## OB13- PERSISTENT LUMINESCENCE OF BARIUM ALUMINATE DOPED WITH Eu<sup>2+</sup> PREPARED BY THE COMBUSTION METHOD

L.C.V. Rodrigues<sup>1</sup>, R. Stefani<sup>1</sup>, C.A.A. Carvalho<sup>2</sup>, H.F. Brito<sup>1</sup>, C.A. Kodaira<sup>3</sup>, M.C.F.C. Felinto<sup>3</sup>, J. Hölsä<sup>4</sup>

<sup>1</sup>Instituto de Química - USP, São Paulo-SP, Brazil <sup>2</sup>Dequi - UFOP, Ouro Preto - MG, Brazil <sup>3</sup>IPEN, São Paulo, Brazil <sup>4</sup>University of Turku, Department of Chemistry, FI-20014 Turku, Finland e-mail: lucascvr@iq.usp.br

Persistent luminescent materials containing Eu<sup>2+</sup> have been studied extensively in the last years. The MAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>,Dy<sup>3+</sup> (M = Ca, Sr, Ba) materials are usually prepared by ceramic methods using annealing at high temperatures (about 1500 °C) for a long time in a reducing atmosphere. In order to obtain BaAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>,Dy<sup>3+</sup> at low temperature, without a reducing atmosphere and with nanoscale particles, the combustion method was used with urea as the fuel. The material was efficiently prepared at 400 °C without a reducing atmosphere and was characterized by X-ray powder diffraction, Scanning Electron Microscopy (SEM), infrared absorption spectroscopy as well as with luminescence spectroscopy with life time and luminance measurements.

The analyses demonstrated the formation of the BaAl<sub>2</sub>O<sub>4</sub> material evidenced by the X-ray pattern (Fig. 1) with efficient reduction of Eu<sup>3+</sup> to Eu<sup>2+</sup> as shown by the luminescence spectra (Fig. 2). The SEM image is shown in Fig. 3.

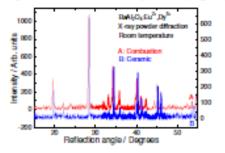



Fig. 1: X-ray patterns of the material prepared by a) combustion and b) ceramic methods.

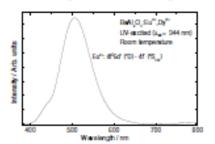



Fig. 3: SEM image of BaAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>,Dy<sup>3+</sup>.

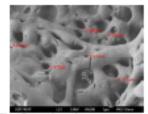



Fig. 2: Luminescence spectrum of BaAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>,Dy<sup>3+</sup> with UV-excitation.