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ABSTRACT 

 
A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those 

systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. 

Artificial Neural Networks (ANNs) have been extensively used in creating monitoring systems. Usually the 

ANNs created to solve this kind of problem are created by taking into account only parameters as the number of 

inputs, outputs, and hidden layers. The result networks are generally fully connected and have no improvements 

in its topology. This work intends to use an Ant Colony Optimization (ACO) algorithm to create a tuned neural 

network. The ACO search algorithm will use Back Error Propagation (BP) to optimize the network topology by 

suggesting the best neuron connections. The result ANN will be applied to monitoring the IEA-R1 research 

reactor at IPEN.  

 

 

1. INTRODUCTION 

 
 

The use of sensors has proven indispensable in many areas of the industry such as automation 

process, manufacturing, robotics, experimental engineering, energy industry, etc [1]. They are 

used to measure physical quantities and to monitor faults. When a change occurs in one of the 

values read by a sensor, actuators take action in order to control the system. 
 

The need of quality, reliability, and safety in production processes has stimulated researches 

in the area of monitoring and fault diagnosis [2]. The measuring system based on sensors is 

of great importance because it provides data for manual and automatic operation. However, 

for the process to take place without control problems, it is necessary to validate the 

information received from the monitoring agents. This increases security and system’s 

availability. 

 

Failures in sensors can impact a system’s performance. The effect of these faults depends on 

the stage where they are discovered and include: decreased availability; economic losses; 

mailto:gean@usp.br
mailto:delvonei@ipen.br
mailto:martinez@ipen.br


INAC 2015, São Paulo, SP, Brazil. 

 

physical impacts to people and facilities. Aiming to mitigate these risks, it is necessary to 

implement control systems reliable and tolerant to faults. 

 

In order to minimize problems of failures in sensors, monitoring systems use redundancy. 

Traditionally, this redundancy is created physically by using two or more sensors for reading 

a parameter [2,3]. Although this technique allows the identification of a flawed agent, it can 

only be applied in systems where there’s space for the installation of redundant sensors [2,3]. 

In addition, installing multiple monitoring agents increases project costs [2]. 

 

An alternative to physical redundancy is the analytical redundancy (also known as software 

redundancy). It predicts the value of a signal through a model of the system. The model can 

be built from the mathematical equations that describe the real phenomenon or from the data. 

The predictions are then compared with the actual values of the system sensors [2,4]. The 

advantages of the analytical redundancy as well as advances in computing increased the 

number of monitoring systems based on this new technique [2]. 

 

The procedures based on analytical redundancy are classified in two groups: those that are 

based in the mathematical model and those who are obtained by procedures of artificial 

intelligence (AI). One of the most popular AI techniques is the one based on Artificial Neural 

Networks (ANN) [2,3]. When creating a model to predict values in classification and 

regression problems using ANN, usually it is taken into account only parameters as the 

number of inputs, outputs, and hidden layers. This leads to networks that are generally fully 

connected and have no improvements in its topology.  

 

This work intends to use Ant Colony Optimization (ACO), an algorithm that has been used to 

solve NP-hard problems, to create a neural network with a tuned topology. The artificial ants 

will be used to find the best connections between neurons on different layers so that the 

resulting model can perform better. The ACO search algorithm, which we named ACONN, 

will use Back Error Propagation (BP) to optimize the neural network topology by suggesting 

the best neuron connections. The result ANN was applied to predict the value of variables of 

the IEA-R1 research reactor at IPEN. 

 

2. ANT COLONY OPTIMIZATION 

 

In the early 1990s it was developed a method of resolution of complex combinatorial 

problems based on "artificial ants". Since then, researchers have used this technique to find 

solutions to problems classified as NP-hard [5]. Because of its inspiration from real ants, the 

algorithm was named Ant Colony Optimization (ACO) and has been intensively used in 

solving problems such as sequencing tasks (scheduling) [5], routing [6,7], and optimization 

[8].  

 

The ACO algorithm is based on the ability of ants to find, through the use of pheromone, an 

optimized way from their nest to a food source [6,9]. Pheromone is a chemical used by ants 

to mark paths so that the paths with the highest concentration of this substance have a greater 

chance of being followed [6,7]. 

 

One of the applications of ACO heuristic is to solve problems involving minimization on 

graphs [9,10]. Its first use was proposed by Marco Dorigo in the Traveling Salesman Problem 

(TSP) [11,12], which used artificial ants to find solutions to the TSP through the technique 
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known as positive reinforcement [5]. This technique is based on the analogy with the 

behavior of some species of ants that lay pheromone on the paths to the food source, thus 

enhancing the most followed paths (which can be optimal) [1].  

 

The algorithms based on the ACO are created with artificial ants, which are probabilistic 

procedures based on artificial pheromone and heuristic [13]. Pheromones are represented 

numerically and are modified at each iteration, reflecting the search process [12,13]. The first 

search technique based on this algorithm and which was used in solving the TSP was called 

Ant System (AS) [12,14]. The AS uses a graph representation where each edge has a measure 

of pheromone, updated at runtime by artificial ants [10]. This graph consists normally of two 

numerical information: a fixed (established in the problem definition) and a variable [5,12]. 

These two pieces of information are independent of each other and are related to the 

connection between the j and k nodes of the graph. Distance between nodes and time to 

perform operations are examples of fixed information [5]. At each iteration, the ants add 

components to obtain the problem’s solution. 

 

In the AS heuristic, each complete path between the beginning and the end of the graph is 

offered as a possible solution to the problem. Spreading pheromone on the edges in an 

amount proportional to the quality of the solution (relative to the solutions obtained by 

others), the ants choose the best paths. Through probabilistic data, the insects choose the next 

node of the graph to be visited based on heuristic obtained by the distance between the nodes 

and the trail pheromone [10]. In order to not getting stuck into a local minimum solution, the 

algorithm applies the pheromone evaporation technique, which makes this marker element to 

dissipate over time [9,15]. 

 

In Figure 1 two paths are shown connecting an ants' nest to a food source. Pheromone levels 

(lengths of arrows) are balanced at the beginning of the process (Fig. 1a). Thus, the 

probability of selecting each path is equal, so that an equivalent number of ants pass the two 

sections. However, the insects that choose the largest path take a longer time to return, so that 

there is greater evaporation of the chemical. Then, the ratio of the amount of pheromone on 

the longer path decreases relative to that on the shortest path (Fig. 1b). After a few iterations, 

the shortest path stands (Fig. 1c). [1] 

 

 

 

 

Figure 1 - Pheromone evolution. The length of the arrows is proportional to the 

probability of the route to be chosen. 
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In the AS algorithm proposed by Dorigo [11], an ant k has a memory which stores the nodes 

that were visited and, when standing on the node r of the graph, chooses the next node u to 

visit with a probability given by the equation (1) 

 

 

(1) 

 

 

In equation (1) τ (r, u) is the amount of pheromone in the edge that goes from node r to node 

u; η (r, u) is the heuristic function (inverse of the distance between r and u); α and β are 

parameters that represent the weights given to the global intelligence and heuristic function 

respectively; q is a randomly chosen value with uniform probability in the interval [0,1]; q0 is 

a parameter (0≤q0≤1); S is a random variable selected according to the probability 

distribution described in equation (2) [11]: 

 

 

(2) 

 

 

 

In equation (2) pk(r,s) is probability of an k choosing to follow the edge that goes from node r 

o node s; Mk is the set of nodes yet not visited by ant k. 

 

Each time an edge is selected by an ant, its pheromone is updated through a process called 

local update. The purpose of this update is to prevent an edge with a large amount of 

pheromone to be chosen by all ants [11]. The local modification suggested by Dorigo is: 

  

 

(3) 

 

where 0 and  are parameters chosen by the user. 

 

In the AS algorithm, in addition to the local update, there is also the global update of 

pheromone whose goal is to highlight the edges that are part of the shortest paths. When all of 

the ants have find a solution to the problem, the one that found the best path deposits 

pheromone on the edges that compose its path. [11]. The amount of chemical deposited is 

inversely proportional to the distance of the solution. The global update is proposed in the AS 

is: 

 

(4) 

 

 

In (4) Δτ(r, s) is defined as 1/Lk and Lk is the distance of the shortest path found in the current 

iteration. 

 

The global update shows that the ants deposit on each edge of its solution a quantity of 

pheromone inversely proportional to the distance, that is, the shorter the path, the greater the 

amount of pheromone deposited on the edges. This update is similar to the technique known 

as learning by reinforcement, in which the best solutions are given priority. 
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There are several advantages to using the ACO meta-heuristics. One is the fact that it is a 

self-adaptive paradigm and is able to run both local and global search in a large and dynamic 

space [15]. Furthermore, because of its parallelizable background, this technique can be 

programmed in graphics processing units (GPU) [9,10]. Another positive aspect of 

optimization by ant colony is its good scalability and the low need of global information 

about graph’s status. [15] 

 

3. ARTIFICIAL NEURAL NETWORKS 

 

Artificial neural networks (ANN) are inspired by the biological neural network and are 

designed to solve problems in the areas like decision-making, categorization, function 

approximation, optimization, prediction and control. They can be seen as parallel and 

distributed processing systems, consisting of a large number of simple, interconnected 

processors [16]. The kind of ANN known as feed-forward neural networks (FFNN) is one of 

the most widely applied techniques in pattern classification. Usually FFNN are built in a 

three-layer topology: input, hidden and output layers. Usually every neuron in each layer is 

connected to all neurons on the next layer [17].  

 

In a FFNN every neuron i computes a weighted sum if its r input signals and generates an 

output oi: 

 

 𝑛𝑒𝑡𝑖 =  ∑ 𝑤𝑖𝑗𝑜𝑗 + 𝑏𝑖 , 𝑜𝑖 = 𝑓(𝑛𝑒𝑡𝑖) =
1

1+ 𝑒−𝑛𝑒𝑡𝑖

𝑟
𝑖=1        (5) 

 

where wij is the synapse weight associated with the connection between neuron j and neuron i, 

oj is the output of a neuron in the previous layer, bi represents a neuron’s self-bias and f is an 

activation function (shown in the equation as the sigmoid function) [17][16]. 

 

A FFNN with n inputs and m output neurons can be trained based on a set of examples . 
Each training example p is applied to the input layer and the signal propagates through the 

hidden layers until it reaches the output layer. Then, the network’s output (denoted y’) is 

compared to the output defined on the training example (denoted y) to determine the 

network’s error (denoted Ep) [17]. The most widely used error function is the sum of squared 

error: 𝐸𝑝 =
1

2
∑ (𝑦 − 𝑦′)2𝑚

𝑖=1  [17,18].  

 

Training a fixed-topology neural network can be handled as multi-dimensional function 

minimization problem. This is due to the fact that, although the network error depends on the 

training set, topology, weights, and biases, if we keep the first two as fixed, the error function 

will depend only on the weights and biases. So, training the neural network becomes the 

problem of minimizing a mathematical function [17]. 

 

One of the most widely-used neural network training algorithm is the gradient descent based 

Backward Error Propagation (BP) algorithm. When using this technique, the derivative of the 

error vector (E) is computed with respect to each component of the vector w (the weights 

vector). This vector derivative is called gradient of E with respect to w [19]. 

 

Because the gradient specifies the direction of the steepest increase of E, the training rule for 

the gradient descent is: 
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 𝑤 ← 𝑤 +  ∆𝑤 (6) 

where  

w = - E(w) 

 

In equation (6)  is a positive number called the learning rate and determines the step size in 

the gradient descent search [19]. 

 

 

4. IEA-R1 RESEARCH REACTOR 

 

IEA-R1 is a nuclear research reactor at IPEN. It is a pool-type reactor and uses water in its 

cooling and moderation systems. Built by the company “Babcok & Wilcox”, it uses graphite 

and beryllium as neutron reflectors. Its first criticality happened in September 16th, 1957, 

when its operation power was set as 2MW [2]. An improvement was made in 1997, 

increasing its power to 5 MW. Figure 1 depicts a diagram of IEA-R1 research reactor. 

 

 

  

Figure 2 - Schematic diagram of IEA-R1 research reactor at IPEN 
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4.1 IEA-R1 Data Acquisition System (DAS) 

 

The IEA-R1 reactor has a system that monitors 58 operational variables. This system is called 

Data Acquisition System (DAS) and the variables that it supervises include temperature, 

flow, level, pressure, nuclear radiation, nuclear power and rod position (Table 1). The DAS 

keeps track of the temporal history of all variables and does not interfere with the reactor 

control [2]. 

 

Table 1. IEA-R1 DAS variables. 

 

Z1 Control rod position [0 a 1000 mm] 

Z2-Z4 Safety rod position 1, 2 and 3[0 a 999 mm] 

N2-N4 % power (safety channel 1, 2 and 3) [%] 

N5 Logarithm Power (log channel) [%] 

N6-N8 % power [%] 

F1M3 Primary loop flowrate [gpm] 

F2M3 Secondary loop flowrate [gpm] 

C1-C2 Pool water conductivity [μmho] 

L1 Pool water level [%] 

R1M3-R14M3 Nuclear dose rate [mR/h] 

T1-T3 Pool water temperature [º C] 

T4 and T6 Decay tank inlet and outlet temperature     [º C] 

T5 (T4-T3) [º C] 

T7 Primary loop outlet temperature (heat exchanger A) [º C] 

T8-T9 Secondary loop inlet and outlet temperature (heat exchanger A) [º C] 

T10 Primary loop outlet temperature (heat exchanger B) [º C] 

T11-T12 Secondary loop inlet and outlet temperature (heat exchanger B) [º C] 

T13-T14 Housing pump B101-A and B102-A temperature [º C] 

T15-T16 Cooling tower A and B temperature [º C] 

T17 Housing turbo compressor temperature [º C] 

T18-T19 NO-BREAK temperature –220V and 440V [º C] 

T20-T24 Room temperature [º C] 

 

 

 

 

5. ACONN ALGORITHM 

 

Many neural networks are built by using one input layer, at least one hidden layer, and one 

output layer. In this design, each layer has full connectivity with the subsequent layer. This 

work uses an ant colony algorithm to search on a graph built with the neurons of a three-layer 

network. The search algorithm suggests the best neuron connections, including links from 

input to output neurons. This creates network topologies with arbitrary connections. 

 

The first step in our proposed ACO algorithm is to construct the graph that contains the 

solution components. Each ant will build a candidate solution by exploring the search space 

and suggesting a network topology with the selected connections between the neurons. Three 

types of connections will be allowed: connections between input and hidden neurons; 
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connections between hidden and output neurons; connections between input to output 

neurons. Each potential connection c = i  j, connecting neurons i and j, is associated with 

two solution components: Dc
true

, and Dc
false

. These two components represent, respectively, 

the decision to include or not to include the connection in the current candidate network 

topology [17]. 

 

The number of input neurons (Ni) and output neurons (No) were determined based on the 

characteristics of our dataset. We decided to work with three-layer networks only and we set 

the number of neurons on the hidden layer (Nh) to be the sum of input and output neurons  

 

Nh = Ni + No 

 

The overall process of our ACONN is shown in Algorithm 1. Initially, 0.5 is assigned as the 

amount of pheromone to the solution components of each edge of the graph (line 3). This 

means that, for each connection, the probability of including it in the topology is equal to the 

probability of not including it [17]. Inside the inner loop (lines 6-12), each ant creates a 

candidate solution NNi (line 7). Then, in line 8, the quality of the solution is calculated. In 

line 13, the pheromone trail is updated based on the quality of NNthebest (the best topology 

suggested during the current iteration). Next, the iteration best solution is compared with the 

best-so-far solution (lines 14-16), keeping the best solution created during the algorithm 

execution [17]. 

 

These steps are repeated until the same solution is generated for an amount of consecutive 

times, defined on parameter conv_iterations or until a maximum number of iterations is 

reached (line 18) [17]. In our experiments, max_iterations was set to 200, and colony_size 

(line 6) was set to 10. 

 

In line 19, the best-so-far topology is used to train (using standard Backward Error 

Propagation) a final neural network to be returned. At this step, using the connections 

suggested by the ants, the weights and biases of the neural network are learned. The learning 

rate and momentum were both set to 0.01 and the number of epochs was set to 1000. 

 

Algorithm 1. Pseudo-code of ACONN. 

1: Begin 

2: NNbest-so-far = ; t = 1; 

3: initialize_pheromone(); 

4: repeat 

5:    NNthebest = ; Qthebest = 0 

6:    for i = 1  colony_size do 

7:        NNi  = anti.create_solution(); 

8:        Qi  = EvaluateQuality(NNi); 

9:        if Qi > Qthebest then 

10:          NNthebest = NNi; Qthebest = Qi; 

11:      end if 

12:  end for 

13:  update_pheromone(); 

14:      if Qthebest > Qbsf  then 

15:          NNbest-so-far = NNthebest; Qbest-so-far = Qthebest; 

16:      end if 
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17:      t = t + 1 

18:  until  t = max_iterations  or Convergence( conv_iterations ); 

19: NNfinal = post_processing( NNbest-so-far ); 

20: return NNfinal; 

21: End 

 

The process of creating of a candidate solution (line 7) starts with an edge-less graph whose 

connections will be chosen during the procedure. For each connection in the available set of 

connections, the ant decides whether to include it the candidate topology or not. This is done 

by either selecting Dc
true

 or Dc
false

, based on the following probabilistic state transition 

equation [17]: 

 

𝑝(𝐷𝑐
𝑎) =   

𝜏(𝐷𝑐
𝑎)

𝜏(𝐷𝑐
𝑡𝑟𝑢𝑒)+ 𝜏(𝐷𝑐

𝑓𝑎𝑙𝑠𝑒
)
    (7) 

 

where 𝑝(𝐷𝑐
𝑎) is the probability of selecting decision D

a 
for connection c, and 𝜏(𝐷𝑐

𝑎) is the 

current amount of pheromone associated with the component 𝐷𝑐
𝑎 (where a = true or 

a = false).  

 

After an ant finds a solution, it calculates its quality by training a neural network using  

Backward Error Propagation (line 8) with some optimized parameter values (the amount of 

training epochs was set to only 10). In order to avoid overfitting, the training set is split into 

two parts: the learning set, containing 80% of the training set; the validation set, containing 

20% of the training set. The validation set is also used to calculate the quality Qi of a 

candidate solution. The quality is measured by using the correlation coefficient, a statistical 

method for evaluating numeric predictions. The correlation coefficient measures the 

correlation between the predicted values on the instances and their actual values. It ranges 

from 1 for perfectly correlated results, through 0 when there is no correlation, to -1 when the 

results are perfectly correlated negatively [18]. 

 

 

3. RESULTS 

 

We evaluated the performance of the ACONN algorithm by using a dataset with 7500 

instances. This dataset contains values of the IEA-R1 variables N2, N3, N4 and T1. A neural 

network with 3 inputs, 6 hidden neurons, and 1 output neuron was created to predict the value 

of T1 based on the other three variables (Figure 3a). The ACONN algorithm was used to tune 

its topology and its performance was compared with an equivalent fully connected neural 

network. Our tests we executed with the following parameters: 

 max_iterations: 500 

 conv_iterations: 10 

 colony_size: 10 

 

The fully connected topology is shown in Figure 3a. The best connections, suggested by the 

ant colony algorithm, are displayed in Figure 3b. 
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In Figure 3b, neuron h0 is connected to h3, and neuron h1 is connected to h2. 

 

The predictions of the data used for validating the fully connected network are shown in 

Figure 4.  

 

 

 

Figure 3: Topology suggested by the ACONN algorithm to predict T1 based on N2-N4  

Figure 4 - T1 predictions made by the fully connected neural network 
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Figure 5 presents the predictions made for the validation data of the tuned neural network. 

 

 
 

 

 

 

The models that predict the T1 variable were designed by training two neural networks: one 

with full connections (Figure 3a); one with only the connections suggested by the ACONN 

algorithm (Figure 3b). In order to measure their performance we calculated the correlation 

coefficient using tenfold cross-validation. The performance comparison is summarized in 

Table 3. 

 

Table 3: performance of tuned and fully connected neural networks 

  Fully connected ACONN 

Correlation coefficient 0.4845 0.7982 

Mean absolute error  0.8066 0.6452 

Root mean squared error  1.2378 0.8257 

 

 

4. CONCLUSIONS 

  

Our results indicate that the performance of a feed-forward neural network can be improved 

by choosing the best connections between the neurons instead of using a fully connected 

topology. In future work we would like to improve the ACONN algorithm to include 

connections between neurons in the hidden layer. The methodology developed will be used in 

future studies to determine the values of other IEA-R1 variables. Also we will construct 

neural networks with different input variables. Furthermore, we would like to improve the 

quality evaluation function in order to find better solutions. 
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