de difusão do Hélio no Ouro, calculadas a partir dos recozimentos lineares e isotérmicos.

Da ref. [9] a energia de ativação é ava liada no intervalo: 1,42 eV ≤ ΔH ≤ 1,76eV, com o fator pré-exponencial 10-1,33 cm²/s.

b) o segundo mecanismo é o dissociativo, onde o átomo de Hélio se dissocia de uma lacuna, migrando rapidamente, via intersticial, até ser novamente aprisionado por outra lacuna. Neste caso, a energia de ativação, AHD, é dada por:

$$\Delta H_{D} = E_{HeL}^{L} + E_{He}^{M} - E_{L}^{F}$$
 (4)

onde E^L_{HeL} - energia de ligação entre o áto-mo de Hélio e uma lacuna.

EHe - energia de migração de um átomo

Da ref. [11], a energia de ativação calculada teóricamente é de 1,35 eV e pode ser a valiado que o fator pré-exponencial é menor que para o mecanismo via lacunas.

A energia de ativação indica claramente um mecanismo via lacunas para a difusão do He no Au, sendo o mesmo caso para a difusão do He no Alumínio e na Prata [8]. No caso do Niquel, a energia de ativação indica um mecanis dissociativo [12].

CONCLUSÕES

a) Em folhas finas, com baixas concentrações de Hélio, verifica-se o comportamento de

- sua liberação até o ponto de fusão por difusão livre.
- b) Acima de certos limites de espessura e con centração, um aumento na quantidade de Hélio retarda o processo de sua liberação até o ponto de fusão por aglomeração.
- c) Em medições da liberação de Hélio durante recozimentos isotérmicos e lineares como função do tempo ou temperatura, espessura e concentração, é possível determinar cons tantes de difusão de átomos de Hélio isola damente.
- d) A comparação com previsões teóricas fornece um mecanismo via lacunas para a difusão do He no Au, Al e Ag e um mecanismo dissociativo no caso do Ni.

REFERÊNCIAS

- [1] Von den Driesch, H.J., and Jung, P., "An Investigation on the Solubility of He in Nickel", <u>High Temperatures - High Pressures</u>, vol.12, 1980 pp.635-641.
- [2] Rothaut, J., Schroeder, H., and Ullmaier, H., "The Growth of Helium Bubbles in Stainless Steel at High Temperatures", Phil. Mag., vol.47, 1983, pp.781-785.
- [3] Schroeder, H., and Batfalsky, P., "The Dependence of the High Temperature Mechanical Properties of Austenitic Stailess Steels on Implanted Helium", J. Nucl. Mater., vol.117, 1983, pp.287-294.
- [4] Schilling, W., "Diffusion of Helium in Metals", in Proceedings of the V Yamada Conference on "Point Defects and defects Interactions in Metals", Kyoto, edited by J.I. Takamura, M. Doyama and M. Kiritani (Tokio Univ. Press), Japão, 1981 pp. 303-308.
- [5] Cost. J.R., Hickman, R.G., Holt, J.B., e Borg, R.J., "Helium Release from Type 304 Stainless Steel", In Proc. of Int. Conf. on "Radiation Effects and Tritium Technology Fusion Reactors", Gatlinburg USA, 1975, ERDA-CONF-750989,pp.234-249.
- [6] Jung. P., and Sciani, V., "Diffusion of Helium in Gold", In Proc. of the Conf. on "Diffusion in Metals and Alloys",
- Tihany, Hungria, 1982.

 [7] Crank, J., "Mathematics of Diffusion, Oxford, 1966, p. 45.

 [8] Sciani, V., and Jung., P., "Diffusion of Helium in FCC Metals", Radiation Effects
- vol. 78, 1983, pp. 87-99.
 [9] Peterson, N.L., "Self-Diffusion on Pure Metals", J.Nucl.Mater., vol.69&70,1978, pp.3-37.
- [10] Eichenauer, W., and Liebscher, D., Natur forschung, vol.17a, 1962, p.355.
 [11] Baskes, M.J., and Melius, C.F., "Pair Potentials for FCC Metals", Phys.Rev., vol. 2008)
- vol.20(8), 1979, pp.3197-3204.

 [12] Philipps, V., Sonrenberg, K., Williams, J.M., "Diffusion of Helium in Nickel", J.Nucl.Mater., vol.107, 1982, pp.271-279.