
2015 International Nuclear Atlantic Conference - INAC 2015

São Paulo, SP, Brazil, October 4-9, 2015
ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN

ISBN: 978-85-99141-06-9

ANT COLONY OPTIMIZATION AND NEURAL NETWORKS APPLIED

TO NUCLEAR POWER PLANT MONITORING

Gean Ribeiro dos Santos,

Delvonei Alves de Andrade and Iraci Martinez Pereira

Instituto de Pesquisas Energéticas e Nucleares (IPEN / CNEN - SP)

Av. Professor Lineu Prestes 2242

05508-000 São Paulo, SP

gean@usp.br

delvonei@ipen.br

martinez@ipen.br

ABSTRACT

A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those

systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks.

Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the

ANNs created to solve this kind of problem are created by taking into account only parameters as the number of

inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements

in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural

network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by

suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research

reactor at IPEN.

1. INTRODUCTION

The use of sensors has proven indispensable in many areas of the industry such as automation

process, manufacturing, robotics, experimental engineering, energy industry, etc [1]. They are

used to measure physical quantities and to monitor faults. When a change occurs in one of the

values read by a sensor, actuators take action in order to control the system.

The need of quality, reliability, and safety in production processes has stimulated researches

in the area of monitoring and fault diagnosis [2]. The measuring system based on sensors is

of great importance because it provides data for manual and automatic operation. However,

for the process to take place without control problems, it is necessary to validate the

information received from the monitoring agents. This increases security and system’s

availability.

Failures in sensors can impact a system’s performance. The effect of these faults depends on

the stage where they are discovered and include: decreased availability; economic losses;

mailto:gean@usp.br
mailto:delvonei@ipen.br
mailto:martinez@ipen.br

INAC 2015, São Paulo, SP, Brazil.

physical impacts to people and facilities. Aiming to mitigate these risks, it is necessary to

implement control systems reliable and tolerant to faults.

In order to minimize problems of failures in sensors, monitoring systems use redundancy.

Traditionally, this redundancy is created physically by using two or more sensors for reading

a parameter [2,3]. Although this technique allows the identification of a flawed agent, it can

only be applied in systems where there’s space for the installation of redundant sensors [2,3].

In addition, installing multiple monitoring agents increases project costs [2].

An alternative to physical redundancy is the analytical redundancy (also known as software

redundancy). It predicts the value of a signal through a model of the system. The model can

be built from the mathematical equations that describe the real phenomenon or from the data.

The predictions are then compared with the actual values of the system sensors [2,4]. The

advantages of the analytical redundancy as well as advances in computing increased the

number of monitoring systems based on this new technique [2].

The procedures based on analytical redundancy are classified in two groups: those that are

based in the mathematical model and those who are obtained by procedures of artificial

intelligence (AI). One of the most popular AI techniques is the one based on Artificial Neural

Networks (ANN) [2,3]. When creating a model to predict values in classification and

regression problems using ANN, usually it is taken into account only parameters as the

number of inputs, outputs, and hidden layers. This leads to networks that are generally fully

connected and have no improvements in its topology.

This work intends to use Ant Colony Optimization (ACO), an algorithm that has been used to

solve NP-hard problems, to create a neural network with a tuned topology. The artificial ants

will be used to find the best connections between neurons on different layers so that the

resulting model can perform better. The ACO search algorithm, which we named ACONN,

will use Back Error Propagation (BP) to optimize the neural network topology by suggesting

the best neuron connections. The result ANN was applied to predict the value of variables of

the IEA-R1 research reactor at IPEN.

2. ANT COLONY OPTIMIZATION

In the early 1990s it was developed a method of resolution of complex combinatorial

problems based on "artificial ants". Since then, researchers have used this technique to find

solutions to problems classified as NP-hard [5]. Because of its inspiration from real ants, the

algorithm was named Ant Colony Optimization (ACO) and has been intensively used in

solving problems such as sequencing tasks (scheduling) [5], routing [6,7], and optimization

[8].

The ACO algorithm is based on the ability of ants to find, through the use of pheromone, an

optimized way from their nest to a food source [6,9]. Pheromone is a chemical used by ants

to mark paths so that the paths with the highest concentration of this substance have a greater

chance of being followed [6,7].

One of the applications of ACO heuristic is to solve problems involving minimization on

graphs [9,10]. Its first use was proposed by Marco Dorigo in the Traveling Salesman Problem

(TSP) [11,12], which used artificial ants to find solutions to the TSP through the technique

INAC 2015, São Paulo, SP, Brazil.

known as positive reinforcement [5]. This technique is based on the analogy with the

behavior of some species of ants that lay pheromone on the paths to the food source, thus

enhancing the most followed paths (which can be optimal) [1].

The algorithms based on the ACO are created with artificial ants, which are probabilistic

procedures based on artificial pheromone and heuristic [13]. Pheromones are represented

numerically and are modified at each iteration, reflecting the search process [12,13]. The first

search technique based on this algorithm and which was used in solving the TSP was called

Ant System (AS) [12,14]. The AS uses a graph representation where each edge has a measure

of pheromone, updated at runtime by artificial ants [10]. This graph consists normally of two

numerical information: a fixed (established in the problem definition) and a variable [5,12].

These two pieces of information are independent of each other and are related to the

connection between the j and k nodes of the graph. Distance between nodes and time to

perform operations are examples of fixed information [5]. At each iteration, the ants add

components to obtain the problem’s solution.

In the AS heuristic, each complete path between the beginning and the end of the graph is

offered as a possible solution to the problem. Spreading pheromone on the edges in an

amount proportional to the quality of the solution (relative to the solutions obtained by

others), the ants choose the best paths. Through probabilistic data, the insects choose the next

node of the graph to be visited based on heuristic obtained by the distance between the nodes

and the trail pheromone [10]. In order to not getting stuck into a local minimum solution, the

algorithm applies the pheromone evaporation technique, which makes this marker element to

dissipate over time [9,15].

In Figure 1 two paths are shown connecting an ants' nest to a food source. Pheromone levels

(lengths of arrows) are balanced at the beginning of the process (Fig. 1a). Thus, the

probability of selecting each path is equal, so that an equivalent number of ants pass the two

sections. However, the insects that choose the largest path take a longer time to return, so that

there is greater evaporation of the chemical. Then, the ratio of the amount of pheromone on

the longer path decreases relative to that on the shortest path (Fig. 1b). After a few iterations,

the shortest path stands (Fig. 1c). [1]

Figure 1 - Pheromone evolution. The length of the arrows is proportional to the

probability of the route to be chosen.

INAC 2015, São Paulo, SP, Brazil.

In the AS algorithm proposed by Dorigo [11], an ant k has a memory which stores the nodes

that were visited and, when standing on the node r of the graph, chooses the next node u to

visit with a probability given by the equation (1)

(1)

In equation (1) τ (r, u) is the amount of pheromone in the edge that goes from node r to node

u; η (r, u) is the heuristic function (inverse of the distance between r and u); α and β are

parameters that represent the weights given to the global intelligence and heuristic function

respectively; q is a randomly chosen value with uniform probability in the interval [0,1]; q0 is

a parameter (0≤q0≤1); S is a random variable selected according to the probability

distribution described in equation (2) [11]:

(2)

In equation (2) pk(r,s) is probability of an k choosing to follow the edge that goes from node r

o node s; Mk is the set of nodes yet not visited by ant k.

Each time an edge is selected by an ant, its pheromone is updated through a process called

local update. The purpose of this update is to prevent an edge with a large amount of

pheromone to be chosen by all ants [11]. The local modification suggested by Dorigo is:

(3)

where 0 and are parameters chosen by the user.

In the AS algorithm, in addition to the local update, there is also the global update of

pheromone whose goal is to highlight the edges that are part of the shortest paths. When all of

the ants have find a solution to the problem, the one that found the best path deposits

pheromone on the edges that compose its path. [11]. The amount of chemical deposited is

inversely proportional to the distance of the solution. The global update is proposed in the AS

is:

(4)

In (4) Δτ(r, s) is defined as 1/Lk and Lk is the distance of the shortest path found in the current

iteration.

The global update shows that the ants deposit on each edge of its solution a quantity of

pheromone inversely proportional to the distance, that is, the shorter the path, the greater the

amount of pheromone deposited on the edges. This update is similar to the technique known

as learning by reinforcement, in which the best solutions are given priority.

INAC 2015, São Paulo, SP, Brazil.

There are several advantages to using the ACO meta-heuristics. One is the fact that it is a

self-adaptive paradigm and is able to run both local and global search in a large and dynamic

space [15]. Furthermore, because of its parallelizable background, this technique can be

programmed in graphics processing units (GPU) [9,10]. Another positive aspect of

optimization by ant colony is its good scalability and the low need of global information

about graph’s status. [15]

3. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANN) are inspired by the biological neural network and are

designed to solve problems in the areas like decision-making, categorization, function

approximation, optimization, prediction and control. They can be seen as parallel and

distributed processing systems, consisting of a large number of simple, interconnected

processors [16]. The kind of ANN known as feed-forward neural networks (FFNN) is one of

the most widely applied techniques in pattern classification. Usually FFNN are built in a

three-layer topology: input, hidden and output layers. Usually every neuron in each layer is

connected to all neurons on the next layer [17].

In a FFNN every neuron i computes a weighted sum if its r input signals and generates an

output oi:

 𝑛𝑒𝑡𝑖 = ∑ 𝑤𝑖𝑗𝑜𝑗 + 𝑏𝑖 , 𝑜𝑖 = 𝑓(𝑛𝑒𝑡𝑖) =
1

1+ 𝑒−𝑛𝑒𝑡𝑖

𝑟
𝑖=1 (5)

where wij is the synapse weight associated with the connection between neuron j and neuron i,

oj is the output of a neuron in the previous layer, bi represents a neuron’s self-bias and f is an

activation function (shown in the equation as the sigmoid function) [17][16].

A FFNN with n inputs and m output neurons can be trained based on a set of examples .
Each training example p is applied to the input layer and the signal propagates through the

hidden layers until it reaches the output layer. Then, the network’s output (denoted y’) is

compared to the output defined on the training example (denoted y) to determine the

network’s error (denoted Ep) [17]. The most widely used error function is the sum of squared

error: 𝐸𝑝 =
1

2
∑ (𝑦 − 𝑦′)2𝑚

𝑖=1 [17,18].

Training a fixed-topology neural network can be handled as multi-dimensional function

minimization problem. This is due to the fact that, although the network error depends on the

training set, topology, weights, and biases, if we keep the first two as fixed, the error function

will depend only on the weights and biases. So, training the neural network becomes the

problem of minimizing a mathematical function [17].

One of the most widely-used neural network training algorithm is the gradient descent based

Backward Error Propagation (BP) algorithm. When using this technique, the derivative of the

error vector (E) is computed with respect to each component of the vector w (the weights

vector). This vector derivative is called gradient of E with respect to w [19].

Because the gradient specifies the direction of the steepest increase of E, the training rule for

the gradient descent is:

INAC 2015, São Paulo, SP, Brazil.

 𝑤 ← 𝑤 + ∆𝑤 (6)

where

w = - E(w)

In equation (6) is a positive number called the learning rate and determines the step size in

the gradient descent search [19].

4. IEA-R1 RESEARCH REACTOR

IEA-R1 is a nuclear research reactor at IPEN. It is a pool-type reactor and uses water in its

cooling and moderation systems. Built by the company “Babcok & Wilcox”, it uses graphite

and beryllium as neutron reflectors. Its first criticality happened in September 16th, 1957,

when its operation power was set as 2MW [2]. An improvement was made in 1997,

increasing its power to 5 MW. Figure 1 depicts a diagram of IEA-R1 research reactor.

Figure 2 - Schematic diagram of IEA-R1 research reactor at IPEN

INAC 2015, São Paulo, SP, Brazil.

4.1 IEA-R1 Data Acquisition System (DAS)

The IEA-R1 reactor has a system that monitors 58 operational variables. This system is called

Data Acquisition System (DAS) and the variables that it supervises include temperature,

flow, level, pressure, nuclear radiation, nuclear power and rod position (Table 1). The DAS

keeps track of the temporal history of all variables and does not interfere with the reactor

control [2].

Table 1. IEA-R1 DAS variables.

Z1 Control rod position [0 a 1000 mm]

Z2-Z4 Safety rod position 1, 2 and 3[0 a 999 mm]

N2-N4 % power (safety channel 1, 2 and 3) [%]

N5 Logarithm Power (log channel) [%]

N6-N8 % power [%]

F1M3 Primary loop flowrate [gpm]

F2M3 Secondary loop flowrate [gpm]

C1-C2 Pool water conductivity [μmho]

L1 Pool water level [%]

R1M3-R14M3 Nuclear dose rate [mR/h]

T1-T3 Pool water temperature [º C]

T4 and T6 Decay tank inlet and outlet temperature [º C]

T5 (T4-T3) [º C]

T7 Primary loop outlet temperature (heat exchanger A) [º C]

T8-T9 Secondary loop inlet and outlet temperature (heat exchanger A) [º C]

T10 Primary loop outlet temperature (heat exchanger B) [º C]

T11-T12 Secondary loop inlet and outlet temperature (heat exchanger B) [º C]

T13-T14 Housing pump B101-A and B102-A temperature [º C]

T15-T16 Cooling tower A and B temperature [º C]

T17 Housing turbo compressor temperature [º C]

T18-T19 NO-BREAK temperature –220V and 440V [º C]

T20-T24 Room temperature [º C]

5. ACONN ALGORITHM

Many neural networks are built by using one input layer, at least one hidden layer, and one

output layer. In this design, each layer has full connectivity with the subsequent layer. This

work uses an ant colony algorithm to search on a graph built with the neurons of a three-layer

network. The search algorithm suggests the best neuron connections, including links from

input to output neurons. This creates network topologies with arbitrary connections.

The first step in our proposed ACO algorithm is to construct the graph that contains the

solution components. Each ant will build a candidate solution by exploring the search space

and suggesting a network topology with the selected connections between the neurons. Three

types of connections will be allowed: connections between input and hidden neurons;

INAC 2015, São Paulo, SP, Brazil.

connections between hidden and output neurons; connections between input to output

neurons. Each potential connection c = i j, connecting neurons i and j, is associated with

two solution components: Dc
true

, and Dc
false

. These two components represent, respectively,

the decision to include or not to include the connection in the current candidate network

topology [17].

The number of input neurons (Ni) and output neurons (No) were determined based on the

characteristics of our dataset. We decided to work with three-layer networks only and we set

the number of neurons on the hidden layer (Nh) to be the sum of input and output neurons

Nh = Ni + No

The overall process of our ACONN is shown in Algorithm 1. Initially, 0.5 is assigned as the

amount of pheromone to the solution components of each edge of the graph (line 3). This

means that, for each connection, the probability of including it in the topology is equal to the

probability of not including it [17]. Inside the inner loop (lines 6-12), each ant creates a

candidate solution NNi (line 7). Then, in line 8, the quality of the solution is calculated. In

line 13, the pheromone trail is updated based on the quality of NNthebest (the best topology

suggested during the current iteration). Next, the iteration best solution is compared with the

best-so-far solution (lines 14-16), keeping the best solution created during the algorithm

execution [17].

These steps are repeated until the same solution is generated for an amount of consecutive

times, defined on parameter conv_iterations or until a maximum number of iterations is

reached (line 18) [17]. In our experiments, max_iterations was set to 200, and colony_size

(line 6) was set to 10.

In line 19, the best-so-far topology is used to train (using standard Backward Error

Propagation) a final neural network to be returned. At this step, using the connections

suggested by the ants, the weights and biases of the neural network are learned. The learning

rate and momentum were both set to 0.01 and the number of epochs was set to 1000.

Algorithm 1. Pseudo-code of ACONN.

1: Begin

2: NNbest-so-far = ; t = 1;

3: initialize_pheromone();

4: repeat

5: NNthebest = ; Qthebest = 0

6: for i = 1 colony_size do

7: NNi = anti.create_solution();

8: Qi = EvaluateQuality(NNi);

9: if Qi > Qthebest then

10: NNthebest = NNi; Qthebest = Qi;

11: end if

12: end for

13: update_pheromone();

14: if Qthebest > Qbsf then

15: NNbest-so-far = NNthebest; Qbest-so-far = Qthebest;

16: end if

INAC 2015, São Paulo, SP, Brazil.

17: t = t + 1

18: until t = max_iterations or Convergence(conv_iterations);

19: NNfinal = post_processing(NNbest-so-far);

20: return NNfinal;

21: End

The process of creating of a candidate solution (line 7) starts with an edge-less graph whose

connections will be chosen during the procedure. For each connection in the available set of

connections, the ant decides whether to include it the candidate topology or not. This is done

by either selecting Dc
true

 or Dc
false

, based on the following probabilistic state transition

equation [17]:

𝑝(𝐷𝑐
𝑎) =

𝜏(𝐷𝑐
𝑎)

𝜏(𝐷𝑐
𝑡𝑟𝑢𝑒)+ 𝜏(𝐷𝑐

𝑓𝑎𝑙𝑠𝑒
)
 (7)

where 𝑝(𝐷𝑐
𝑎) is the probability of selecting decision D

a
for connection c, and 𝜏(𝐷𝑐

𝑎) is the

current amount of pheromone associated with the component 𝐷𝑐
𝑎 (where a = true or

a = false).

After an ant finds a solution, it calculates its quality by training a neural network using

Backward Error Propagation (line 8) with some optimized parameter values (the amount of

training epochs was set to only 10). In order to avoid overfitting, the training set is split into

two parts: the learning set, containing 80% of the training set; the validation set, containing

20% of the training set. The validation set is also used to calculate the quality Qi of a

candidate solution. The quality is measured by using the correlation coefficient, a statistical

method for evaluating numeric predictions. The correlation coefficient measures the

correlation between the predicted values on the instances and their actual values. It ranges

from 1 for perfectly correlated results, through 0 when there is no correlation, to -1 when the

results are perfectly correlated negatively [18].

3. RESULTS

We evaluated the performance of the ACONN algorithm by using a dataset with 7500

instances. This dataset contains values of the IEA-R1 variables N2, N3, N4 and T1. A neural

network with 3 inputs, 6 hidden neurons, and 1 output neuron was created to predict the value

of T1 based on the other three variables (Figure 3a). The ACONN algorithm was used to tune

its topology and its performance was compared with an equivalent fully connected neural

network. Our tests we executed with the following parameters:

 max_iterations: 500

 conv_iterations: 10

 colony_size: 10

The fully connected topology is shown in Figure 3a. The best connections, suggested by the

ant colony algorithm, are displayed in Figure 3b.

INAC 2015, São Paulo, SP, Brazil.

In Figure 3b, neuron h0 is connected to h3, and neuron h1 is connected to h2.

The predictions of the data used for validating the fully connected network are shown in

Figure 4.

Figure 3: Topology suggested by the ACONN algorithm to predict T1 based on N2-N4

Figure 4 - T1 predictions made by the fully connected neural network

INAC 2015, São Paulo, SP, Brazil.

Figure 5 presents the predictions made for the validation data of the tuned neural network.

The models that predict the T1 variable were designed by training two neural networks: one

with full connections (Figure 3a); one with only the connections suggested by the ACONN

algorithm (Figure 3b). In order to measure their performance we calculated the correlation

coefficient using tenfold cross-validation. The performance comparison is summarized in

Table 3.

Table 3: performance of tuned and fully connected neural networks

 Fully connected ACONN

Correlation coefficient 0.4845 0.7982

Mean absolute error 0.8066 0.6452

Root mean squared error 1.2378 0.8257

4. CONCLUSIONS

Our results indicate that the performance of a feed-forward neural network can be improved

by choosing the best connections between the neurons instead of using a fully connected

topology. In future work we would like to improve the ACONN algorithm to include

connections between neurons in the hidden layer. The methodology developed will be used in

future studies to determine the values of other IEA-R1 variables. Also we will construct

neural networks with different input variables. Furthermore, we would like to improve the

quality evaluation function in order to find better solutions.

ACKNOWLEDGMENTS

The authors would like to thank the project CAPES / ELETRONUCLEAR “Avaliação de

Instalações Nucleares: física de reatores, termo-hidráulica, monitoração e diagnóstico,

segurança e análise de acidentes e engenharia de fatores humanos”.

Figure 5 - T1 predictions made by the tuned neural network

INAC 2015, São Paulo, SP, Brazil.

REFERENCES

1. ARENY, Ramón Pallás. Sensores y acondicionadores de señal: prácticas. Vol. 2.

Marcombo, Barcelona, 2004.

2. BUENO, Elaine Inácio; GONÇALVES, Iraci Martinez Pereira. "Estudo comparativo entre

GMDH e redes neurais aplicados na monitoração de sensores." Revista do Instituto

Federal de Educação, Ciência e Tecnologia de São Paulo (2010): 182

3. GARCÍA, Efraín Alcorta. Detectando fallas mediante redundancia analítica. Ingenierías,

vol.4, pags. 43-48.

4. CHOW, E., and A. Willsky. "Analytical redundancy and the design of robust failure

detection systems." Automatic Control, IEEE Transactions on 29.7 (1984): 603-614

5. TAVARES NETO, Roberto Fernandes; GODINHO FILHO, Moacir. Otimização por

colônia de formigas para o problema de sequenciamento de tarefas em uma única

máquina com terceirização permitida. Gest. Prod., São Carlos , v. 20, n. 1, Mar. 2013 .

Disponível em <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-

530X2013000100006&lng=en&nrm=iso>. Acesso em 25 Out. 2013.

http://dx.doi.org/10.1590/S0104-530X2013000100006.

6. BALUZ, Rodrigo Augusto Rocha Souza. “Uma aplicação de sistemas inteligentes híbridos

ACO-Fuzzy para a otimização do desempenho em redes de sensores sem fio”, Tese

(Mestrado), Universidade de Fortaleza, 90p., Fortaleza, 2013.

7. BORGES, Marcelo Eduardo. "Insetos Sociais como sistemas complexos", Tese

(Mestrado), Universidade Federal do Paraná, Curitiba, 2012.

8. SILVA, R. M. A., and GL RAMALHO. Otimização Baseada em Colônia de Formigas

Aplicada ao Problema da Cobertura de Conjuntos. Diss. Tese de Doutorado apresentada

ao CIn-UFPE, 2003

9. ANGELO, Jaqueline S.; Augusto, Douglas A.; Barbosa, Helio J. C. Ant Colony

Optimization - Techniques and Applications. Rijeka: InTech, 2013

10. CECILIA, José M., et al. "Enhancing data parallelism for ant colony optimization on

gpus." Journal of Parallel and Distributed Computing 73.1 (2013): 42-51.

11. DORIGO, M.; COLORNI, A.; MANIEZZO, V. “Positive feedback as a search-strategy”.

Milão, Itália, 1991.

12. CASTILLO, Oscar et al. Dynamic Fuzzy Logic Parameter Tuning for ACO and Its

Application in the Fuzzy Logic Control of an Autonomous Mobile Robot. Int J Adv

Robotic Sy, v. 10, n. 51, 2013.

13. STÜTZLE, Thomas et al. Parameter adaptation in ant colony optimization. In:

Autonomous Search. Springer Berlin Heidelberg, 2012. p. 191-215

14. SWAMINATHAN, Santhosh. "Rule induction using ant colony optimization for mixed

variable attributes." Tese (Mestrado), Texas Tech University, Lubbock, 2006.

15. VENDRAMIN, Ana Cristina Barreiras Kochem. Cultural GrAnt: um protocolo de

roteamento baseado em inteligência coletiva para redes tolerantes a atrasos. 2012. 195 f.

INAC 2015, São Paulo, SP, Brazil.

Tese (Doutorado em Engenharia Elétrica e Informática Industrial) – Universidade

Tecnológica Federal do Paraná, Curitiba, 2012.

16. JAIN, Anil K. Artificial Neural Networks: A Tutorial

17. SALAMA, Khalid, and Ashraf M. Abdelbar. "A novel ant colony algorithm for building

neural network topologies." Swarm Intelligence. Springer International Publishing, 2014.

1-12.

18. WITTEN, Ian H., and Eibe Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

19. MITCHEL, Tom M. Machine learning. McGraw-Hill, 1997.

