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ABSTRACT 

 
Rare earth elements in sediments have been used as powerful tools for environmental studies because of their 

behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they 

are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruíbe Black 

Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in 

an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this 

study was to examine rare earth elements pattern distribution in the Peruíbe black mud sedimentary deposit as a 

proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined 

and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates 

that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare 

earth elements are depleted related to NASC. It can be observed that the light rare earth elements present 
enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally 

below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth 

elements concentrations determined in Peruíbe black mud samples showed a distribution similar to that found in 

the NASC for the light rare earth elements and depleted for the heavy rare earth elements. 

 

 

1. INTRODUCTION 

 

Rare earth elements (REEs) in sediments have been used as powerful tools for environmental 

studies because of their behavior during geochemical processes [1-2]. REEs are also widely 

accepted as reliable provenance tracers because they are largely water-immobile and thus 

behave conservatively during sedimentary processes [3-4]. The potential of REE in 

contributing to such studies are related to their chemical properties (4f electronic 

configurations) being the trivalent state the cause of a coherent group behavior.  

 

Different from the others rare earth elements, Ce and Eu can change their oxidation states 

into tetra and di-valence, respectively, according to redox conditions, which cause their 

unique and anomalous behavior compared with other  REE. The REE abundance patterns 

may provide fingerprints in geochemical processes such as sediment provenance, 

contribution of detrital materials, authigenic components and redox conditions during 

deposition events [5-6].  

 

The Peruíbe Black Mud (PBM) is a sedimentary deposit originated from the interactions of 

marine sediments and organic matter in an estuarine environment that originates a peloid 

currently used for medicinal purposes. The mud treatment is done in a therapeutic clinic 

called “Lamário” and this practice is nowadays sponsored by the Public Health Brazilian 

System (SUS – Sistema Único de Saúde). In the “Lamário”, the mud directly collected from 



INAC 2015, São Paulo, SP, Brazil 

the mud deposit, from now on called “in natura mud” is sieved, in a 2 mm aperture sieve, in 

order to separate any courser material, such as stones, leaves and pieces of branches. After 

that, the in natura mud remains in contact with sea water for long periods and this process is 

called maturation. The obtained product is called matured mud. The sea water used in the 

maturation is taken 2 km far from the cost. The maturation process lasts up to six months. 

During this period, the sea water is periodically changed twice a month. No agitation is 

employed.  

 

The mud deposit location is shown in Figure 1. Mineralogical composition of this mud is 

predominantly quartz with small amounts of ilite, gypsum, kaolinite, feldspar and halite.  The 

particle size distribution shows a range of 19 to 66% of silt plus clay and in average, 55% of 

sand. Physical chemically, the PBM presents mean pH of 6.8 and CEC varying from 26 to 36 

meq/100g. Considering the chemical composition it is enriched in the elements As, Br, Cr, 

Sb, Se and Zn and depleted in the elements Ca, Rb and Ta when compared to the Upper 

Continental Crust (UCC) [7]. 

 

 

 
 

Figure 1: Location of Peruíbe City in Southeast Brazil. 

 

 

The objective of this study was to examine REE pattern distribution in the PBM sedimentary 

deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, 

Th/U and La/Th were also determined.  

 

 

2. METHODOLOGY 

 

The PBM samples were analyzed by Instrumental Neutron Activation Analysis. Samples, 

after being crushed and sieved to a grain size smaller than 150 mesh, were irradiated together 

with a convenient reference material in a neutron flux of 10
12

  n cm
-2

 s
-1

 for 8 hours in the 

IEA-R1 reactor at IPEN. Counting for the determination of the REE, as well as, U and Th 

concentrations was made one and two weeks after irradiation depending on the formed 

radionuclide half-life. The induced activities were measured by using a Hiperpure Ge 

detector [8]. 

 

Internet image 
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3. RESULTS AND DISCUSSION 

 

The results of the REE, U and Th concentrations in the PBM samples as well as the NASC 

(North American Shale Composite) values are shown in Table 1. It can be observed that no 

difference exist between the in natura and matured forms indicating that the maturation 

process do not affect the rare earth composition in this samples. 

 

Normalization of the mean REE concentrations in the samples related to NASC, also shown 

in Table 1 and in Figure 2, indicates that the light (La to Eu) rare earth elements (LREE) 

present values close to the unity while the heavy (Tb to Lu) rare earth elements (HREE) are 

depleted related to NASC. This pattern is expected in marine and estuarine sediments. 

Although acting as a group with high chemistry similarity, REE can be fractionated in 

solution presumably due to its gradual decrease in the ionic radius across the La–Lu serie [9]. 

LREE are preferentially removed from the solution and adsorbed in the surface of particles, 

such as Mn- and Fe-oxides and clay minerals or precipitates as REE phosphates [10], while 

the HREE typically form dissolved complexes which remain in solution [11].   

 

 

Table 1: Rare earth and selected elements concentration, in µg g
-1

, in PBM samples 

 

 La Ce Sm Nd Eu Tb Yb Lu Th U Sc 

IN1 31.11 62.84 4.93 22.03 1.15 0.60 1.48 0.27 8.4 2.4 11.77 

IN2 19.83 39.40 3.13 16.73 0.75 0.30 0.99 0.16 5.1 1.6 7.38 

IN3 37.37 76.04 5.92 30.63 1.38 0.56 1.72 0.29 9.7 3.4 13.45 

IN4 26.96 53.30 4.31 30.98 0.96 0.63 1.63 0.26 8.4 2.5 8.90 

IN5 24.59 49.85 3.92 23.31 0.90 0.42 1.22 0.22 7.6 2.8 8.53 

IN6 42.19 89.11 6.67 41.08 1.56 0.61 2.10 0.33 12.6 5.2 16.28 

IN7 38.38 78.35 6.02 36.99 1.23 0.66 2.00 0.31 12.1 4.4 12.63 

IN8 42.44 83.56 6.12 40.38 1.28 0.62 1.87 0.35 12.8 5.9 13.34 

IN9 26.78 52.68 4.13 24.48 0.82 0.47 1.64 0.25 8.9 5.0 9.23 

Mean 32.18 65.01 5.02 29.62 1.11 0.54 1.63 0.27 9.51 3.68 11.28 

SD 8.20 17.34 1.22 8.62 0.27 0.12 0.36 0.06 2.57 1.49 2.93 

REE/NASC 1.03 0.97 0.90 1.08 0.94 0.64 0.53 0.59    

MAT1 24.96 48.72 3.82 23.66 0.89 0.48 1.28 0.22 7.3 2.3 8.44 

MAT2 22.91 52.22 3.58 22.23 0.89 0.43 1.34 0.21 7.5 2.4 8.88 

MAT3 30.18 55.53 5.01 28.43 1.14 0.47 1.28 0.23 7.5 3.4 10.55 

MAT4 35.64 76.03 5.52 34.31 1.15 0.59 1.80 0.28 10.1 4.0 13.40 

MAT5 39.75 82.18 6.15 35.12 1.36 0.70 1.71 0.31 11.2 4.5 14.01 

MAT6 32.15 67.30 4.98 30.15 1.14 0.51 1.65 0.24 9.2 4.0 11.69 

MAT7 35.11 68.43 5.74 50.62 1.28 0.67 1.38 0.26 10.4 3.2 11.29 

MAT8 34.19 67.47 5.64 29.78 1.36 0.26 2.06 0.34 9.7 4.8 11.74 

MAT9 35.53 71.41 5.90 45.44 1.49 0.75 2.11 0.32 10.0 3.5 12.57 

MAT10 38.16 74.53 6.18 39.19 1.51 0.40 1.78 0.32 10.9 3.5 13.09 

Mean 32.86 66.38 5.25 33.89 1.22 0.52 1.64 0.27 9.39 3.54 11.57 

SD 5.44 10.91 0.92 9.09 0.22 0.15 0.31 0.05 1.46 0.80 1.85 

REE/NASC 1.06 1.00 0.94 1.24 1.03 0.62 0.54 0.60    

NASC 31.10 66.70 5.59 27.40 1.18 0.85 3.06 0.46 12.30 2.66 14.90 
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The LREE enrichment is also highlighted by the (La/Yb)n ratio, showed in Table 2, where 

the subscribe n means normalized for NASC with values varying from 1.6 to 2.3. In sea water 

the Sm/Yb ratio is typically 0.2, the preferential incorporation of the LREE to the PBM 

sediment is evidenced by the fact that this ratios in the samples varies from 1.38 to 2.15 

(Table 2). No fractionation is observed for among the LREE as indicated by the (La/Sm)n 

ratio (Table 2).   

 

The enrichment factor (EF) is a widely tool applied as an index to reflect environmental 

contamination of sediment mainly due to anthropogenic contributions. It was here employed 

to evaluate possible input of REE to PBM samples [12-13] and calculated as: EF = 

(REE/Sc)sample/(REE/Sc)NASC. By definition, the enrichment factor close to unity (EF = 1) 

indicates, that the observed concentration of the element considered is due to natural 

variations of the environment and it originate from natural sources [14]. 

 

According to Birch [15] the contamination degree can be divided into different categories 

based on EF values. EF<1 demonstrates “no enrichment”, EF<3 is “minor enrichment”, 

EF=3-5 is “moderate enrichment”, EF=5-10 is “moderately severe enrichment”, EF=10-25 is 

“severe enrichment”, EF=25-50 is “very severe enrichment” and EF>50 is “extremely severe 

enrichment”. 
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Figure 2: REE distribution pattern, normalized for NASC, in the in natura (A) and 

matured (B) samples of PBM. 
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The EF results for the in natura and matured PBM samples are shown in Table 3. It can be 

observed that the LREE present EF values slightly enriched over the unity while the HREE 

present values generally below the unity reflecting the enrichment of the LREE over the 

HREE. Nevertheless, the EF obtained classifies the PBM mud samples as of natural origin 

without anthropogenic inputs.  

 

The discrimination plot of (La/Yb)n vs. (Sm/Nd)n is commonly used to distinguish different 

sources to REE concentrations in sediments. As shown in Figure 3, the homogeneous 

distribution presented in the samples suggests an unique source for the REE for the PBM. 

The good correlation between REE and Th, Sc and U also suggest a common source for these 

elements (Figures 4a to 4c). On the other hand, the lack of correlation with Ti (Figure 4d), a 

common element found in heavy minerals, indicated that the REE in the PBM samples are 

not bounded to these minerals. 

 

 

Table 2: Cerium anomaly (Ce*),  ƩREE and elemental ratios observed in PBM samples  

 

 ƩREE Ce* Lan/Ybn Smn/Ndn Lan/Smn Smn/Ybn U/Th La/Th Yb/Th 

IN1 124.41 0.48 2.06 1.10 1.13 1.82 0.29 3.72 0.18 

IN2 81.28 0.42 1.98 0.92 1.14 1.74 0.31 3.88 0.19 

IN3 153.92 0.43 2.14 0.95 1.13 1.88 0.35 3.84 0.18 

IN4 119.02 0.33 1.63 0.68 1.12 1.45 0.30 3.23 0.19 

IN5 104.44 0.39 1.98 0.83 1.13 1.76 0.36 3.22 0.16 

IN6 183.64 0.40 1.98 0.80 1.14 1.74 0.41 3.35 0.17 

IN7 163.94 0.39 1.89 0.80 1.15 1.65 0.36 3.18 0.17 

IN8 176.62 0.38 2.23 0.74 1.25 1.79 0.46 3.31 0.15 

IN9 111.26 0.39 1.61 0.83 1.17 1.38 0.56 3.01 0.18 

MAT1 104.04 0.38 1.91 0.79 1.17 1.63 0.32 3.42 0.18 

MAT2 103.81 0.43 1.68 0.79 1.15 1.46 0.31 3.06 0.18 

MAT3 122.25 0.36 2.32 0.86 1.08 2.15 0.45 4.02 0.17 

MAT4 155.32 0.41 1.94 0.79 1.16 1.68 0.39 3.52 0.18 

MAT5 167.28 0.42 2.29 0.86 1.16 1.97 0.40 3.54 0.15 

MAT6 138.14 0.41 1.91 0.81 1.16 1.65 0.43 3.48 0.18 

MAT7 163.49 0.27 2.50 0.56 1.10 2.27 0.31 3.39 0.13 

MAT8 141.10 0.40 1.63 0.93 1.09 1.50 0.49 3.52 0.21 

MAT9 162.96 0.31 1.66 0.64 1.08 1.53 0.35 3.56 0.21 

MAT10 162.07 0.35 2.11 0.77 1.11 1.90 0.32 3.50 0.16 
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Table 3: Enrichment Factor (EF) obtained for the PBM samples 

 

 La Ce Sm Nd Eu Tb Yb Lu 

IN1 1.27 1.19 1.12 1.02 1.23 0.89 0.61 0.75 

IN2 1.29 1.19 1.13 1.23 1.28 0.70 0.65 0.71 

IN3 1.33 1.26 1.17 1.24 1.29 0.73 0.62 0.71 

IN4 1.45 1.34 1.29 1.89 1.35 1.24 0.89 0.95 

IN5 1.38 1.31 1.23 1.49 1.34 0.86 0.70 0.85 

IN6 1.24 1.22 1.09 1.37 1.21 0.66 0.63 0.65 

IN7 1.46 1.39 1.27 1.59 1.23 0.92 0.77 0.79 

IN8 1.52 1.40 1.22 1.65 1.21 0.82 0.68 0.86 

IN9 1.39 1.27 1.19 1.44 1.12 0.89 0.87 0.90 

MAT1 1.42 1.29 1.21 1.52 1.33 1.00 0.74 0.85 

MAT2 1.24 1.31 1.07 1.36 1.26 0.84 0.73 0.78 

MAT3 1.37 1.18 1.26 1.47 1.36 0.78 0.59 0.72 

MAT4 1.27 1.27 1.10 1.39 1.08 0.78 0.66 0.68 

MAT5 1.36 1.31 1.17 1.36 1.23 0.87 0.59 0.72 

MAT6 1.32 1.29 1.14 1.40 1.24 0.76 0.69 0.67 

MAT7 1.49 1.35 1.36 2.44 1.43 1.04 0.60 0.75 

MAT8 1.39 1.28 1.28 1.38 1.46 0.39 0.85 0.95 

MAT9 1.35 1.27 1.25 1.97 1.49 1.05 0.82 0.84 

MAT10 1.40 1.27 1.26 1.63 1.45 0.53 0.66 0.80 

  

 

In aquatic system Th is relatively immobile [16-17] and is present mostly in the detritus 

fraction [18]. Similarly, Sc, which is also another lithophile element associated with Th and 

U, is generally considered of terrigenous origin. The close association (Figure 4a to 4c) of the 

REE with Th, Sc and U in the PBM samples suggests the same provenance, also corroborated 

by the constancy of the La/Th ratio.  
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Figure 3: Discrimination plot of (La/Yb)n vs. (Sm/Nd)n of the PBM. 
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The U/Th ratio can be used to infer redox conditions during deposition of the sediment or to 

reflect the redox conditions of the source material. Generally, low U/Th ratios (<0.75) 

indicate well-oxygenated conditions, whilst high values (>1.25) indicate anoxic conditions, 

and those between 0.75 and 1.25 indicate dysoxic conditions [19]. The U/Th ratio of the 

analyzed samples, showed in Table 2, varies from 0.29 to 0.56 suggesting an oxic 

environment for the PBM source material containing REE in agreement with the terrigenous 

source suggested above.   

 

The Ce-anomaly (Ce* = 3Cen/(2Lan+Ndn)) represents its enrichment or depletion compared 

to its neighboring elements [20]. A depletion of Ce relative to its neighbors give rise to a 

negative Ce* and may result from the presence of calcareous and siliceous organisms. A 

positive Ce-anomaly results where Ce is enriched relative to its neighbors and might resulted 

from the presence of Fe–Mn oxyhydroxides [21]. 

 

Sediments of marine origin therefore tend to present positive Ce anomaly due to the 

scavenging of the Ce
4+

 from the solution and its incorporation into de sediment [22], in oxidic 

water, such as the costal water where the PBM deposit where formed.  However, various 

factors, like detrital input, diagenetic alteration and REE exchange between pore water and 

sediment, may obscure the original Ce anomaly [23].  

 

The observed negative Ce* (Table 2) of PBM can be, therefore, a result of facts such as 

terrigenous contribution and the presence of s siliceous organisms organism, as observed by 

Torrecilha [7]. 

 

4.  CONCLUSIONS 

 

Rare earth elements concentrations determined in PBM samples showed a distribution similar 

to that found in the NASC for the Light REE and depleted for the Heavy REE. This pattern 

can be related to the interaction of the PBM sediment with sea water. Nevertheless, the 

elemental ratio study showed that the provenance of the RRE in these samples is most 

probably due to terrigenous input.    
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Figure 4: Correlation between ƩREE and (a) Th, (b) Sc, (c) U and (d) Ti.   
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