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Description

Environmental assisted cracking of metals is an important topic
related to many industries in lives. Although the problem with this
type of corrosion has been known for many years, the debate on the
effects and possible remedies available under different environmental
conditions is ongoing and topical. Previous volumes have tended to
concentrate on single aspects and causes (e.g. stress corrosion
fracture), while ignoring other mechnisms such as hydrogen
embrittlement, corrosion fatigue and more modern concerns such as
the near neutral SCC pipelines).

Audience

Conference attendees, university libraries, research and testing
laboratories, companies specialising in corrosion control and
prevention, and other corrosion experts and consultants
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Abstract

One of the main causes of failure in pressurized water reactors (PWR) is the stress corrosion
cracking (SCC) at control rods drive mechanism (CRDM) nozzles, produced by tensile stress,
temperature, susceptible metallurgical microstructure and environmental conditions of the
primary water. Such cracks can cause accidents that reduce nuclear safety by blocking the rods
displacement at CRDM and/or leakage of primary water. This paper will present a preliminary
development of a model to predict such damage, including initiation and propagation of primary
water SCC (PWSCC). The model assumes the Pourbaix potential-pH diagram for Alloy 600 on
the typical PWR environment, primary water at high temperature. Over this diagram, the region
where the SCC submodes can occur is plotted. Submodes are determined by regions of potentia
where various modes of surface material-environment interactions can occur, such as stress
corrosion, pitting, generalized corrosion or passivation. Over these regions an empirical-
probabilistic is linked to a strain rate damage model that can evaluate the time to failure and the
damage parameter, as a function of total stress at the materia surface, its temperature and other
factors depending on environment-material combination and thermomechanical treatment of this
aloy.

1. Introduction

Degradation of materials during operation — mainly corrosion, fatigue and
irradiation — represents one of the main technological factors that may limit the
reliability and safety of nuclear power plants [1]. One of the modes that causes risks to
pressurized water reactors (PWRS) is the stress corrosion cracking (SCC) of steels and
aloys. The cracks (axial or circumferential) may cause accidents such as leaking of
coolant [2], nozzle components ejection and blocking of the rod drive mechanism at
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CRDM (control rods drive mechanism) [3]. Leakage of coolant/primary water can
cause general corrosion in the low-alloy vessel head by boron deposits.

Most Western PWRs have CRDM penetration in the pressure vessel head made of
stainless steel and Alloy 600. The composition of Alloy 600 isprimarily >72% Ni, 14—
17% Cr, 6-10% Fe [3-5]. The yield strength of the alloy varies from 213 to 517 MPa.
Normally thisalloy is mill annealed at 885°C, and final annealed for 4-6 h followed by
air cooling. Nevertheless such a treatment can be varied depending on its purpose. The
Alloy 600 works with some variation at 315°C and 15.5 MPain pure water [3].

The primary water SCC (PWSCC) appears in the lower part of each nozzle that is
fabricated in Alloy 600 and welded to the internal vessel head surface with dissimilar
material such as Alloy 182. There are typically 40-90 penetrations per vessel that may
include some spare penetrations which are not fitted with CRDM or through core
instrumentation of PWR [6].

2. Models and modelling

SCC nucleation and propagation are very complex phenomena. SCC is one modality
of environment-assisted cracking (EAC) besides corrosion fatigue and hydrogen
embrittlement, depending on several variables that can be classified in microstructural,
mechanical, and environmental terms [7,8]. Microstructural variables are: (i) grain
boundary microchemistry and segregation, M; (ii) thermal treatment, TT, that can cause
intragranular and intergranular metallic carbide distribution; and (iii) grain size, gs, and
cold work, CW, or plastic deformation. The second two variables fix another variable
such as theyield stress, sys. Mechanical variables are: (i) residual stress, s,; (ii) applied
stress, s, (a tension stress and geometry can be summarized as a stress intensity factor,

Ky); and (iii) strain € and strain rate € . Environmental variables include: (i)
temperature, T; (i) [H]™ or pH; (ii) solution or water chemistry, SC; (iv) inhibitors or
pollutants in solution; (/) electrochemical potential, V; and (vi) partial pressure of
hydrogen, pr2 [9]. Environmental cracking susceptibility can be expressed as[10]:

scCc=f(M,TT,gs, CW,K;, €, €,T,pH, SC, V, p2) 1)

Fig. 1 summarizes the main processes by which the above conditions at grain
boundarieslead to SCC [11].

There are several models to express these phenomena mathematically : (i) the dlip
dissolution/film rupture by Ford and Andresen [13]; (ii) the enhanced surface mobility
theory by Galvele [14]; (iii) coupled environment fracture model by Macdonald and
Urquidi-Macdonald [15]; (iv) the internal oxidation mechanism by Scott and Le Calvar
[16]; (v) numerical model by Rebak and Smialowska [17] and by Seung-gi and Il Soon
Hwang [18]; and (vi) hydrogen-induced cracking models by Shen and Shewmon, and
Magnin et al. (see Ref. [10]). For a comprehensive review of several of these models,
see Ref. [10], and for hydrogen action models see Refs. [19,20]. Two kinetic models,
including an empirical-probabilistic model and a deterministic strain rate damage model
[21], were chosen to develop the model presented in thiswork.
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Fig. 1. The processes starting from (a) to (k) range from the mostly chemical to the nostly
mechanical [11].

The empirical-probabilistic model is derived from the general dependencies of time-
to-failure shown in Eq. (2) treated statistically:

_ +om N &eQ O
t=dH7]"s xXpe=== (2

where t; = time to failure, s = stress, n = exponent of stress, Q = thermal activation
energy, T = absolute temperature (K), R = gas constant, [H'] = hydrogen ion activity, m
= exponent of hydrogen ion activity, and d = constant [11].

The model proposed in Ref. [22] is asimplification of Eq. (2) that can be converted
into aform more convenient to use as;

t -Atd g—— exp;—%—-—dJ 3)

where A = non-dimensional material constant reflecting the effect of material properties
on time to 1% PWSCC, t, = time to selected fraction of PWSCC for a reference case,
Sref = reference value of stress, and T, = reference value of temperature.

The 2parameter Weibull statistical distribution describes the variation of PWSCC
astime function as:
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é _,.bu
F=l-expe &0 U (4)
g &az ¢

where F = fraction of population of components under consideration all susceptible to
the same failure mode that experience PWSCC, t = time normally given in effective full
power years (EFPY), b = Weibull slope, a fitted parameter determined by analysis of
failure data, and q = Weibull characteristic time that corresponds to the time when
63.2% of the components have experienced PWSCC. This parameter can be written as

1= t1oe

ST ®)
a (0.0101)"°

Egs. (4) and (5) combinedyield Eq. (6):

€ 2t oY
F =1- expé 0.0101c—7= U (6)
g i & H

The value of t;q, together with an appropriate value for the Weibull slope, b, determine
the complete prediction for PWSSC as a time function using Eq. (6). More detail on
this model, plus several examplesthat were solved, are given in Refs. [11,22].

The strain rate damage model is essentially a semi-empirical model theory of SCC,
where strain rate rather than stress is considered to be the main mechanical variable.
The main parameter of this model is the damage parameter, D, that includes the
initiation and propagation stages of the cracks. It begins essentially from a semi-
empirical theory of SCC, based on the analogy with Tresca criterion to plastic flow. It
formalized the strain rate asa moving factor in adamage model that allows quantitative
predictions on serviceable life which in turn depends on SCC. A damage function is
defined as a mode linked to a component submitted to a strain rate history. When this
damage function reaches a critical value, it can predict the SCC. The critical value of
this damage function depends on the material in question and environment

D=q A[ € (D)]Pdt, [D] = [length] (7

wheret = time, € (t) = total strain rate, A and p = parameters that depend on material-

environment combination.
In Eq. (7), the strain is divided into elastic and a non-elastic:

ét)=é=6_+¢ 8

It is then necessary to adjust the experimental true stress-true strain data in accordance
with Eq. (8). This can be accomplished using the Bodner-Partom constitutive equation
that assumes Eq. (8) where the applied uniaxial stress s is related to the non-elastic

strainrate €, by
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(9)

where Dy is a constant, n is a temperature-dependent material parameter, and Z is a
function related to strain hardness. When thermal recovery is neglected, the hardness
function Zis such that

Z=17,—(Zy— Zo)exp(-mW) (10)
wheretheinelastic strain energy density is

W,=0sd€, (12)

The temperature-dependent constants in the above equations might be written as:

n =$ +b (12)
m=myT +Cg (13)
Zy=2Z1(mT +cy) (14)

Hence the list of material constants in Bodner-Partom’s model include Do, a, b, Z;, my,
Cy, Mp, and co.

Thus, the model needs at | east three values of stress and strain at two different strain
rates at each of two temperatures asthe minimum data set to determine these constants.
In brief, in this model, we have formalized the concept of strain rate as a driving force
in a damage model that permits quantitative predictions of stress corrosion lifetimes
through a damage function defined as dependent on the strain rate history of a
component. SCC is predicted when this damage function reaches a critical value. The
critical damage value depends on both the material in question and the environmental
condition of interest. The principal advantage of this model is that it's not necessary to
distinguish between cracking initiation and propagation [21,22]. More detail on this
model, plus modelling examples, are given in Ref. [22].

3. Proposed model

Staehle [11] has proposed a 3dimensional diagram in accordance with Fig. 68 of
Ref. [11]. It shows the thermodynamic conditions to occur at the modes of PWSCC in
Alloy 600. The base is the 2-dimensional potential-pH (known as Pourbaix) diagram
for this material in primary water at high temperature (300 to 350°C) (Fig. 2). It
superimposes the corrosion submodes based on experimental data from the literature.
Submodes are determined by regions of potential where the different modes of surface
material-environment interactions can occur, such as SCC, pitting, generalized
corrosion, and passivation. The third dimension is the “useful strength” of the material
as affected by the environment & that point, the strength fraction. Staehle [11]
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explained that the third variable could be a crack velocity for the vertical coordinate,
instead of the strength fraction, because the data are sparse and the component
experiments with reference to this diagram used different methods of loading states and
dataanalysis.
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Fig 2. Pourbaix diagram for Alloy 600 at ~300°C used as a base for submode regions of the 3-
dimensional (V-pH-strength fraction) diagram (Fig 68 from Ref. [11]).

It is proposed that the model be framed over the same Pourbaix (V-pH) diagram for
Alloy 600 in the typical environment, namely water at high temperature. Over this
diagram is plotted the region where the SCC submodes can occur. Firstly, over one of
these regions will be coupled a strain rate damage model that can describe the damage
parameter evolution with time and an empirical-probabilistic one that can describe the
time to failure, normally expressed in terms of EFPY as a function of a total stress at
the material surface, itstemperature and parameters depending on environment-material
combination and thermomechanical treatment of the alloy. Then, we will test the model
using data from the literature plus data obtained using the new slow strain rate tensile
(SSRT) test equipment installed at CDTN in Brazil [12]. Thus, this model could be
used for a Brazilian nuclear power plant taking into consideration the plant materials
and the characteristics of its design and operation, including the heat material
fabrication processes, material composition, plant thermomechanic history, primary
water chemical composition, and operational temperature conditionsat this plant.
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4. Preliminary results

A computer worksheet was created to plot an empirical-probabilistic model to be fed
with data. This is represented by Egs. (3)-(6), as was done in Refs. [11,22]. Fig. 3 was
created using data of Table 1 from Ref. [23] with b-Weibull slope parameter equal to
1.5to check the reproduction of the model.

Fraction of Population of Components (F)

[=— F(Oconee #1) = F(Oconee #3) =—F(TMI#1) |

0.0001 T
1 10 100

t(EFPY)

Fig 3. Diagram showing plotted curves for three nuclear plants referred in Table 1 of Ref. [23].

If it is known how long a plant has operated in the submode I11scc (see Fig. 2), this
length of time can be used to couple the curves of Fig. 3 with Pourbaix diagram and
thusto estimate a parameter F by Eq. (4) that represents the fraction of population of al
components susceptibl e to the same degradation submode that experiences PWSCC.

5. Analysis and discussion

The above empirical model serves as ahighly practical method for the prediction of
PWSCC. Using Egs. (2) and (6), ahigher F is expected for the lower pH. It is hecessary
to relate a damage initiation with the variations of pH and V in the PWSCC domain.
These values are usually below an equilibrium borderline for Ni/NiO [16,19]. It is
therefore necessary to verify the suppositions through empirical tests. Referring to the
plants considered in Fig. 3, it is desirable to know which pH and V values should be
employed for each of them to operate efficiently.

The crack growth rate presents a dependence with pH shown in Eq. (15) from Ref.
[25]:
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D _cer=cBHI  for75=pH=9 (15)
dt e75¢g

If it is considered that the crack initiation and growth combined to constitute
damage, it is possible that the crack initiation can follow the same lantime integrated
with differently adjusted parameters (constant C), for initiation and growth. Clearly this
must be investigated. In both models, it is necessary to obtain the relationship between
the time to failure and the variation in V and pH in PWSCC domain through
experimental testsusing SSRT techniquein CDTN.

The strain rate damage model has the advantage of describing the evolution of
damage with time, while the empirical probabilistic model has the advantage of being
more simple to apply. The strain rate damage model reduces to empirical model when
one of the suggested models for creep behaviour of Alloy 600 isused in its formulation
[22] according to Ref. [24].

6. Conclusions

This paper presents a preliminary development of a combined model composed of
the Pourbaix (potential-pH) diagram linked with a kinetic model as well as with
empirical probabilistic and deterministic strain rate damage models. The use of the
Pourbaix diagram has the advantage of revealing the thermodynamic conditions
required to initiate SCC. The use of the kinetic empirical-probabilistic model linked
with Pourbaix diagram has the advantage of obtaining the statistical estimation of the
time to failure. The use of the kinetic strain rate damage model has the advantage of
obtaining the deterministic strain rate damage paraneter evolution with time. Datafrom
the Brazilian CDTN will be used to validate the model proposed in this study.
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