' CONVECÇÃO EM ESCOAMENTO LAMINAR SÔBRE

CORPO SÓLIDO COM GERAÇÃO INTERNA DE CALOR

ODETTE VIEIRA GONÇALVES DE SOUZA

2869

TESE SUBIETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PRO-GRAMAS PÓS-GRADUADOS DE ENGENHARIA DA UNIVERSIDADE FEDE RAL DO RIO DE JANEIRO COMO PÀRTE DOS REQUISITOS NECESSA RIOS PARA OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIA (M.SC.)

Aprovada por:

da

JULHO DE 1968

AGRADECIMENT/OS

i.

Ao Professor Affonso C. S. da Silva Telles pela sua amizade, e pela dedicação com que orientou êste trabalho.

Ao Professor A. L. Coimbra pelas suas palavras de es-

A Comissão de Qualificação Acadêmica da COPPE por ter ma concedido a prorrogação do prazo, necessária para a conclusão dês te trabalho.

À Vera pela competência no serviço de datilografia.

NTO SE MENOLA ATONICA

Ao José Rubens e aos meus pais pelo incentivo que sem pre me deram.

Ĩ	Ν	D	I,	С	Е

• · •	
•	1.
fnntce	
· ·	
AGRADECIMENTOS	i,
ÍNDICE	1.
I - SUMÁRIO	2.
II - INTRODUÇÃO	3.
III - TEORIA	⁻ 6.
III-l - Análise	б.
III-2 - Variáveis adimensionais	. ⁹ .
III-3 - Transformação de Variáveis	10.
III-4 - Solução analítica	15.
III-5 - Solução numérica	22,
IV - ANÁLISE DOS RESULTADOS	. 26.
V ~ CONCLUSÕES E SUGESTÕES	34.
BIBLIOCRAFIA	39.
APÊNDICE	40.
A. Transformação de variáveis	40.
B. Solução analítica	45.
C. Programa para o computador eletrônico digital IBM-	
1130, em linguagem FORTRAN	53.
D. Tabelas de Resultados	56.
	•
	•

SUMÁRIO

2.

Este trabalho trata da interação entre um corpo sólido aquecido e um fluido que passa por êste corpo em regime de es comento laminar, não confinado.

São apresentados métodos, analítico e numérico, de solução das equações que regem as leis básicas de conservação de quantidade de movimento, energia e massa, para o caso de escoamento bidimensional sem dissipação viscosa de um fluido Newtoniano de propriedades físicas constantes, sôbre um corpo sólido de paredes finas com fontes térmicas distribuidas ao longo do corpo.

INTRODUÇÃO,

ΪÌ

Nos últimos anos tem havido um interêsse crescente nos problemas de escoamento de fluidos sobre corpos sólidos com transferência de calor, com condições térmicas sobre a superfície do sólido, não uniformes.

Até então era comum especificar-se "a priori" a condição térmica do corpo pela prédeterminação da temperatura superficial ou do fluxo térmico, considerados constantes de modo geral. Nestes casos a solução do problema torma-se independente das propriedades f<u>í</u> sicas do corpo em questão.

Sparrow e Lin (l) apresentaram una análise interessante para problemas de camadas limites com fluxo de calor préestabelec<u>i</u> do e aplicaram suas análises a escoamentos com transferência, simult<u>ã</u> nea, de calor por convecção e radiação, para o caso de escoamento laminar e turbulento sobre placa:plana.

Paul Libby (2) fez una complementação dos trabalhos de Sparrow e Lin, achando una solução exata para o problema quando os nú meros de Prandtl e Lewis são unitários e quando as propriedades de transferência são simplificadas. Libby também considerou a viscosida de (μ) independente de y (coordenada cartesiana no sentido perpendicu lar à superfície do corpo) de modo que o campo de velocidade podia ser

descrito pela equação de Blasius (isto é, fator de forma $\lambda = 0$).

Mas na maioría dos casos que surgem na prática as distribuições de temperatura e fluxo de calor obtidas no contôrno são d<u>e</u> pendentes das propriedades físicas da própria parede e de modo geral são conhecidas de antemão. Portanto, os tratamentos dados para uma superfície isoténnica ou com fluxo constante de calor (ou grad T = 0) fogem à realidade e se aproximam de uma condição de idealidade.

Zeev Roten (3) considerou o caso de un escoamento lami nar bidimensional de un fluido Newtoniano, incompressível e de propriedades físicas constantes, sôbre una parede muito fina na direção normal ao escoamento (de modo que as variações de temperatura nesta dir<u>e</u> ção possam ser desprezadas). Considerou também que esta parede poss<u>u</u> ia em um certo trecho, fontes térmicas distribuidas, de intensidade constante, perdendo calor para o fluido não confinado. No entanto, a taxa de transferência de calor foi considerada como conhecida através da solução das equações da camada límite dada por Lighthill (4). A solução dada por Zeev Foten possui portanto o inconveniente de, por tar sido usada a solução de Lighthill, não ser boa para o fator de forma igual a zero. Além disso, a análise é incompleta, pois não gera à t<u>a</u> xa de transferência e o campo da temperatura é dado em função da taxa de cisalhamento na parede, que é desconhecida. Dêste modo, a interação entre o corpo aquecido e o fluido continua ignorada.

No presente trabalho consideraremos as referidas intera ções pela solução simultânea da equação da quantidadetde movimento, das equações da energia para fluido e corpo, acopladas na superfície

pelas condições limite. Estas especificam a continuidade nos campos de temperatura e fluxo térmico.

A temperatura do corpo pode ser considerada como sendo função somente de x se fazemos as mesmas considerações que Zeev Roten, isto é, que a espessura da parede é suficientemente pequena, de tal modo que as variações de temperatura do corpo na direção normal ao escon mento possam ser desprezadas.

Consideraremos o corpo isolado em suas extremidades x=0 e x=l. Seguiremos o desenvolvimento dado pelo Meksyn (5) e introduziremos as variáveis adimensionais análogas aquelas por êle usadas. TEORIA

III.

б.

III-1) Análise

Consideremos un corpo solido de paredes finas, de tal modo que possam ser desprezadas as variações de temperatura no sentido transversal à superfície, com geração interna de calor. Sôbre êste corpo temos o escoamento em regime laminar de um fluido Newtoniáno, incompressível e de propriedades físicas constantes.

Fig. 1 - Camada limite sôbre corpo sólido

Sendo:	
U	- velocidade do fluido, a ser determinada, tomada como parã-
	metro
b	- espessura da parede do corpo solido
o _w (x)	- fluxo térmico na parede
x	- coordenada cartesiana ao longo da superfície do corpo
4	ELEVITARIA ATOMICA

- coordenada cartesiana perpendicular à superfície do corpo Y - componente da velocidade dentro da camada limite no senti do de x

u

- componente da velocidade dentro da camada limite no senti do de y

- velocidade no limite da camada limite no sentido de x u, T(x,y) - campo de temperatura do fluido dentro da camada limite t(x)- campo de temperatura no corpo sólido

T_ - temperatura de entrada do fluido

O problema de escoamento bidimensional con transferência de calor e quantidade de movimento é regido pelas leis básicas de conservação de quantidade de movimento, energia e massa. Considerando-se escoamento en camada limite, con propriedades físicas constantes e sem dissipação de calor, estas leis são expressas pelas equações

 $\rho C_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k_F \frac{\partial^2 T}{\partial y^2}$

Campo de velocidade:

(l.a)

Campo de temperatura no fluido:

(2)

onde:

p - densidade do fluido

C_p - calor específico do fluido

 k_p - condutividade térmica do fluido

Campo de temperatura no corpo:

$$\frac{d^2t}{dx^2} + \frac{k_B b}{A} \frac{dA/dx}{dx} = -\frac{k_F}{\partial y} \frac{\partial T}{\partial y = 0} - b\Omega \qquad (3)$$

onde:

³ ¹/_s - condutividade térmica do corpo A - área da seção transversal
 ₀ - geração interna de calor

No presente trabalho, entretanto, consideraremos a <u>a</u> rea da seção transversal como sendo constante e, neste caso, a equa ção (3) se reduz a:

$$k_{B} \frac{d^{2}t}{dx^{2}} = -\frac{k_{F}}{F} \frac{\partial T}{\partial y} = -b\Omega \qquad (4)$$

O problema físico é univocamente especificado por meio

das condições de contôrno

$$u(x,0) = 0$$
$$v(x,0) = 0$$
$$T(x,0) = t\langle x \rangle$$

$$\begin{aligned} \mathbf{k}_{\mathbf{F}} \left| \frac{\partial \mathbf{T}}{\partial \mathbf{y}} \right| &= \mathbf{q} \left(\mathbf{x} \right) \\ \mathbf{u} \left(\mathbf{x}, \infty \right) &= \mathbf{u}_{\mathbf{x}} \left(\mathbf{x} \right) \end{aligned}$$

$$T(\mathbf{x}, \mathbf{\omega}) = T_{\mathbf{z}}$$

$$\left.\frac{\partial \mathbf{t}}{\partial \mathbf{x}}\right|_{\mathbf{x}=\mathbf{0}} = \mathbf{0}$$

ĭx x=ℓ

III-2) Variáveis adimensionais

Introduziremos agora as variáveis adimensionais semelhantes àquelas usadas por Meksyn

$$\xi = \frac{1}{L} \int_{0}^{\infty} \frac{u_{1}}{U_{0}} dx \qquad (5)$$

onde

$$L = b \left(\frac{k_s}{k_F}\right)^{2/3}$$
, è uma dimensão característica (6)

$$n = \frac{1}{(2 v . U_0 L \xi)^{1/2}} u_1^{(\xi)} y (7)$$

O fator de forma será definido por : _ _ _ _

$$\lambda = -\frac{2\xi}{d\xi} \frac{d}{d\xi} (\ln u_1) \qquad (8)$$

Sendo que nos casos en que λ é constanto pode-se demonstrar que exis te una função f = f(n) apenas, que determina univocamente o campo de velocidade. Como λ é constante para escoamentos em tôrno de una cunha de (- λ II), êste será o caso que aqui consideraremos.

A função fluxo será dada por:

$$\psi = (2 \sqrt{U_0 L} \xi)^{1/2} f(\eta)$$
 (9)

e os componentes da velocidade, dentro da camada limite, u e v, são expressos por derivadas desta função.

$$u = \frac{\partial y}{\partial y} = u_1(\xi) \frac{df}{d\eta} = u_1(\xi) f'$$
 (10)

$$v = -\frac{\partial \psi}{\partial x} = -\frac{u}{2} \left(\frac{v}{2 U_0 L \xi} \right)^{1/2} \left(f - (1 + \lambda) \eta f' \right)$$
(11)

Os campos de temperatura do corpo e fluido, respectivamente, serão d<u>a</u> dos por

$$\Theta(\xi) = \frac{t - T_o}{T^*}$$

$$(\xi,\eta) = \frac{T-T}{T\star} \qquad (13)$$

onde T* será definido posteriormente.

III-3) Transformação de variáveis

III-3.1 - Equação da energia para o corpo sólido

(12)

$$s^{b} \frac{d^{2} c}{dx^{2}} = - \frac{k_{F}}{F} \left| \frac{\partial T}{\partial y} \right|_{y=0} - b\Omega \qquad (4)$$

. Efetuando a transformação de variáveis para t e T resulta

$$\frac{k_{s}^{b}}{dx^{2}} \frac{d^{2}\Theta}{dx^{2}} = -\frac{k_{F}}{F} \left| \frac{\partial \theta}{\partial y} \right|_{y=0} = \frac{b}{T^{*}} \Omega \qquad (14)$$

No nosso caso consideraremos λ constante e portanto podemos integrar (8) diretamente, o que resulta em

$$c_1 = c_1 \xi^{-\lambda/2}$$
 (15)

onde podemos escolher un estado de referência para u₁ como sen-

do

$$u_1(\xi = 1) = U_0$$
 (16)

una vez que U_0 é un parâmetro que deixanos livre para ser determinado no momento oportuno. Neste caso, a equação (15) passa a ser descrita sob a forma

$$u_{1} = U_{0} \varepsilon^{-\lambda/2} = c_{2} x^{-\lambda/2}$$
(17)

onde então

$$v_{o} = c_{2}(\ell)^{-\frac{\lambda}{\lambda+2}}$$

Efetuando as mudanças de variáveis do tipo (5) e (7), obtem-se:

$$\frac{d^2 Q}{dx^2} = \frac{d}{d\xi} \left(\frac{dQ}{d\xi} \frac{d\xi}{dx} \right) \frac{d\xi}{dx} ; \qquad (18)$$

. . .

· 11.

$$\frac{\partial \theta}{\partial y}\Big|_{y=0} = \frac{\partial \theta}{\partial \eta}\Big|_{\eta=0} \cdot \frac{\partial \eta}{\partial y} \cdot$$
(19)

Substituirdo estes resultados em (14) e tendo em vista a equação (17) obtem-se o seguinte resultado, após algumas simplificações:

$$\frac{\mathrm{d}^{2}\Theta}{\mathrm{d}\xi^{2}} = \frac{\lambda}{2\xi} \frac{\mathrm{d}\Theta}{\mathrm{d}\xi} = -\left(\frac{\mathrm{b}U_{0}}{2\nu}\right)^{1/2} - \frac{\lambda-1}{\xi} \left|\frac{\mathrm{a}\Theta}{\mathrm{a}\pi}\right|_{\pi=0} - \frac{L^{2}\Omega}{\mathrm{k}_{\mathrm{s}}^{\mathrm{T}^{2}}} \xi^{\lambda}$$
(20)

Por simplicidade passaremos a deponicar o coeficiente do primei ro têrmo do segundo membro de H, portanto

$$H = \left(\frac{bU_o}{2v}\right)^{-1/2}$$
(21)

Por outro lado, podemos também fazer o coeficiente de ξ^{λ} igual à unidade, sem perda de generalidade, e dêste modo surge a definição de T*

$$= \frac{L^2 \Omega}{k_s}$$
(22)

Logo, podenos escrever a equação (20) sob a forma:

тŕ

$$\xi^{\lambda/2} \left[\frac{d}{d\xi} \left(\xi^{-\lambda/2} \quad \frac{d\Theta}{d\xi} \right) \right] = -H \quad \xi^{\frac{\lambda-1}{2}} \left| \frac{\partial \theta}{\partial \eta} \right|_{\eta} = 0 \quad -\xi^{\lambda}$$

ou ainda,

$$\frac{d}{d\xi} \left(\xi^{-\lambda/2} \quad \frac{dQ}{d\xi} \right) = -H \quad \xi^{-1/2} \quad \left| \frac{\partial \theta}{\partial \eta} \right|_{\eta=0} - \xi^{\lambda/2} \quad (23)$$

12.

1

Como já foi visto a equação da energia é

$$\rho C_{p} \left(\frac{u}{\partial x} + \frac{v}{\partial y} \right) = \frac{k_{p}}{\partial y^{2}} \frac{\partial^{2} T}{\partial y^{2}}$$
(2)

Passando para a variável θ e sabendo-se que o número de Prandtl é dado por Pr = $(C_p v)/k_F$ vem que

$$\frac{v}{\partial x} + \frac{v}{\partial y} = \frac{v}{Pr} \frac{\partial^2 \theta}{\partial y^2}$$
(24)

Fazendo a transformação para as variáveis adirensionais e usan do as expressões u, e v, (10) e (11), obteremos

 $\frac{\partial^2 \theta}{\partial r^2} = 2 \operatorname{Pr} \xi f' \frac{\partial \theta}{\partial \xi} - \operatorname{Pr} f \frac{\partial \theta}{\partial \eta} \qquad (25)$

III-3.3 - Equação do campo de velocidade

Com vinos êste é dado por

$$\frac{\partial u}{\partial x} + \frac{v}{\partial y} = \frac{u}{1} \frac{du_1}{dx} + \frac{\partial^2 u}{\partial y^2}$$

Efetuando as transformações de variáveis do mesmo tipo das jã

vistas anteriormente, como por exemplo:

13.

(1.a)

$$\frac{du_1}{dx} = \frac{du_1}{d\xi} \quad \frac{d\xi}{dx} = \frac{u_1}{U_L} \quad \frac{du_1}{d\xi} ;$$

a equação (1.a) se transformarã em:

$$-\frac{U_o^2}{2L} + \frac{-3\lambda/2 - 1}{L} + f' \{ \lambda f' + (1 + \lambda) \eta f'' \} -$$

$$-\frac{U_o^3}{(2 \vee U_o^{-L} \xi)} (f - (1+\lambda) n f') f'' =$$

$$= -\frac{\underline{U_o}^2}{\underline{\xi}^{-3\lambda/2-1}} \left(\frac{\lambda}{2}\right) + \frac{\underline{U_o}^3}{2\nu} \frac{\underline{\xi}^{-3\lambda/2}}{\underline{\xi}^{-3\lambda/2}} f^{\prime\prime\prime}$$
(26)

A qual após devidamente simplificada, resultará na conhecida <u>e</u> quação de Faulkner Skan.

$$\mathbf{f}^{"''} + \mathbf{f} \cdot \mathbf{f}^{"} = \lambda \left[1 - \left(\mathbf{f}^{\prime} \right)^{2} \right]$$
 (27)

Resumindo, as três equações que regem o processo, nas provas variáveis adimensionais, passam a ter a seguinte forma:

equação do movimento .
$$f^{\prime\prime} + f f^{\prime} \approx \lambda \left[1 - (f^{\prime})^2\right]$$
 (27)

equação da energia
para o fluido
$$\frac{\partial^2 \partial}{\partial \eta^2} = 2 \operatorname{Pr} \xi f^1 \frac{\partial \theta}{\partial \xi} - \operatorname{Pr} f \frac{\partial \theta}{\partial \eta}$$
 (25)

equação da energia
para o corpo
$$\frac{d}{d\xi} \left(\xi^{-\lambda/2} \frac{dQ}{d\xi} \right) = - \Pi \xi^{-1/2} \left| \frac{\partial \theta}{\partial \eta} \right|_{\eta=0} - \xi^{\lambda/2}$$
(23)

$$\frac{du_1}{dx} = \frac{du_1}{d\xi} \quad \frac{d\xi}{dx} = \frac{u_1}{U_L} \quad \frac{du_1}{d\xi} ;$$

a equação (1.a) se transformarã em:

$$-\frac{U_o^2}{2L} + \frac{-3\lambda/2 - 1}{L} + f' \{ \lambda f' + (1 + \lambda) \eta f'' \} -$$

$$-\frac{U_o^3}{(2 \vee U_o^{-L} \xi)} (f - (1+\lambda) n f') f'' =$$

$$= -\frac{\underline{U_o}^2}{\underline{\xi}^{-3\lambda/2-1}} \left(\frac{\lambda}{2}\right) + \frac{\underline{U_o}^3}{2\nu} \frac{\underline{\xi}^{-3\lambda/2}}{\underline{\xi}^{-3\lambda/2}} f^{\prime\prime\prime}$$
(26)

A qual após devidamente simplificada, resultará na conhecida <u>e</u> quação de Faulkner Skan.

$$\mathbf{f}^{"''} + \mathbf{f} \cdot \mathbf{f}^{"} = \lambda \left[1 - \left(\mathbf{f}^{\prime} \right)^{2} \right]$$
 (27)

Resumindo, as três equações que regem o processo, nas provas variáveis adimensionais, passam a ter a seguinte forma:

equação do movimento .
$$f^{\prime\prime} + f f^{\prime} \approx \lambda \left[1 - (f^{\prime})^2\right]$$
 (27)

equação da energia
para o fluido
$$\frac{\partial^2 \partial}{\partial \eta^2} = 2 \operatorname{Pr} \xi f^1 \frac{\partial \theta}{\partial \xi} - \operatorname{Pr} f \frac{\partial \theta}{\partial \eta}$$
 (25)

equação da energia
para o corpo
$$\frac{d}{d\xi} \left(\xi^{-\lambda/2} \frac{dQ}{d\xi} \right) = - \Pi \xi^{-1/2} \left| \frac{\partial \theta}{\partial \eta} \right|_{\eta=0} - \xi^{\lambda/2}$$
(23)

Equação do movimento

f'(∞) ⊓ 1

f(0) = f'(0) = 0

Equação da energia para o fluido

 $\begin{array}{c|c} \frac{\partial \theta}{\partial g} \\ \eta = 0 \\ \xi = 1 \end{array} \Rightarrow 0$ $\begin{array}{c|c} \frac{\partial \theta}{\partial \eta} \\ \eta = \infty \end{array} \Rightarrow 0 \\ \eta = \infty \end{array} \Rightarrow 0$

.

em n=0

Equação da energia para o corpo.

- III-4) Solução analítica das equações

<u>∂6</u> <u>∂ξ</u> ξ≖0

<u>-36</u> 36

III-4.1 - Equação do movimento

Consideraremos como conhecida <u>a</u> solução da equação no campo de velocidade na camada limite através da solução encontrada no Meksyn, ou mais precisamente, pela solução de Hartree. Portanto, a solução será do tipo

(28)

$$f = \sum_{n=2}^{\infty} \frac{a_n - \eta^n}{n!} ,$$

série que satisfaz às condições de contôrno:

$$f(o) = f'(o) = 0$$
 e $f'(\omega) = 1$

III-4.2 - Equações da energia para fluido e corpo

Resolverenos a equação da energia para fluido e corpo tendo em vista que

T(x,0) = t(x)

isto é, que a temperatura do fluido se iguala à do corpo na su perfície dêste.

Usando o método de separação de variáveis, para resolvermos a equação da energia para o fluido, e fazendo

θ = X(ξ) Y(η)

ao aplicarmos o método à equação (25) teremos o seguinte resul-

$$\frac{Y'' + \Pr f Y'}{2 \Pr f Y} = \xi \frac{X'}{X} = Y$$
(30)

onde Y_{j} são os valores característicos da solução ("eigenvalues").

Teremos, assim, duas equações:

 $X^1 = \frac{Y_1}{E} X = 0$

(31)

(29)

N', (0) ≓ 0

е.

- (0) = 0
- M' (0)

(38)

Como a equação (25) é uma equação elítica linear, podemos aplicar o princípio de superposição de soluções e, neste caso, fazendo B'C=B e A'C=A, teremos

$$\boldsymbol{\theta} = \sum_{j=1}^{\infty} \boldsymbol{\xi}^{j} \left(\mathbf{A}_{j} \mathbf{N}_{j} (\boldsymbol{\eta}) + \mathbf{B}_{j} \mathbf{M}_{j} (\boldsymbol{\eta}) \right) . \tag{39}$$

Para solucionarmos a equação (39) precisamos determinar as condições de contôrno, para acharmos os coeficientes B_{\pm} e A_{\pm} .

Para satisfazer à condição (40), temos que ter

$$\sum_{j=1}^{\infty} \xi^{j} \left(A_{j} N_{j} (\infty) + B_{j} M_{j} (\infty) \right) = 0$$
(41)

logo

$$r_{j} = -\frac{\Lambda_{j}}{B_{j}} = \lim_{n \to \infty} \frac{M_{j}(n)}{N_{j}(n)}$$
(42)

Assim sendo, precisanos do valor assintótico da relação entre as duas soluções base.

Pelas propriedades gerais das soluções en série (Morse e Feshbach (6)) e, considerando-se que estas duas soluções base são independentes, neste caso o Wronskian é diferente de zero, podemos determinar esta relação como sendo:

$$r_{j} = -\frac{N_{j}(\omega)}{N_{j}(\omega)} = \int_{0}^{\infty} \frac{e}{N_{j}^{2}(\eta)} d\eta .$$
 (43)

(44)

(46).

Esta integral pode, então, ser resolvida pelo método do "steepest descend", fazendo-se a seguinte transformação de va riáveis, tendo como base a solução dada por Meksyn para a equação do movimento.

Definíndo uma nova variável, teremos:

$$\pi = \Pr \int_{0}^{n} f(n) dn = n^{3} \sum_{m=0}^{\infty} E_{n} n^{n};$$

 $= \int_{0}^{\infty} \frac{e^{-\tau}}{N_{j}^{2}(\tau)} \frac{d\eta}{d\tau} d\tau ; \qquad (45)$

 $\frac{1}{N_{j}^{2}} \frac{dn}{d\tau} = \tau^{-2/3} \sum_{m=0}^{\infty} d_{m} \tau^{m/3}$

Assim sendo, temos que $d_m \in 1/3$ do coeficiente de n^{-1} na expressão do desenvolvimento de $(1/N_j^2) \pi^{-(m+1)/3}$ em potências ascendentes de n;

 $(c_0 + c_1 \eta + c_2 \eta^2 \dots)^{-(m+1)/3} (b_0 + b_1 \eta + b_2 \eta^2 \dots) =$

20 $3 \sum_{m=0}^{\infty} d_m \eta^m$ (47)E a solução será dada por: $\mathbf{r}_{\mathbf{j}} = \sum_{\mathbf{m}=0} d_{\mathbf{m}} \mathbf{r} \left(\frac{\mathbf{m}+\mathbf{1}}{3}\right)$ (48) onde $\Gamma\left(\frac{m+1}{3}\right)$ são as funções Gamma. Para resolução da equação precisamos de outra relação entre 😞 $A_{j} \in B_{j} \in e$ esta relação pode ser determinada, substituindo-se diretamente (39) em (23). Como as temperaturas se igualam na superfície, antes de fazer esta substituição, precisamos determinar, $\left. \frac{\partial \theta}{\partial \eta} \right|_{\eta=0}$ `∂0/∂E n=0 : $\frac{\partial \theta}{\partial \eta} \Big|_{\eta=0} = \sum_{j=1}^{\infty} B_j \xi^j j$ (49) $\left|\frac{\partial\theta}{\partial\xi}\right|_{n=0}$, = $-\sum_{i=1}^{\infty} \left|\frac{B_{i}Y_{j}r_{j}}{B_{j}Y_{j}r_{j}}\right|^{\gamma-1}$ (50) Assim, a equação (23) se transforma em: $\frac{d}{d\xi} \left(\sum_{j=1}^{m} B_j Y_j r_j \xi^{\gamma_j - \lambda/2 - 1}_{j = 1} \right) = H \xi^{-1/2} \sum_{j=1}^{\infty} B_j \xi^{\gamma_j} - \xi^{\lambda/2}$ (51)

KORWIG FU DENELA ATALIYA

•

Derivando o primeiro membro, em relação a $\xi,$ obtemos:

$$\sum_{j=1}^{\infty} B_{j} r_{j} \gamma_{j} \quad (\gamma_{j} - \frac{\lambda}{2} - 1) \ \varepsilon^{\gamma_{j} - (\lambda+2)} =$$

$$= H \sum_{j=1}^{\infty} B_{j} \varepsilon^{\gamma_{j} - (\lambda+1)/2} + 1. \quad (52)$$
Fazendo $\gamma_{1} = 0$ resulta
$$\sum_{j=2}^{\infty} B_{j} r_{j} \gamma_{j} \quad (\gamma_{j} - \frac{\lambda}{2} - 1) \ \varepsilon^{\gamma_{j} - (\lambda+2)} =$$

$$= H \sum_{j=2}^{\infty} B_{j} \varepsilon^{\gamma_{j} - (\lambda+1)/2} + H B_{1} \ \varepsilon^{-(\lambda-1)/2} + 1 \quad (53)$$
Podenos, então, determinar os valores característicos
$$\gamma_{1} = 0$$

$$\gamma_{2} = \lambda + 2$$

$$\gamma_{3} = (\lambda + 5)/2$$

$$\gamma_{3} = (\lambda + 5)/2$$
(54)

 $\gamma_{j} = \left(\frac{1-1}{2}\right)\left(\frac{\lambda+5}{2}\right)$ para j impar. (55)

4

E os B, vão satisfazer à equação (53) quando:

$$B_2 = \frac{2}{r_2 (\lambda + 2)^2}$$
(56)

$$B_{j} = \frac{H B_{j-2}}{Y_{j} (Y_{j} - (\lambda + 2)/2) r_{j}}$$
(57)

Neste ponto resta apenas a determinação do coeficiente B_{j} , o que será feito no capítulo seguinte, satisfazendo-se a condição de contôrmo em $\xi = 1$ (x = ℓ).

O problema analítico ficaria assim encerrado com a determinação de uma solução única e estável. Acontece, porém, que a série obtida para as relações r_i,

$$r_j = r_j (\lambda, Pr) = \sum_{m=0}^{\infty} d_m r \left(\frac{m+1}{3}\right)$$

é divergente para todos os valores comuns do número de Prandtl. Este fato obrigou-nos a optar por uma solução numérica das equações que geram as funções características $M_{i}(n)$ e $N_{i}(n)$.

III-5) Solução numérica

Vamos, então, resolver as equações que definem o campo da velocidade e temperatura do fluido, simultâneamente, pelo método de Runge Kutta, utilizando os valores característicos determinados an teriormente, através da equação do campo de temperatura no corpo. $f^{\prime\prime\prime} + f f^{\prime\prime} = \lambda \left[1 - (f^{\prime})^2 \right]$ (58) $Y^{\prime\prime} + Pr f Y^{\prime} - 2 Pr Y_{j} f^{\prime}Y = 0 ,$ (59) determinando assim os valores de M_j(n) e N_j(n), soluções base da equação (59) Conhecidos estes valores podemos determinar o campo de temperatura do fluido, com auxílio da equação (39) reescrita sob a forma,

$$\theta = \sum_{j=1}^{\infty} B_j \xi^{\gamma_j} \left(M_j(n) - r_j N_j(n) \right)$$
(60)

Na realidade vamos resolver simultâneamente as duas <u>e</u>

Por outro lado, pela expressão obtida para os B_i,

quações:

$$B_{j} = \frac{H B_{j-2}}{r_{j} \gamma_{j} (\gamma_{j} - (\lambda + 2)/2)},$$

podemos verificar que somente os coeficientes correspondentes aos indices impares dependem de B₁, isto é, podemos determinar a seguinte relação:

$$B_{j} = \frac{\frac{j-1}{H^{2}}}{\prod_{j=3}^{H} \left| \begin{array}{c} \frac{j}{j} & r_{j} \\ j \end{array} \right|^{Y} \left| \begin{array}{c} r_{j} \\ j \end{array} \right|^{Y} \left| \begin{array}{c} r_{j} \\ (\gamma - (\lambda + 2)/2) \\ j \end{array} \right|} \quad \text{para } j=3,5,7... \quad (61)$$

Logo, tôdas as parcelas de θ relativas aos índices im pares serão multiplicadas por B₁.

Devido a êste fato, calculamos então a função 8, divi

dindo-a em duas partes

$$= \theta + B_{1} \theta$$
 (62)

Tomamos, inicialmente, $B_1 = 1$ e calculamos $\theta_{par} = \theta_{impar}$ separadamente e depois computamos θ segundo a equação (62). E, pela condição de contôrno

<u>∂θ</u> ∂ξ η=0 , , ξ=1

podemos determinar o valor real de B_1 , o qual será dado por:

$$B_{1} = \frac{\frac{\partial \theta_{par}}{\partial \theta_{par}}}{\frac{\partial \theta_{par}}{\partial \theta_{impar}}} \int_{\xi=1}^{\xi=1} \eta = 0$$

Teremos, assim, determinado todos os coeficientes necessários para o cálculo dos valores de 0, restando apenas efetuar o somatório segundo a equação (60).

Na resolução do problema foram utilizados os computadores eletrônicos do Departamento de Cálculo Científico da COPPE-UFRJ e do Centro de Cálculo Numérico da EE-UFMS, ambos do tipo IE4-1130. Foi usada também a subrotina RK3-1, da IEM, para cálculo pelo método Runge Kutta de um sistema de seis equações diferenciais ordinárias lineares de 1^a ordem.

Quanto aos valores característicos (Y_j) , tomamos sòmente os 10 primeiros valores consecutivos, pois verificamos que es-

(63)

tes seriam suficientes, una vez que todos os B_{10} calculados eram razoavelmente pequenos (da ordem de 10^{-5}) e que a diferença $\left[M_{10} - r_{10}N_{10}\right]$ eram menores que a unidade: assim sendo, os termos subsequentes da série que define o campo de temperatura do fluido poderiam ser desprezados face aos primeiros termos.

Varianos 5 desde zero até 1., com um incremento de 0.2, e n desde zero até um valor para o qual $\theta \stackrel{z}{=} 0$, com o incremento de 0.1, imprimindo apenas de 0.2 em 0.2.

Os resultados obtidos encontram-se no apéndice, sob à : forma de tabelas obtidas diretamente do computador, sendo que alguns dêstes são apresentados em gráficos, no capítulo seguinte.

ANÁLISE DOS RESULTADOS

τv

Obtivemos oito conjuntos de resultados para os perfis de temperatura $B(\xi,n)$, fazendo variar o número de Prandtl assim como o fator de forma.

Como o fator de forma (Meksyn) pode variar de (0.1)até (0.199), isto é, desde o valor correspondente ao ponto de estagnação até aquele do ponto de separação, escolhemos 3 valores para λ dentro desta faixa, a saber: - .5, .0, .1.

Atribuimos ao número de Prandtl os seguintes valores: .76, 2.0, 5.0 e 7.0.

Apresentanos, então, alguns resultados representativos, dentre todos aqueles computados, sob a forma de gráficos.

As figuras 2, 3 e 4 apresentam os perfis de temperatu ta, nas variáveis adimensionais, no ponto $\xi = 0$.

Como podemos ver, quanto maior o número de Prandtl, menor é a temperatura em y = 0 e mais rapidamente o perfil na variável adimènsional tende a zero, isto é, mais rapidamente T tende a T_o .

Na figura 5, temos dois perfis de temperatura correspondentes a 2 pontos ($\xi=0$ e $\xi=.8$) do corpo sólido, para os mesmos v<u>a</u> lores do número de Prandtl e do fator de fórma. <u>Neste caso, potenos</u>-

SUMME IS LASTA ATOMICA

que quanto mais nos aproximamos do fim da placa, mais alta \tilde{e} a tempe ratura do fluido próximo à parede (apesar de em certo ponto ela passar por um mínimo), mas que ràpidamente, ao nos afastarmos da parede do corpo sólido, esta temperatura tede a um mesmo valor para os n correspondentes em qualquer ponto da placa.

Além disso, apresentamos, também, duas tabelas, sendo uma para os valores dos B_j e outra para os r_j . Por meio destas tabe las podemos notar que, para qualquer par de valores do número de Prandtl e do fator de forma, foram suficientes tomarmos apenas os 10 primeiros termos da série que define o campo de temperatura do fluido.

η

71

,

	-	•	TABELA I	- Valores	de Bj			
		λ	=.0	· · · · · · · · · · · · · · · · · · ·	λ	 • .1	λ ÷	5
Pr =	0.76	2.0	5.0	7_0	0.76	5.0	0.76	5.0
^B 2	.4252	5889	.8002	4 8954	.3566	.6607	.8219	.1592x10 ¹
в4	.2950x10 ⁻¹	.5650x10 ⁻¹	.1042	.1305	.7085x10 ⁻¹	.2431	*9042×10 ⁻¹	.3361
в	.8844x10 ⁻³	.2340×10 ⁻²	.5864x10 ⁻²	,8213x10 ⁻²	.1833x10 ⁻²	.1167x10 ⁻¹	_4151x10 ⁻²	.2950x10 ⁻¹
Bg	.1522x10 ⁻⁴	.5568x10 ⁻⁴	.1893x10 ⁻³	.2967×10 ⁻³	.2727x10 ⁻⁴	.3223x10 ⁻³	_1079x10 ⁻³	.1463x10 ⁻²
B ₁₀	.1730×10 ⁻⁶	.8743x10 ⁻⁶	.4036x10 ⁻⁵	.7075×10 ⁻⁵	2679x10 ⁻⁶	.5878×10 ⁻⁵	-1840×10 ⁻⁵	.4749x10 ⁻⁴
. ^B 3 ^{/B} 1	.2425	.3358	.4562	.5104	.2176	.4032	.3108	.5994
^B 5 ^{/B} 1	.1370×10 ⁻¹	.2623x10 ⁻¹	.4839x10 ⁻¹	.6057x10 ⁻¹	.1083x10 ⁻¹	.3722x10 ⁻¹	.2420x10 ⁻¹	.8944×10 ⁻¹
B ₇ /B ₁	,3620×10 ⁻³	.9573x10 ⁻³	.2397×10 ⁻²	.3357x10 ⁻²	.2507x10 ⁻³	.1597x10 ⁻²	.8991x10 ⁻³	.6344×10 ⁻²
B ₉ /B ₁	.5686x10 ⁻⁵	.2077×10 ⁻⁴	.7063×10 ⁻⁴	.1106×10 ⁻³	.3439×10 ⁻⁵	.4068x10 ⁻⁴	_2006x10 ⁻⁴	.2698x10 ⁻³
: !	a 	 , , - 	• •	· · · · ·	· · · ·			· · · · · · · · · · · · · · · · · · ·
· B ₁ .	-1,544	-1.560	-1.581	-1,590	-1.643	-1.821	-2.156	-2,294

32.

		λ =	= 0		٨	= .1	λ	=
Pr =	0.76	2.0	5.0	7.0	0.76	5.0	0.76	
. r ₁	2.3460	1.6740	1.2260	1.0940	2.5130	1.3450	2,0600	Ŧ
r ₂ .	1,1750	0.8489	0.6247	0.5583	1.2710	0.6863	1.0810	Ť
r ₃	1.0990	0.7941	0.5845	0.5224	1.2000	-0.6482	0.9533	
r ₄ .	0.9151	0,6617	0.4873	0.4355	1.1870	0.6408	0.8080	†
* ₅	0.8849	0.6400	0,4713	0.4213	0.9723	0,5244	0.7608	ţ
r _{.6}	0.7942/	0,5747	0,4232	0.3783	0,8726	0.4704	0.6934	
r ₇	0.7767	0,5620	0.4139	0,3700	0.8560	0.4614	0.6647	Ì
r ₈ .	0.7193	0,5206	0.3834	0.4327	0.7925	0.4269	0.6214	ļ
r ₉	0.7073	0,5219	0.3771	0.3371	0.7812	0.4208	0.6034	ŀ
1 0	0.6664	0,4824	0.3553	0.3176	0.7357	0.3962	0.5729	

•

.1

Valores de r ...

TABELA II

.

. . .

-.5

5.0

1.0300

0.5582

0.5943

0.4210

0.3971

0,3617

0,3480

0,3258

0.3166

CONCLUSÕES E SUGESTÕES

A maior dificuldade encontrada, ao tentarmos a solução analítica para o problema em questão, foi a da resolução da inte gral

$$r_{j} = \int_{0}^{\infty} \frac{e}{N_{j}(\eta)} d\eta$$

Para tal, usanos a técnica da transformação desta, por meio do método de "steepest descend", em uma série infinita. En contramos, então, para os coeficientes da série valores tais que a mesma seria divergente.

Assim sendo, sugerimos que se tente resolver esta integral com auxílio de uma transformação de Euler, que venha a tornar esta série convergente ou semiconvergente.

Quanto à solução numérica, os resultados encontrados estão dentro do limite de espectativa, pois, como vimos no capítulo anterior, os perfis de temperatura são análogos para mesmos fatores de forma, quando variamos o fluido, diminuindo apenas a espessura da camada limite, quanto mais aumentamos o número de Prandtl (Fig. 2), isto é, quanto mais viscoso é o líquido.

Infelizmente, não possuímos dados experimentais para

confrontarros os resultados teóricos obtidos.

Assim sendo, não fizemos variação quanto à geração de calor, permanecendo esta implícita no perfil adimensional de tempera tura, uma vez que a geração está incluída na variável T* e que esta só aparece nas variáveis O-e 0, devido às simplificações introduzidas na resolução das equações.

A temperatura da superfície do corpo passa por um minimo entre x = 0 e x = ℓ , para qualquer par de valores escolhido do número de Prandtl e fator de forma, aumentando sensívelmente, a partir de um x equivalente a $\xi=.6$.

Isto provavelmente ocorre devido ao fato das extremi dades do corpo serem isoladas e, portanto, a perda de calor do corpo para o meio ambiente é maior em algum ponto entre os extremos considerados. Como a variação da temperatura, na extremidade inicial, é pequena, podemos quase concluir que a consideração,geralmente feita, de que a temperatura da parede é constante, é válida para esta parte do corpo, mas que se afasta muito da realidade no outro extremo.

Sugerimos, também, para estudos futuros, que o proble ma seja resolvido, considerando-se o corpo sólido como ilimitado. Neste caso, não mais será válida a condição de contôrno

0 ∾ 0 36

e ter-se-ã uma pequena dificuldade na determinação do coeficiente $B_{1'}$ uma vez que não podemos dizer que 0 (£=0) = 0, pois o problema se tor naria superespecificado, ocasionando uma instabilidade na solução de vez que esta seria divergente.

NOMENCLATURA

.

A	área da seção transversal do corpo solido
Aj	constante de integração da equação da energia para o fluido
a _n	coeficientes que definem a série da equação (28)
ь	espessura da parede do corpo sólido
b _n	coeficientes que definem asérie da equação (35)
B, j	constante de integração da equação da energia para o fluido
c _n	coeficientes que definem a série da equação (36)
c .	calor específico do fluido
£	variável adimensional relacionada à função fluxo
k _g , ,	condutividade térmica do fluido
k _s .	condutividade térmica do corpo sólido
٤	comprimento do corpo considerado
L	dimensão característica
M.(n)	solução base da equação (32)
ົN _. (ກຸ)	solução base da equação (32)
Pr	numero adimensional de Prandtl
₫ _₩ (x)	fluxo térmico na parede do corpo sólido
r, j	relação entre os coeficientes A, e^{B} , quando $n \neq \infty$
t(x)	temperatura da superfície do corpo
T(x,y)	temperatura do fluido dentro da camada limite
°C,	temperatura do fluído fora da influência da camada limite
T *	temperatura de referência definida pela equação (22)

	•	
	u.	componente da velocidade dentro da camada limite na direção
,	·- ·	de x
	^ע ו	velocidade do fluido no limite da camada limite
	U · ·	velocidade do fluido no extremo da camada límite no ponto
	*	$x = \ell$
	v	componente da velocidade dentro da camada limite na direção
	-	de y
,	x	coordenada cartesiana ao longo da superfície do corpo
3	у.	coordenada cartesiana perpendicular à superfíciedo corpo
	Υ.i	valores característicos da solução da equação (25)
	n .	variavel adimensional relacionada a y e ξ
÷	0	campo de temperatura do fluido
	Ø	temperatura adimensional na superfície do corpo
	λ	fator de forma do corpo sólido
	ν '	viscosidade cinemática
	ψ	função fluxo
	-ξ	variável adimensional relacionada a x
	ρ	densidade do fluido
	ß	geração interna de calor

BIBLICGRAFIA

(1) M.Sparrow e S.H.Lin, 'Boundary layers with prescribed heat flux-aplication to simultaneous convection and radiation', Int. J. Heat Mass Transfer, <u>B</u>, 437-448, (1965).
(2) P.A.Libby, 'Remarks on the laminar boundary layer with prescri-

bed energy flux', Int. J. Heat Mass Transfer; 8, 1254-1257, (1965).

 (3) Z.Rotem, 'The effect of thermal conduction of the wall upon convection from a surface in a laminar boundary layer; Int. J. Heat Mass Transfer; <u>10</u>, 461-466, (1967)
 (4) M.J.Lighthill, 'Contributions to the theory of heat transfer

through a laminar boundary layer', Proc.R.Soc; 202A , 359-377 , (1950).

(5) D.Meksyn, 'New methods in laminar boundary-layer theory', Pergamon Press , N.Y. - London , (1961).

(6) P.M.Morse e H.Feshbach, 'Methods of theoretical physics', vol.I,

McGraw Hill , N.Y. , (1953).

APÊNDICE

A. Transformação de Variáveis

A.1 - Equação da energia para o corpo sólido

Temos que a equação da energia para o corpo sólido é:

$$k_{s} = \frac{d^{2}t}{dx^{2}} = -k_{F} \left[\frac{\partial T}{\partial y} \right]_{y=0} = b \qquad (A.1)$$

40.

ou, passando para as variáveis 0 e 👘 , respectivamente, vem que 👘 💡

$$k_{s} \frac{b}{dx^{2}} \frac{d^{2}Q}{dx^{2}} = -k_{F} \left| \frac{\partial \theta}{\partial y} \right|_{y=0} - \frac{b}{T^{*}} \Omega \qquad (A.2)$$

Efetuando as transformações relativas às variáveis x e y patra ξ e η , teremos, para cada parcela:

$$\frac{d\Theta}{dx} = \frac{d\Theta}{d\xi} \frac{d\xi}{dx} = \frac{U_1}{U_0 L} \frac{d\Theta}{d\xi}$$
(A.3)

logo,

$$\frac{\mathrm{d}^2 \mathcal{G}}{\mathrm{dx}^2} = \frac{\mathrm{d}}{\mathrm{d}\xi} \left(\frac{\mathrm{u}_1}{\mathrm{U}_{OL}} \frac{\mathrm{d}\mathcal{G}}{\mathrm{d}\xi} \right) \frac{\mathrm{d}\xi}{\mathrm{d}x} = \left(\frac{\mathrm{u}_1}{\mathrm{U}_{OL}} \right)^2 \frac{\mathrm{d}^2 \mathcal{G}}{\mathrm{d}\xi^2} + \frac{\mathrm{u}_1}{\left(\mathrm{U}_{OL}\right)^2} \frac{\mathrm{d}\mathrm{u}_1}{\mathrm{d}\xi} \frac{\mathrm{d}\mathcal{Q}}{\mathrm{d}\xi} ; \quad (A.4)$$

e teremos tambem que

$$\frac{\partial \Theta}{\partial y}\Big|_{y=0} = \frac{\partial \Theta}{\partial \eta}\Big|_{y=0} \frac{\partial \eta}{\partial y} = \frac{u_1}{(2 \sqrt{U_0 L \xi})^{1/2}} \Big| \frac{\partial \Theta}{\partial \eta} \Big|_{\eta=0}$$
(A.5)

6 a.

Substituindo (A.4) e (A.5) em (A.2) resulta que

...

$$\frac{\mathbf{u}_{1}}{\mathbf{v}_{O}^{L}} \int_{0}^{2} \frac{\mathrm{d}^{2}\Theta}{\mathrm{d}\xi^{2}} + \frac{\mathbf{k}_{s}}{\mathbf{s}} \frac{\mathbf{u}_{1}}{(\mathbf{v}_{O}^{L})^{2}} \frac{\mathrm{d}\mathbf{u}_{1}}{\mathrm{d}\xi} \frac{\mathrm{d}\Theta}{\mathrm{d}\xi} = -\frac{\frac{\mathbf{k}_{F}}{\mathbf{u}_{1}}}{(2\sqrt{\mathbf{v}_{O}^{L}\xi})^{L/2}} \left| \frac{\partial\Theta}{\partial\eta} \right| \eta = 0 - \frac{\mathbf{b}}{T^{*}} \Omega$$
 (A.6)

Consideraremos λ constante, e neste caso a equação

$$\frac{1}{u_1}\frac{du_1}{d\xi} = -\frac{\lambda}{2\xi}$$
 (A.7)

41.

pode ser integrada diretamente. Como foi definido anteriormente, $u_l = 0_o$ para $\xi = 1$, logo, após integração e substituição da condição de contôrno teremos

$$u_1 = v_0 \xi^{-\lambda/2}$$
 (A.8)

Tendo em vista (A.7) e (A.8), a equação (A.6) passa a ter a seguinte forma, depois de parcialmente simplificada:

$$\left(\frac{\xi^{-\lambda/2}}{L}\right)^{2} \frac{d^{2} \Theta}{d\xi^{2}} + \frac{\xi^{-\lambda}}{L^{2}} \left(\frac{-\lambda}{2\xi}\right) \frac{d\Theta}{d\xi} = -\frac{k_{F}}{k_{s} b} \frac{\theta_{o} \xi^{-\lambda/2} L^{2}}{(2 \sqrt{\theta_{o} L \xi})^{1/2}} \left|\frac{\partial \Theta}{\partial \eta}\right|_{\eta=0} - \frac{\Omega}{k_{s} T^{*}} \xi^{\lambda}. \quad (\lambda, 9)$$

Multiplicando-se a equação por (L $^{2}\,\xi^{\,\lambda}$), vem que:

$$\frac{d^{2} \Theta}{d\xi^{2}} - \frac{\lambda}{2\xi} \frac{d\Theta}{d\xi} = -\frac{k_{\rm F}}{k_{\rm s}b} \frac{U_{\rm o}\xi^{\lambda/2}L^{2}}{(2\sqrt{U_{\rm o}L}\xi)^{1/2}} \left| \frac{\partial\Theta}{\partial\eta} \right|_{\eta=0} - \frac{L^{2}\Omega}{k_{\rm s}^{\eta_{\rm s}}} \xi^{\lambda}$$
(A.10)

ou, simplificando o coeficiente do primeiro termo do segundo membro:

$$\frac{d^{2}G}{d\xi^{2}} = \frac{\lambda}{2\xi} \frac{dg}{d\xi} = -\left(\frac{kU}{2y}\right)^{1/2} \xi^{-(\lambda-1)/2} \left| \frac{2G}{2\eta} \right|_{\eta=0}$$

$$\frac{1^{2}\Omega}{|\xi|^{\frac{2}{2}}} \xi^{-(\lambda-1)/2} \left| \frac{2G}{2\eta} \right|_{\eta=0}$$
(A.11)

A.2 - Campo de temperatura do fluido.

Partindo da equação
$$\frac{u}{\partial \theta} + \frac{v}{\partial y} = \frac{\lambda}{2y} \frac{\partial^{2}\theta}{\partial y^{2}}$$
(A.12)

temos que fazer, as seculintes transformações:
$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} \frac{d\xi}{dx} + \frac{\partial}{\partial \eta} \frac{\partial}{\partial \xi} \frac{d\xi}{dx} =$$

$$\frac{\xi^{-\lambda/2}}{L} \left\{ \frac{\partial}{\partial \xi} - \eta \frac{\partial}{\partial \eta} \left\{ \frac{\lambda+1}{2\xi} \right\} \right\}$$
(A.13)
$$\frac{\partial}{\partial y} = \frac{\partial}{\partial \eta} \frac{\partial\eta}{\partial y} + \frac{\partial}{\partial \xi} \frac{\partial\xi}{\partial y} = \frac{U_{0}\xi^{-\lambda/2}}{(2\sqrt{U_{0}}L\xi)^{1/2}} \frac{\partial\theta}{\partial \eta}$$
(A.14)
$$\frac{\partial^{2}\xi}{\partial y^{2}} = \frac{\partial}{\partial \eta} \left\{ \frac{U_{0}\xi^{-\lambda/2}}{(2\sqrt{U_{0}}L\xi)^{1/2}} \frac{\partial\theta}{\partial \eta} \right\} \frac{\partial\eta}{\partial y} =$$

$$\frac{U^{2}_{0}\xi^{-\lambda}}{(2\sqrt{U_{0}}L\xi)^{1/2}} \frac{\partial\theta}{\partial \eta^{2}}$$
(A.15)

Por outro lado sabemos que

$$u = u_1 \frac{df}{d\eta} = u_0 \xi^{-\lambda/2} f'$$

Ç

A.2

(A.16)

(A.21)

e que

$$\mathbf{v} = -\mathbf{U}_{O} \mathbf{\xi}^{-\lambda/2} \left(\frac{\mathbf{v}}{2\mathbf{U}_{O} \mathbf{L} \mathbf{\xi}} \right)^{1/2} \left[\mathbf{f} - (\mathbf{1} + \lambda) \mathbf{\eta} \mathbf{f}' \right] \qquad (A.17)$$

Substituindo estas expressões em (A.12) resulta em:

$$\frac{U_{O}\xi^{-\lambda}}{L} = \frac{f'}{k} \left\{ \frac{\partial \Theta}{\partial \xi} - \eta \left(\frac{\lambda + 1}{2\xi} \right) \frac{\partial \Theta}{\partial \eta} \right\} - \frac{U_{O}\xi^{-\lambda/2}}{\left(\frac{\lambda}{2U_{O}L\xi} \right)^{1/2} \left[f - (1 + \lambda)\eta f' \right] \frac{U_{O}\xi^{-\lambda/2}}{(2 + U_{O}L)^{1/2}} \frac{\partial \Theta}{\partial \eta} = \frac{U_{O}\xi^{-\lambda}}{\frac{1}{2U_{O}L\xi} \left(\frac{\lambda}{2U_{O}L\xi} \right)^{1/2} \left[f - (1 + \lambda)\eta f' \right] \frac{U_{O}\xi^{-\lambda/2}}{(2 + U_{O}L)^{1/2}} \frac{\partial \Theta}{\partial \eta} = \frac{U_{O}\xi^{-\lambda}}{\frac{1}{2} \left(\frac{\lambda}{2} + \frac{U_{O}\xi^{-\lambda}}{2} \right) \frac{\partial^{2}\Theta}{\partial \eta^{2}}}$$
(A.18)

Multiplicando-se a equação por (2PrL ξ) e dividindo por $(U_0 \xi^{-\lambda})$ ver que

$$\frac{\partial^{2} \theta}{\partial \eta^{2}} = \frac{2 \operatorname{Pr} \xi f'}{2 \operatorname{Pr}} \left\{ \frac{\partial \theta}{\partial \xi} - \left(\frac{\lambda + 1}{2 \xi} \right) \frac{\partial \theta}{\partial \eta} \right\} - \frac{\operatorname{Pr} \left[f - (1 + \lambda) \eta f' \right]}{2 \operatorname{Pr} \left[f - (1 + \lambda) \eta f' \right]} \frac{\partial \theta}{\partial \eta}$$
(A.19)

ou, finalmente.

$$\frac{\partial^2 \theta}{\partial \gamma^2} = \frac{2 \operatorname{Pr} \xi f'}{\partial \xi} \frac{\partial \Phi}{\partial \xi} - \frac{\operatorname{Pr} f \partial \theta}{\partial \gamma}$$
(A.20)

A.3 - Equação do campo de velocidade

ů

Coro vinos a equação que define o campo de velocidade é:

$$\frac{u}{\partial u} \frac{\partial u}{\partial x} + \frac{v}{\partial y} \frac{\partial u}{\partial y} = \frac{u}{1} \frac{du_{1}}{dx} + \sqrt{\frac{\partial^{2} u}{\partial y^{2}}} ;$$

Vamos então efetuar as seguintes mudanças de variáveis:

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}}{\partial \xi} \frac{d\xi}{d\mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \eta} \frac{\partial \eta}{\partial \xi} \frac{d\xi}{d\mathbf{x}} = \frac{\mathbf{v}_{0} \xi^{-(\lambda + 1)}}{2 \mathbf{L}} \left[\lambda \mathbf{f}^{\dagger} + (1 + \lambda) \eta \mathbf{f}^{\eta} \right], \quad (A.22)$$

$$\frac{\partial u}{\partial u} = \frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial \xi} = \frac{u^2 \xi^{-\lambda}}{(2 \lambda U L\xi)^{1/2}} f'' , \quad (A.23)$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial \eta} \left\{ \frac{u_0^2 \xi^{-\lambda}}{(2 \nu u_0 L\xi)^{1/2}} f^{\mu} \right\} \frac{\partial \eta}{\partial y} = \frac{u_0^3 f^{-3\lambda/2}}{2 \nu u_0 L\xi} f^{\mu} \qquad (A.24)$$

remos:

4

$$\frac{du_{1}}{dx} = \frac{du_{1}}{d\xi} \frac{d\xi}{dx} = \frac{u_{1}}{U_{O}L} \frac{du_{1}}{d\xi} = \frac{u_{1}^{2}}{U_{O}L} \left(\frac{1}{u_{1}} \frac{du_{1}}{d\xi} \right) = -\frac{\lambda U_{O}}{2L} \xi^{-(\lambda+1)}$$
(A.25)

Substituindo (A.22), (A.23), (A.24) e (A.25) em (A.21), te-

$$\frac{U_{o}^{2}\xi^{-\lambda/2}\xi^{-(\lambda+1)}}{2L}f^{*}\left(\lambda f^{*} + (1+\lambda)\eta f^{*}\right) - \frac{U_{o}^{3}\xi^{-3\lambda/2}}{2\lambda U_{o}^{L}\xi}\left(f - (1+\lambda)\eta f^{*}\right)f^{*} = \frac{U_{o}^{2}\xi^{-3\lambda/2-1}}{2\lambda U_{o}^{L}\xi}\left(\frac{\lambda}{2}\right) + \frac{\sqrt{U_{o}^{3}\xi^{-3\lambda/2}}}{2\lambda U_{o}^{L}\xi}f^{**} \qquad (\lambda,26)$$

Multiplicando esta equação por $(2L\xi)$ e dividindo por $(0_0^2\xi^{-3\lambda/2})$ resulta:

$$-\mathbf{f}^{\mathbf{i}}\left(\lambda \mathbf{f}^{\mathbf{i}} + (\mathbf{I} + \lambda)\eta \mathbf{f}^{\mathbf{i}}\right) - \left(\mathbf{f} - (\mathbf{I} + \lambda)\eta \mathbf{f}^{\mathbf{i}}\right)\mathbf{f}^{\mathbf{i}} = -\lambda + \mathbf{f}^{\mathbf{i}\mathbf{i}}, \qquad (A.27)$$

Ou, após simplificações,

$$f^{\mu_1} + f f^{\mu} = \lambda \left[1 - (f^{\mu})^2 \right]$$
 (A.28)

45.

B. Solução analítica

Para a equação do movimento

$$f^{n_1} + f f^n = \lambda \left[1 - (f^*)^2 \right]$$
 (B.1)

sendo

$$f = \sum_{n=2}^{\infty} \frac{a_n \gamma^n}{n!}$$
 (B.2)

onde

$$a = f^{*}(0) = a(\lambda)$$
 (B.3)

temps a solução do Meksyn, obtida quando substituimos (B.2) em (B.1) e determinanos os coeficientes a_n em função de $a_2 = a = f''(0)$. Estes coeficientes são:

$$\begin{array}{c} a_{2} = a & a_{3} = \lambda & a_{4} = 0 \\ a_{5} = -(1+2\lambda)a^{2} & a_{6} = -2(2+3\lambda)\lambda a \\ a_{7} = -2(2+3\lambda)\lambda^{2} & a_{8} = (1+2\lambda)(11+10\lambda)a^{3} \end{array} \right\} (B.4)$$

Esta equação também foi resolvida numéricamente por Hartree em um analisador diferencial, sendo que alguns destes resultados são os seguintes:

λ -1.0 -0.5 0. 0.1 0.18 0.199 a 1.232 0.927 0.4696 0.319 0.128 0.

Como vimos as soluções hase da equação da energia, $N_j(\eta)$ e $M_j(\eta)$, podem ser expressas pelas séries:

$$N_{j}(\eta) = \sum_{n=0}^{\infty} \frac{b_{n} \eta^{n}}{n!}$$
, sendo $b_{0} = 1$ e $b_{1} = 0$ (B.5)

$$M_{j}(\gamma) = \sum_{n=0}^{\infty} \frac{c_{n} \gamma}{n!}^{n} , \text{ sendo } c_{0}=0 \text{ e } c_{1}=1$$
 (B,6)

que possuen raios finitos de convergência.

e

teremos

Levando as expressões de N_j(η) juntamente com a de f(η) na guação abaixo,

$$Y^{0} + Pr f Y' - 2 Pr \chi f'Y = 0$$
 , (B.7)

$$\sum_{n=2}^{\infty} \frac{b \eta^{n-2}}{(n-2)!} + \frac{Pr}{2} \sum_{n=2}^{\infty} \frac{a \eta^{n}}{n!} \sum_{n=1}^{\infty} \frac{b \eta^{n-1}}{(n-1)!} - \frac{2 Pr}{2} \sum_{n=2}^{\infty} \frac{a \eta^{n-1}}{(n-1)!} \sum_{n=0}^{\infty} \frac{b \eta^{n}}{n!} = 0 \quad (B.8)$$

Anulando agora os coeficientes dos termos de mesma potência de γ , podemos achar as expressões que definem os coeficientes b_n .

47.

$$b_{0} = 1$$

$$b_{1} = 0$$

$$b_{2} = 0$$

$$b_{3} = 2 \operatorname{Pr}_{0}^{*} a$$

$$b_{4} = 2 \operatorname{Pr}_{0}^{*} \lambda$$

$$b_{5} = 0$$

$$b_{6} = 2 \operatorname{Pr}_{0}^{2} a^{2} \left[8\chi - 6 - (1 + 2\lambda)/\operatorname{Pr} \right]$$

$$b_{7} = 2 \operatorname{Pr}_{0}^{2} \lambda a \left(30\chi - 20 - 2(2 + 3\lambda)/\operatorname{Pr} \right)$$

$$b_{8} = 2 \operatorname{Pr}_{0}^{2} \lambda^{2} \left(30\chi - 20 - 2(2 + 3\lambda)/\operatorname{Pr} \right)$$

$$b_{9} = 2 \operatorname{Pr}_{0}^{2} \lambda^{2} \left\{ 30\chi - 20 - 2(2 + 3\lambda)/\operatorname{Pr} \right\}$$

$$b_{9} = 2 \operatorname{Pr}_{0}^{2} \lambda^{3} \left\{ \operatorname{Pr}(2\chi - 3) \left(8\chi - 6 - (1 + 2\lambda)/\operatorname{Pr} \right) + (1 + 2\lambda)(11 + 10\lambda)/\operatorname{Pr} \right\}$$
.....

Procedendo de modo análogo para o caso da solução base $M_j(\eta)$, podemos fâcilmente determinar os seguintes coeficientes:

$$c_0 = 0$$

 $c_1 = 1$
 $c_2 = 0$
 $c_3 = 0$
 $c_4 = a Pr (4 \gamma - 1)$
 $c_5 = Pr \lambda (6 \gamma - 1)$

$$c_{6} = 0$$

$$c_{7} = a^{2}Pr^{2} \left(10(\chi - 1)(4\chi - 1) - (10\chi - 1)(1 + 2\lambda)/Pr \right)$$

$$c_{8} = a Pr^{2} \lambda \left\{ (12\chi - 15)(6\chi - 1) + (30\chi - 20)(4\chi - 1) - (24\chi - 2)(2 + 3\lambda)/Pr \right\}$$

$$c_{9} = Pr^{2} \lambda^{2} \left\{ (6\chi - 5)(42\chi - 7) - (14\chi - 1)(4 + 6\lambda)/Pr \right\}$$

Agora, con todos os coeficientes a_n , $b_n \in c_n$ determinados estemos em condições de calcular o valor da integral

$$\mathbf{r}_{j} = \frac{M_{j}(\eta)}{N_{j}(\eta)} = \int_{0}^{\infty} \frac{e^{-Pr\int_{0}^{\eta} f(\eta) d\eta}}{N_{j}^{2}(\eta)} d\eta \quad (B.9)$$

A avaliação desta integral é feita desenvolvendo-se em séries de potências as seguintes funções:

$$T = \Pr \int_{0}^{\eta} f(\eta) d\eta = \eta^{3} \sum_{n=0}^{\infty} E_{n} \eta^{n} , E_{0} \neq 0$$
 (B.10)

$$\Phi = \frac{1}{N_j^2(\eta)} = \sum_{n=0}^{\infty} C_n \eta^n \qquad (B.11)$$

Resulta então que (ver Meksyn)

E ~~~

e

 $r_{j} = \sum_{m=0}^{\infty} d_{m} \prod_{m=1}^{m+1}$ onde $\prod(k)$ é a função Gama, e os coeficientes d_{m} são dados por:

 $d_{1} = \frac{1}{3} \frac{E^{-2/3}_{0}}{e} \left[G_{1} - \frac{2}{3} \frac{E_{1}}{E_{0}} G_{0} \right]$ $\frac{d_2}{d_1} = \frac{1}{3} \frac{E_0^{-1}}{E_0} \left(-\frac{E_1}{E_0} \frac{G_1}{G_1} + \left(\frac{E_1}{E_0} \right)^2 \frac{G_0}{G_0} \right)$ $\frac{d_3}{3} = \frac{1}{3} \frac{E_0^{-4/3}}{C_0} \begin{cases} G_3 + \frac{14}{9} \left(\frac{E_1}{E_0} \right)^2 G_1 - \left(\frac{4}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} G_1 - \frac{1}{2} \left(\frac{4}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} G_1 - \frac{1}{2} \left(\frac{4}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} G_1 - \frac{1}{2} \left(\frac{4}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} G_1 - \frac{1}{2} \left(\frac{4}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} G_1 - \frac{1}{2} \left(\frac{4}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} G_1 - \frac{1}{2} \left(\frac{4}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} G_1 - \frac{1}{2} \left(\frac{4}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} \left(\frac{1}{2} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} \left(\frac{1}{2} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} \left(\frac{1}{2} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} \left(\frac{1}{2} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} \left(\frac{1}{2} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} \left(\frac{1}{2} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_0} \right)^2 \\ \frac{1}{2} \left(\frac{1}{2} \frac{E_3}{E_0} + \frac{14}{3} \frac{E_3}{E_$ $\frac{140}{81} \left(\frac{E_1}{E_0} \right)^3 \quad G_0$ $\frac{d_4}{4} = \frac{1}{3} \frac{E_0^{-5/3}}{C} \left\{ \frac{G_4}{4} - \frac{5}{3} \frac{E_1}{E_0} \frac{G_3}{C} - \left(\frac{5}{3} \frac{E_3}{E_0} + \frac{220}{81} \left(\frac{E_1}{E_0} \right)^3 \right) \frac{G_1}{C} + \frac{1}{2} \frac{E_1}{C} \frac{E_1}{C} \frac{E_1}{C} + \frac{1}{2} \frac{E_1}{C} \frac{E_1}{C}$ $\left(-\frac{5}{3},\frac{E_{4}}{E_{0}}+\frac{40}{9},\frac{E_{1}E_{3}}{E_{0}^{2}}+\frac{770}{243}\left(\frac{E_{1}}{E_{0}}\right)^{4}\right)G_{0}$ $d_5 = \frac{1}{3} E_0^{-2} \left\{ G_5 - \frac{2}{E_4} \frac{E_1}{E_4} G_4 + \frac{3}{E_0} \left(\frac{E_1}{E_0} \right)^2 G_3 + \right\}$ $\left(-\frac{2}{E_{o}}\frac{E_{4}}{E_{o}}+\frac{6}{E_{1}}\frac{E_{1}E_{3}}{E^{2}}+\frac{5}{E_{o}}\left(\frac{E_{1}}{E_{o}}\right)^{4}\right)G_{1}+$ $\left(-\frac{2}{E_{o}}E_{o}^{E_{o}}+\frac{6}{E_{o}}E_{o}^{E_{o}}+\frac{12}{E_{o}}E_{o}^{E_{o}}+\frac{12}{E_{o}}E_{o}^{E_{o}}+\frac{12}{E_{o}}E_{o}^{E_{o}}+\frac{6}{E_{o}}E_{o}^{E_{o}}\right)^{2}\right)G_{o}$ $\mathbf{d}_{6} = \frac{1}{3} \mathbf{E}_{0}^{-7/3} \left\{ \mathbf{G}_{6} - \frac{7}{3} \frac{\mathbf{E}_{1}}{\mathbf{E}_{0}} \mathbf{G}_{5} + \frac{35}{9} \left(\frac{\mathbf{E}_{1}}{\mathbf{E}_{0}} \right)^{2} \mathbf{G}_{4} - \right\}$ $-\left(\frac{7}{3},\frac{E_{3}}{E_{0}}\right) + \left(\frac{455}{81}\left(\frac{E_{1}}{E_{0}}\right)^{3}\right)G_{3} + \left(-\frac{7}{3},\frac{E_{3}}{E_{0}}\right) + \frac{1}{3}$ $\frac{70}{9} \frac{E_1 E_4}{E_2^2} = \frac{455}{27} \frac{E_1^2 E_3}{E_2^3} = \frac{6916}{729} \left(\frac{E_1}{E_0^2}\right)^5 = G_1 + C_2$

(B.15)

Neste ponto precisamos determinar a relação entre os coeficientes $E_n e a_n$ e entre os coeficientes $G_n e b_n$.

a. Relação entre E_n e a_n

Cano

$$f(\eta) = \sum_{m=2}^{\infty} \frac{a}{m!} n$$

teremos, de acôrdo com a expressão jã vista para ${\rm E}_{\rm n}$ que \cdot

$$\Pr \int_{0}^{\eta} f(\eta) d\eta = \Pr \sum_{n=2}^{\infty} \frac{a_{n}}{(n+1)!} \eta^{n+1} =$$

$$= \sum_{j=0}^{\infty} E_{j} \eta^{j+3} = \Pr \sum_{j=0}^{\infty} \frac{a_{j+2}}{(j+3)!} \eta^{j+3} , \quad (B.13)$$

logo,

$$E_{j} = \frac{\Pr[a_{j+2}]}{(j+3)!}$$
(B.14)

b. Relação entre $G_n = b_n^{-n}$

Para a série desejada

os coeficientes G_n podem ser determinados do seguinte modo:

$$G_{n} = \lim_{q \to 0} \frac{1}{n!} \frac{d^{n} \phi}{d q^{n}} \qquad (B.16)$$

· Achando os limites das derivadas encontramos:

G_`=[1

$$G_{1} = 0$$

$$G_{2} = 0$$

$$G_{3} = -\frac{1}{3} - \Pr \delta^{a}$$

$$G_{4} = -\frac{1}{6} - \Pr \delta^{\lambda}$$

$$G_{5} = 0$$

$$G_{6} = -\frac{4}{6!} \Pr^{2} \delta^{a^{2}} \left(52 \delta - 6 - (1 + .2\lambda) / \Pr \right)$$

Substituindo então as expressões de $G_n \in E_n$ mas expressões que definam os coeficientes d_n , resulta em:

$$d_{0} = \frac{1}{3} \left(\frac{a \ Pr}{3!}\right)^{-1/3}$$

$$d_{1} = -\frac{1}{18} \left(\frac{a \ Pr}{3!}\right)^{-2/3} \left(\frac{\lambda}{a}\right)$$

$$d_{2} = \frac{1}{48} \left(\frac{a \ Pr}{3!}\right)^{-1} \left(\frac{\lambda}{a}\right)^{2}$$

$$d_{3} = \frac{1}{54} \left(\frac{a \ Pr}{3!}\right)^{-4/3} \left(\frac{a(1+2\lambda)}{5} + 12 \ Pr \sqrt{a} - \frac{35}{72} \left(\frac{\lambda}{a}\right)^{3}\right)$$

$$d_{4} = \frac{1}{162} \left(\frac{a \cdot Pr}{3!}\right)^{-5/3} \left(6 \cdot Pr_{\delta} \lambda_{+} \frac{3(2+3\lambda)\lambda}{14} - \frac{3(2+3\lambda)\lambda}{14} - \frac{(0.5+\lambda)\lambda}{14} + \frac{365}{576} \left(\frac{\lambda}{a}\right)^{4} \right)$$

$$d_{5} = \frac{1}{240} \left(\frac{a \cdot Pr}{3!}\right)^{-2} \left\{ -\frac{10}{3} \cdot \frac{Pr_{\delta} \lambda}{\lambda} \left(\frac{\lambda}{a}\right) + \frac{(2+3\lambda) \left(\frac{\lambda}{a}\right) \left(\frac{\lambda-6}{21}\right) + \frac{\lambda}{2} \left(1+2\lambda\right) \left(\frac{\lambda}{a}\right) - \frac{15}{322} \left(\frac{\lambda}{a}\right)^{5} \right\}$$

$$d_{6} = \frac{1}{324} \left(\frac{a \cdot Pr}{3!}\right)^{-7/3} \left\{ \frac{Pr_{\delta} \lambda}{5} \cdot \frac{3}{16} \cdot \frac{15}{16} \left(\frac{\lambda}{a}\right)^{2} - \frac{7a^{2}(1+2\lambda)}{5} \right) - \frac{1}{40} \left(1+2\lambda\right) \left(3+4\lambda\right) a^{2} + \frac{5}{24} \left(2+3\lambda\right)\lambda}{\lambda} \left(\frac{\lambda}{a}\right)^{2} - \frac{91}{216} \left(1+2\lambda\right)a \left(\frac{\lambda}{a}\right)^{3} + \frac{19019}{62208} \left(\frac{\lambda}{a}\right)^{6} \right\}$$

Assim, tamos todos os coeficientes d_m necessários para calcular o valor da integral que nos fornece a relação r. Quanto aos outros coeficientes que completem a série que define o campo de temperatura, os B_j , serão calculados do mesmo modo já visto anteriormente.

```
// FOR
*LIST SOURCE PROGRAM
*ONE WORD INTEGERS
#IOCS(CARJ,DISK,1132PRINTER)
CONVECCAD FORCADA EM ESCOAMENTOS SOBRE CORPO SOLÍDO
C ODETTE VIEIRA
      EXTERNAL FN1;FN2;FN3;FN4;FN5;FX6
      DIMENSION Y(6), FM(35,10), FM1(35,10), FN(35,10), FNN(35,10)
     ł
                .R(10).VAL(6,35).ETA(35)
              FILE 1(1420,2,0,L1)
      DEFINE
      COMMON GAMA(10); J+PR; VL; R; ETA; FM; FN; VH; NP
    1 READ (2,100) PR.A,VL,VH
      IF (PR) 5000,5005,5005
 5000 CALL EXIT
'5005 RFAD (2+100) (GAMA(J)+J=1+10)
  160 FORMAT(5F10.0)
      NP=30
      P=0.
      Q = 1.
      DO 8 J=1, NP
    8 ETA(J)=.2*J6.0001
      -J=1
      H≓.1
    5 JJ=1
      Y(1)=0.
      Y(2) = 0.
      Y(3)=A
      Y(6)=0.
      IF (JJ-1) 10,10,20
   10 Y(4)=0.
      Y(5)=1.
      GO TO 30
   20 Y(4)=1.
      Y(5)=0.
   30 CALL RK3(FN1,FN2,FN3,FN4,FN5,FN6,H,O.,Y
                                                 2.NP.VAL
      IF (JJ-1) 40,40,50
   40 DO 1000 I≃1.NP
      FM(I)J)=VAL(4+I)
 1000 FM1(1,J)=VAL(5,1)
      JJ=2
      GO TO 20
   56 DO 2000 I=1+NP
      FN(I,J)=VAU(4,I)
 2000 FNN(1,J)=VAL(5,1)
      J≃J&1
        IF (J-10)5+5+55
  55
      DO 60J=1,10
   60 R(J)=FM(NP,J)/FN(NP,J)
      L1=1
      WRITE (1'L1) EN+EM+R
      CALL LINK (PPP2)
       END
11 DUP
*STORE
             WS.
                 UΑ
                     . AAAl
```

```
*LIST SOURCE PROGRAM
*ONE WORD INTEGERS
#IOCS(CARD+DISK+1132PRINTER)
      DIMENSION R(10), B(10), TETAP(5,35), TETAI(5,35), TA(, ),
    135), ETA(35), TOP(10), TOI(10), CSI(6) , FM(35,10), FN(35,10)
      COMMON GAMA(10), J, PR, VL, R, ETA, FM, FK, VH, NP
      DEFINE FILE 1(1420,2,0,L1)
      11=1
      READ (1'L1) ENJEMAR
С
      CALCULO DOS COEFICIENTES B
      B(1)=1.
      B(2)=1./(GAMA(2)*(GAMA(2)-(VL52.)/2.)*R(2))
      DO 70 J=3,10
      P(J)=VH*B(J-2)/(GAMA(J)*(GAMA(J)-(VL62.)/2.)*R(J))
   70 CONTINUE
      WRITE(3,65)(J,R(J),J=1,10)
   65 FORMAT (1H1,5(2X,'R(',[2,')=',E10,4,)/)
      WRITE (3,66)(J,8(J),J=1,10)
   66 EORMAT (5(2X, 'B(', [2, ')=', E10, 4, )/)
      CALCULO DE THETA CORRESPONDENTE AOS 6 PARES E IMPARES
C
      00 75 J=1+NP
      TP(J)=0.
   75 TI(J)=P(1)*(FM(J,1)-R(1)*FN(J,1))
      CSI(1)=,2000006
                                                          ٠.
      DO 90 L=1.5
      00 85 J=1+NP
      TOP (L) = 0 .
      TOI(L)=0.
      TETAP(1,J)=0.
      TETAI(L,J)=0.
      DO 80 K=2,10,2
      TOP(L)=TOP(L)-CSI(L)*#GAMA(K)*R(K)
   90 TETAP(L:J)=TETAP(L:J) &CSI(L)**GAMA(K)*B(K)*(FM(J:K)-R(K)*FM)
      DO 81 K =1,9,2
      TOI(L)=TOI(L)-CSI(L)**SAMA(K)*R(K)
  • •
   P1 TETAI(L,J)=TETAI(L,J)&CSI(L)**GAMA(K)*B(K)*(FM(J,K)-R(K)*FN(J)
   B5 CONTINUE
      CSI(LS1)=CSI(L)5.2 & 0.00000001
   90 CONTINUE
c
      TARELA DOS VALORES DE THETA
      D=0+
      RN = -R[1]
      DTTT1=0.
      DTFTP=0.
      DO 333 K=1,9,2
  333 DIETI=DIETIGB(K)+GAMA(K)+R(K).
      00 334 K=2,10,2
  334 DTETP=DTETP68(K)*GAMA(K)*R(K)
      R(1)=- DTETP/DTET1
      WRITE (3,335) DTETP, DTET1, B(1)
  335 FORMAT (IX,//,10X, 'OTETAP/DOSI= ',E10.4,5X, 'DTETAI/DOSI= '.E
     16X,'B(1)= /';E11.4)
      TEMP=+B(1)*R(1)
      DO 3000 L=1,5
      TOP(L)=TOP(L)+R(1)*TOI(L)
      100 3000 J=1,NP
      TETAP(L+J)=TETAP(L+J)+TETA1(L+J)*B(1)
 3000 CONTINUE
      WRITE (3,270)
                     PR.VL
           - ----
```

270 FORMAT (1H1///,17X,45H VALORES DE THETA CORRESPONDENTES A CS1 1A,///.18X, PRANDTL=', FR. 4.5X, FATOR DE FORMA=', F8.4///) WRITE (3,231) D.(CSI(L),L=1,5) 231 FORMAT (14X:6F13.6;/) WRITE (3+280) D,TEMP, (TOP(L),L=1,5) 50 4000 J=1, NP]](J)=P(1)*TI(J) IF (TETAP(5,J)) 4004.4003.4003 4003 (RITE (3,280) ETA(J), TI(J), (TETAP(L,J), L=1,5) 2PO FORMAT (9X+F5+2+6F13+6) 4000 CONTINUE 4004 CALL LINK (AAA1) END // DUP PPP2 *5TORE UΑ ١S // XEO AAA1 1

*FILES(1,ARQ)

· D. Tabelas de resultados

		P84.0TL= 0.	7600 FATO	=V. 804 B5 60	C. 02		
				•	· · ,		
	ωr	Conside 2	0.20000	. 2.4203UD	0-630200	0.800000	1.000000
0.0	Ś	2.623258	3.606371	3.606013	21661060	3.098611	4.728392
	.0	3,514432	5,203630	9 · 783385	3.257922	3.230519	3.229554
· · · ·	ç	3.016125	09726512 .	2-979323	2.950136	2.942217	2,933065
0.6	ດ	A 2,699625	2.692737	2.678101	2.661468	2.645953	2.657970
0	C (2.397323	2,291795	2000 2000 2000 2000 2000 2000 2000 200	2.266346	2.354691	2.346329
		K.1014//	/ 79/60 7	2.408895.2 1 00001	2:014092 - 300469	000000-7 1 20000720	21000212
	2.0 2.0				C + C + C + C + C + C + C + C + C + C +	CHORCE - T	1.520565
		1.791823	1 200707	1 286818	644AHA	1 277884	1.273802
	C C C	1:363112 -	1.059062	1.056635	. 1.053519	1-050208	1.047111
2.0	0	01252635	0.051941	02609510	0.046172	0.545828	0.843559
2.2	50	0.571391	0.670929	D.459831	0.668375	0.665760	0.665151
5.6	e- ar	D.51601 9'	C.514423	0.515910	0.514951	0.513265	C-512765
- 2.6	09	5.3AR774	0.385588	0.349136	. 0.357521	0.356814	0.396077
. 2-6	с Ф	0.0003379	0.2955265	0.234096	0.294500	0.284150	Ú 253673
	0	うたらすらいこう	0.204235	, 0.204066	0.205330	0.203551	U-203251
יא ריז	N	0.142553	0.142514	0,142414	0.142273	0.142105	0.141922
• • •	17 81	20306010	0.494970	0.096212	0.796733	0.096632	0.056522
2.6	5	0.954121	0.064109	0.254076	05079010	. +1619C C	0.063910
π 1	¢ •	0.001296	656140.0	0.041272	0.041245	9.041214	C.041176
1	0	71062010	0.025969	0.325559	0.025345	0.009925	0.025206
	¢.	0.01575*	2,015756	C, A15752	0,015744	015734	0-015720
	•••	54to	0.009224	0.009322	V-02V317	0.01210	U- 409300
4.4	e v	0.0000000	0.0002050	0.1005F54	1,250, 7,2	2.2 1346	0.0055337
· · ·	ri ox	324260.0	62625u°0	0.702979	. 0. 702977	0.004973	0.002969
	•	L:51 J.	5.0150B	0,0015999	0.071597	0.001541	0.001875
	0		25500000	- SZ9772-0,	1.72.1222	1.42.00.0	014000.3
	(-;	Lese A .	2000.010	10+100040	0.007396	202020-0	0-000301
	5		2.12.272	121.0	1,010167	10100010	v.C??157
·		L		ちばん くらく こう	0000000	0.000965	17000011

÷

	VALORES DE	THETA CORRER	DVDE,TES A CS	· v13.3 1		
	r (r i i i i i i i i i i i i i i i i i i					
57_	0.00000	0.220000	000004.0	0.600403	ດ, ຍວດວດນ	1.000000
5	2.613247.	2.601295	2,502292	2,667113	2.898415	-3428324-2
23	2.301103	2.291413	2.271181	2,249014	2,230922	2.221911
29.	1.990512	1-983271	1.968030	1.950862	1.936052	1.927149
ŝ	1 594644	1.679542	1.669539	11,655379	1.644301	1.636235
с, с,	1.389092	1.355571	1.370173	1.369208	1.360620	1.353922
5.	1.110841 .	1.109660	2.103750	1.097772	1.091754	1.086635
00	3,457423	0.956103	3. 653348	1 722640.0	0.845300	0,841645
·	0.525481	3-524923	0.632158	0.620469	, 0.626401	0-626034
63	0.453475	0.450063	0.449035	0.447768	0.446348	6044440
2	L09202-0	Sav20010	0.302974	0.302282	0.301454	0.302590
¢.	123201-0	0,102618	C.1925665	. 0.193219	0.192815	0.152340
-20	0.314.005	0.116759	0,116641	0.116473	0.116234	0.116074
C- 	02105010	0.0651090.0	9.766358	0-0459966	0.06590.0	0.065806
	0.005.00.0	0.^35372	0.735052	, E2055v°U	M76780 0	0.034352
6 ·	0.017371	0.717308	0.117362	9.017373	0.017364	0.017355
	しきしゅうしょう	0-358130	anna taite	0.1109037	3-0,2435	0.008042
<	2,202463	0,003460	0,002461	0.103466	0.005477	0.003496
Ċ,	€rë[iu•ti	. 6.001303	001380	40.101395	0.001412	U.001442
0.0	01600010	0°10	0.001517	- 0.PCJ524	0.400553	0.000594
0	C.010176	0.000176	0.737102	0.910202	0+400256	7,000085
	99900000	650000°C	. 0.000064	96000010	981-00*0	646000.0
<	61.0	11	46444010	540.000.00	471065-5	0.000325
c			210-00-00	01,700,469	0-00207	6100044 G
		0.00000	1,000017	1 01-70-065	0.000175	0,000196

	•	•	;	1.00000	н. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0.576051 0.713725	ション ひょうひょう ション ひょうしょう ひょうひょう ション ひょうしょう ション ひょうしょう しょうしょう しょうしょう しょうしょう ひょうしょう ひょうしょう ひょうしょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひ	0,00702 0,00702 0,00702		58.
	•		•	0.80000 ···	1 - 2 - 2 - 2 2 - 2 - 2 2 - 2 - 2 2 - 2 -	242712-0		0+0+0151 0+024049 0+024049	- - - - - - - - - - - - - - - - - - -	
	• •	1 II 1	00000	0,60400	1.942943 1.976016 1.279107	1,4990635 0,723191	0+++40448 0+969681 0+172066	6, 326349 '. 0, 354109 0, 314613	- 128-120-1 5581-12-10 - 1	· ·
	-	bhbertes A CS	ON DE FORINE	5. 40804C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	740827-0 740827-0	2012 2012 2012 2012 2012 2017 2012 2017 2017	919980-0 9100-0 9100-0 9100-0 9100-0 9100-0 9100-0 9100-0 910-0 9100-0 9100-0 9100-0 910-0 910-0 910-0 9100-0 910000000000	N 00000 10	
		THETA CORRESPO	BOCO FATC	0.20000	1,950529 1,61413 1,304092	1.02(0.04	0, 1000 C	0,000 0,00 0,00 0,00 0,00 0,00 0,00 0,	- 6801-01-0 67801-01-0 7-01-01-01-0	• •
	-	VALOTES DE	ร =าายเงรา	0,00000	1.000000		22222 22222 22222 22222 22222 22222 2222	0.736667 0.736877 0.112660	5 0	· ·
•				~/	0.00 0.00 0.00 0.00		ст ст съ 2 ст съ 2 ст съ 2 ст съ 4 ст съ	01 E 	6177.65 2.3.4 6167.65 6167.65	
						•				

	· .			• -	
		1.00000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	C. 000 C. 181034 C. 0451034 C. 0451034 C. 000105 C. 0001175 C. 0001175 C. 0001175	59.
· · ·	•	1000000 10190000	1.944835 1.944835 1.944835 0.791458 0.791458 0.49955 2.49955 2.49955 2.49955 2.495555 2.495555 2.495555 2.495555 2.4955555 2.495555 2.495555 2.49555555555555555555555555555555555555	0,000000000000000000000000000000000000	
	с Ц ц	6,0090 (,647.16.)	1.792091 1.879595 1.0325595 0.796531 0.796531	0011100 0011100 0011100 00100000 0010000 0010000 001000 001000 001000 001000 001000 001000 001000 001000 000000	- - ,
	aber Teo V. Cal	R DE FOX'A=	1112 122 122 122 122 122 122 122 122 12		
	NUSELLO VIEN	Duce FATS	1000000 1000000 1000000 100000 100000 1000000		· · · · · · · · · · · · · · · · · · ·
	אירטאנצ אב	PAANDTL= 7	1.42000 2.42000 2.42000 2.400000 2.400000 2.4000000 2.40000000 2.40000000000		
•	-	<i>7</i> 5	000000		
	•		· · · · ·		

VALIRES DE THETA CORRÉSPONDENTES A CSI È ETA

5.402552 3.0066923 2.463759 1.5\$4735 1.099475 U-700535 U.541177 0.300928 u.191445 0000000.1 5.535715 5.721312 2.772957 1.326354 U-886902 0.216235 0.017026 4600.to.*0 0.403460 0-103322 0.001724 04 000376 7110000000 2.162081 1.671201 0.066627 1.244357 0.027875 406500-0 0.003235 0.000677 1.599370 2.782067 1.339926 1.102133 0.5-3916 0.800000 4.982831 3.731470 3.413670 3.096715 2.471910 2.169095 0-701870 0.409353 0.501307 0.103405 0.044380 0.027890 1-877011 0.54208-1 0.215473 0.068675 040010-0 0.005799 0.003219 0.001708 0.151559 0.017031 0.000860 0-000332 すべてつつつうつ 4+050766 1.104602 0.703139 0.403595 0.600000 3.751964 3.431614 3.112131 2.755027 2-482549 2.177611 1.962649 1.604407 1.343643 189064.0 0.542921 0.301647 0.215561 0.151713 0.066713 01044400 0+027299 0.017035 0.01 0096 0.005796 201100-0 0.103477 115500+0 0.000381 0. 100129 0+000851 0.1000 3 FATOR DE FORMAE 0.400000 4.046716 3.77.92.09 3.451339 1.107143 0.292286 0.031699 3.128527 2.808364 2.493154 2.125847 1.589892 1+609022 1-346971 0.704213 140010-0 0.301924 0.216849 0.151813 0+103534 0.568745 0.044417 0.017036 0.010096 452500+0 01000379 621.0.00 0.545621 0.027907 1.70320740 C.200947 3-467365 0.893419 0.704962 0.2000000 4-104246 2.794352 3.141645 2.518862 2.501363 2.192116 -894563-1.612425 1.349388 1.108919 0.544104 0.410345 11120210 C.216962 0.151679 0.103572 0.068756 0.P44A28 0.027913 0.010096 0.005793 0.173226 0.001695 0.000945 77632010 Seller of the 0.017041 ٩ 0,7600 0.410458 2.902455 2.147092 1.613762 0.103586 00000010 4.131209 34474082 2.194639 0.044432 790010.0 2.823177 2.504771 1.995625 1.250327 1.109462 0.593851 0.705264 0.544294 0.217003 0.151903 0.369774 0.027915 270110-0 29702.0 21 28- 510 792100.0 3.02.29.45 PPA%DTL= Letitute to C 1 2.07 2.90 (0.2 1.20 2.60 • • 2°0' 0.8.0 CC.4 1.6.2 c V ° 5 €2***** 6 0.00 0.23 Ċ v 3.47 4.2.2 ດ ດີ ອ 0.60 0.80 :03 03. 2.20 04-2 6. С. П 01-2 0.000 с п ч 0.**0 $\mathbb{Z}_{\mathbb{R}}^{2}$ *

- 60,

• • • •	1.00000	3.572179 2.006054 1.000010 1.2000010	1 • 0 • 0 • 1 • 0 • • • • • • • • • • • • • • • • • •	H 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		51.
	nnarn o - n	2,703051 2,014015 1,676550 1,54250	1, C24224 6, 782524 6, 78206 0, 6, 2000 0, 2007 0, 200000000000000000000000000000000000	4 + > 3 + + + + + + + + + + + + + + + + +		
а ст и с т и с т и	sharada *	2 • 4 + 6 - 7 2 8 2 • 6 - 6 - 7 2 8 2 • 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	1,000868 0,740747 0,507956 0,507956		42.51.0.7	
'95''TES A C31 '9 0E F08''= -		2 - 4 10 44 7 2 - 10 10 44 7 2 - 10 10 44 7 1 - 10 10 44 7 1 - 10 10 4 1 - 10 10 10 10 10 10 10 10 10 10 10 10 10	1,010820 0,744418 0,497530 0,497530	200052 200052 200000 200000 200000 200000 200000 200000 200000 200000 200000 2000000	• • • • •	
IETA CORRESPO Loco FATO	1.200C	455512.1 455512.1 6255512.1	1.041120 0.745287 0.458616 0.529	00000 00000 00000 00000 00000 00000 0000		
VALOTES DE TH PRATELE S.V	0. 1424.30	2 + 64,0940 24,045540 24,045540 1 - 72 - 6974 1 - 97 - 6974 1 - 97 - 6974	1.342Ye4 6.747146 0.996713		(ay);;;;;;	•
	5/2		7 • (• 4 • 6 • 6 • 6 14 - 2 = 3 • 5 14 - 70 • 7 • 7 • 1 14 - 70 • 70 • 70 • 70		5 71 71	
		. ,		•	· · ·	•

1.00000 7.007405 2.764052 3.572013 2,524122 2.692426 i.554692 4-3762.i J.765197 -50C296 0.420,00 0+300245 ~~215VBO S.Leveld J. Doeloo 0.050704 0.023770 09071090 v.v08184 5.33454> 2.222596 0.4143.1 149343-0 vau02402 Ve000010 240002577 111000011 3 5 7 3 2 5 7 7 7 171440, +1...... 2-0400-2 0-207552 3-..1/025 0,12707-0 0,12707-0 0.423998 0.144119 2-545164 2.449369 1.255249 1.253099 0+023040 0.014125 0.80000 5.739591 2.621337 1-565545 1-031277 0,773.548 0.5542577 5.0233322 0.0045J2 0-0013-5 055000-0 0.521420 706900.5 0.006137 0.002467 2-000254 0.000130 3+0000+0 0.9566478 0.00000000 1+578535 1.275628 1.000071 4.651334 6.8249.0 3.432575 3.037600 2.640798 2.271433 454210-1 0.451389 0.303892 0.146027 0.062523 2.030145 0.023886 0.014156 0.000153 0.004560 0.097057 0.002472 0.001304 94900000 0.100139 140 × 5 × 0 0.215651 0.900311 < 1 S FATOR DE FOR''A= -U.SUOC • Ŀi A CS1 0.039277 0.310175 0.2.6455 0000004 3.434007 -1 5.079528 2.297038 1.931702 1.592656 1.015116 29622700 0.052686 00150010 0.204566 1· +430988 3. 790567 2.541952 1.205731 0.71.8050 0.589650 0.408154 11177.41.4 0.014163 0.002476 0-001304 0.000000 0.000318 001000000 - VALORES DE THETA CORRESPONDENTES Ï : 2.540165 5.124110 ***** 0.200000 4.399839 1.295536 0.311350 0,147552 0.362327 0.039356 0.023982 01014206 0.006191 0.004575 01001315 0.000062 2..959665 1.950757 1.600354 0.592547 0.434,997 5-001587 0.702482 0.237161 24716221 2.522941 1.024701 0.787461 Ģ 1 0.76.00 0.1262912 0.544550 0.42 4025 0,000000 1.026025 5.750322 0-436170 0.312076 01317600 50,76 50 10 C--14220 0.110.000 94:345:30 34112495 1:12:4 -1 -1 -1 -1 -1 Ş 3.195250 2.740716 2.341014 2.753835.1 1-615602 1.501730 261747792 4-4423555 4.011211 3.581427 **Ρ**ΆΛΥΡΤ**μ**= 2 : . 5 • • 1 0.218 \$ ***** \$ 0 50 0 20 0.60 0 04 0 1.00 1.62 2.02 С) 91 74 3.07 0010 5 V. € 1, ° 17 (-(-) -1.23 1.90 2.20 01-2 24.60 0000 (() - V . 0.4.0 ()) + () <u>"</u>{-;

•	0000 1.600000 2692 3.967771 4153 1.704421 0895 0.959819 5958 0.959819 5485 0.959817 5485 0.201675 3428 0.092882 6922 0.092882	63. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	00000000 9000000 90000000 90000000 9000000	
I E ETA -0.5300	0.55553 0.555553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.55553 0.555553 0.555553 0.555553 0.555553 0.555553 0.555553 0.5555555555	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OMDENTES A CS OP DE FORMAE	00000000000000000000000000000000000000	0 012510 0 008920 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
THETA CORRESP .0000 FAT	00000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
5 -110,000 30 5380177	00000000000000000000000000000000000000	ປີ ເພື່ອ ເທີດ ເທີດ ເພື່ອ เป็อ เป็อ เป็อ เป็อ เป็อ เป็อ เป็อ เป็อ
	W 6000000000	
-		