Persistência Luminescente de um silicato dopado com Pr3+

Hermi F. Brito(PQ)^{1*}, Roberval Stefani(PQ)¹, Carlos A. A. Carvalho(PQ)², Lucas C. V. Rodrigues(PG)¹, Maria C. F. C. Felinto(PQ)³ e Luiz A. O. Nunes(PQ)⁴

1 Instituto de Química, Universidade de São Paulo, São Paulo, Brasil

2 DEQUI, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil

3 CQMA, Instituto de Pesquisas Energéticas e Nucleares, S. Paulo, SP, Brasil

4 LLA, Instituto de Física, Universidade de São Paulo, SP, Brasil

*hefbrito@iq.usp.br

Palavras Chave: Persistência Luminescente, Terras Raras, Silicato, Praseodímio

Introdução

Para algumas aplicações específicas, não só a intensidade e o tempo de duração da persistência luminescente são importantes, mas também a faixa espectral.Os fósforos que apresentam persistência luminescente [1,2] de cores diferentes de verde/azul ainda são raros.

Com base nisso a pesquisa de novos materiais com persistência luminescente vermelha é necessária. O íon Pr^{3+} usado como dopante em matrizes apresenta alta intensidade luminescente nas regiões espectrais do verde $(^3P_0 {\rightarrow}^3 H_4)$ e do vermelho $(^1D_2 {\rightarrow}^3 H_4)$, cujas intensidades podem ser reguladas pela modificação de fatores como comprimento de onda de excitação, composição da matriz e concentração da dopagem.

Foi preparada uma matriz de silicato de zinco e cádmio dopada com o íon Pr^{3+} que apresenta persistência luminescente na cor vermelha.

Resultados e Discussão

A matriz silicato de zinco e cádmio dopada com Pr³+ foi preparada com sucesso através do método tradicional a 1050 °C. A concentração do íons Pr³+ variou de 0,5 a 5% em mol. O composto foi caracterizado através de difração de raios-X (método do pó), Microscopia Eletrônica de Varredura. O estudo fotoluminescente foi realizado com base nos espectros de emissão e excitação.

A Figura 1 mostra o difratograma de raios-X do composto dopado com 5% de Pr³⁺. Pode-se notar que o composto formado é cristalino.

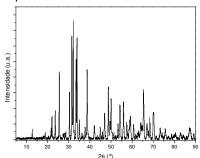


Figura 1. Difratograma de raios-X do composto dopado com 5% de Pr³⁺

A micrografia apresentada na Figura 2 mostra partículas com tamanhos superiores a 1 μm onde

32ª Reunião Anual da Sociedade Brasileira de Química

Silicato, Praseodimio estão depositadas partículas menores em forma de

bastonete.

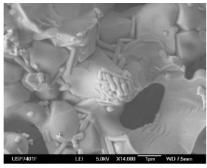


Figura 2. Micrografia registrada sob aumento de 14000 vezes.

O espectro de emissão (Figura 3) exibe a transição $^1D_2 \rightarrow ^3H_4$ do íon Pr^{3+} em 605 nm com alta intensidade, resultando na emissão de cor vermelha quando excitado em 305 nm.

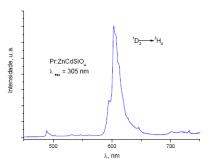


Figura 3. Espectro de emissão registrado sob excitação em 305 nm

Conclusões

A matriz silicato de zinco e cádmio dopada com Pr^{3+} mostrou-se eficiente como material para aplicações de persistência luminescente. O estudo fotoluminescente mostra que a cor vermelha da emissão é decorrente da transição $^1D_2 \rightarrow ^3H_4$ do íon Pr^{3+} .

Agradecimentos

FAPESP, CNPq, RENAMI e IM2C.

^[1] Holsa J., Aitasalo T., Lastusaari M., Jungner H. e Niittykoski J.; J. Phys. Chem. B, 110, 4589 (2006)

^[2] Lel B., Liu Y., Ye Z., Liu J. e Shi C.; J. Solid State Chem., 177, 1333 (2004).