

ESTUDO PRELIMINAR DOS PARÂMETROS DE DIFUSÃO DA ÁGUA PARA NEUTRONS TÉRMICOS PELO MÉTODO DA FONTE PULSADA

por

1

MYRIAN DE CARVALHO e SILVESTRE PAIANO SOBRINHO

Novembro — 1965

INSTITUTO DE ENERGIA ATÔMICA Caixa Postal 11049 (Pinheiros) CIDADE UNIVERSITÁRIA "ARMANDO DE SALLES OLIVEIRA" SÃO PAULO – BRASIL

ESTUDO PRELIMINAR DOS PARÂMETROS DE DIFUSÃO DA ÁGUA PARA NEUTRONS TÉRMICOS PELO MÉTODO DA FONTE PULSADA

por

Myrian de Carvalho e Silvestre Paiano Sobrinho

Divisão de Física de Reatores - Instituto de Energia Atômica São Paulo, Brasil

Apresentado ao "Study Group Meeting on the Utilization of Research Reactors" - promovido pela Agência Internacional de Energia Atômica Novembro 1963, São Paulo

> Publicação IEA nº 107 Novembro - 1965

Comissão Nacional de Energia Nuclear

Presidente: Prof. Luiz Cintra do Prado

Universidade de São Paulo

Reitor: Prof. Luiz Antonio da Gama e Silva Instituto de Energia Atômica

Diretor: Prof. Rômulo Ribeiro Pieroni

Conselho Técnico-Científico do IEA

Prof. Hélio Lourenço de Oliveira)	ماهم	USD
Prof. Walter Borzani) pera		001
Prof. Rui Ribeiro Franco	Ś	nele	ONEN
Prof. Theodoreto H.I. de Arruda Souto)) berg		CIVERY

Divisões Didático-Científicas:

Div. de Física Nuclear: Prof. Marcello D.S. Santos Div. de Engenharia Nuclear: Eng. Pedro Bento de Camargo Div. de Ensino e Formação: Prof. Luiz Cintra do Prado (licenciado) Div. de Radioquímica: Prof. Fausto Walter de Lima Div. de Radiobiologia: Prof. Rômulo Ribeiro Pieroni Div. de Metalurgia Nuclear: Prof. Tharcísio D.S. Santos Div. de Engenharia Química: Prof. Kazimierz J. Bril

ESTUDO PRELIMINAR DOS PARÂMETROS DE DIFUSÃO DA ÁGUA PARA NEUTRONS TERMICOS PELO MÉTODO DA FONTE PULSADA

Myrian de Carvalho e Silvestre Paiano Sobrinho Instituto de Energia Atômica, São Paulo, S.P., Brasil

RESUMO

Os parâmetros de difusão para neutrons térmicos na água foram medidos à temperatura ambiente (20° C) pela técnica de fonte pulsada. Curvaturas geométricas variando entre .078 e .201 cm⁻² foram consideradas. As curvas de decaimento e a reta λ (B²) foram ajustadas por um método de mínimos quadrados, obtendo-se os valores $\bar{v} \Sigma_a = (4947 \pm 208) \sec^{-1} e D = (33270 \pm 1647) \ cm^2/sec.$ O arranjo experimental é descrito. A experiência permitiu um levantamento bastante completo dos problemas relacionados com a té<u>c</u> nica de medida assim como dos métodos de análise dos valores exp<u>e</u> rimentais.

RESUMÉ

Les paramètres de diffusion des neutrons thermiques dans l'eau ont éte mesurés à la température ambiante (20° C) par une méthode de neutrons pulsés. On a consideré des facteurs geometriques (B²) variant entre .078 et .201 cm⁻². Les courbes de décrois sance et la droite λ (B²) ont été ajustées para une méthode de moindres carrés donnant $\bar{v} \Sigma_a = (4947 \pm 208) \sec^{-1}$ et D = (33270 $\pm 208) \sec^{-1}$ et D = (33270 ± 1647) cm²/sec. On donne une description du dispositif experimental. L'experience a permis une étude complete des problèmes liés aux techniques de mesure ainsi qu'aux méthodes d'analyse des resultats experimentaux. . 2 .

ABSTRACT

The thermal neutron diffusion parameters of water were measured at room temperature (20°) by the pulsed neutron source method. Geometrical bucklings varying from .078 to .201 cm⁻² were considered. The decay curves and the straight line λ (B²) were fitted by a least squares method giving $\bar{v} \sum_{a} = (4947 + 208) \sec^{-1}$ and $D = (3327 + 1647) \ cm^2/sec$. The experimental arrangement is described. The experiment permitted a quite complete survey of the problems connected to the measurment technique as well as to the methods of data analysis.

I - INTRODUÇÃO

O estudo da difusão de enutrons térmicos pelo método pulsado permite a obtenção direta de dois parâmetros - a secção de choque de absorção \sum_{a} e o coeficiente de difusão D - enquanto que um único parâmetro - o comprimento de difusão L - é obtido em processos estacionários. O método pulsado geralmente possibilita o uso de sistemas físicos de pequenas dimensões, o que é um aspecto interessante do ponto de vista prático.

Para o desenvolvimento e utilização das técnicas não est<u>a</u> cionárias no estudo de meios moderadores e multiplicadores, a Div<u>i</u> são de Física de Reatores do I.E.A. possui um acelerador eletrost<u>á</u> tico modêlo PN-400 da High Voltage Engineering Corporation.

O experimento efetuado com a água pode ser considerado bá sico para estudo e desenvolvimento do método, porque há muitas medidas análogas já publicadas, servindo como têrmo de comparação e também devido à importância intrínseca da água na Física de Reatores.

Considerando os resultados das medidas efetuadas em outros centros, a precisão dos resultados aqui apresentados está aquém da expectativa. Contudo, foi possível efetuar um levantamen to dos problemas relacionados à técnica, não sòmente do ponto de vista experimental mas também em relação à análise dos dados.

II - TEORIA

Se um jato de neutrons rápidos é injetado num meio moderador, após a termalização o balanço de neutrons será descrito <u>pe</u> la equação de difusão dependente do tempo, na ausência de fontes, cuja solução é (Al)

$$\oint (\mathbf{r}, \mathbf{t}) = \sum_{\text{imn}} \kappa_{\text{imn}} s_{\text{imn}} e^{-\lambda_{\text{imn}} \mathbf{t}} \qquad \text{II.1}$$

onde $K_{lmn}S_{lmn}$ dão a distribuição espacial térmica para t = 0. Os S_{lmn} são as auto funções da equação de Helmholtz

$$(\nabla^2 \cdot B^2) = 0$$
 II.2

e a sua forma depende apenas da geometria do moderador, uma vez dadas as condições de contôrno usuais da teoria da difusão⁽¹⁾.

Para qualquer instante depois do estabelecimento do equi líbrio entre o gás de neutrons e o meio, vale

$$\lambda_{\rm lmn} = \bar{v} \Sigma_{\rm a} + DB_{\rm lmn}^2 \qquad II.3$$

onde \overline{v} é a velocidade média da distribuição maxweliana de neutrons térmicos, D é o coeficiente de difusão para neutrons térmicos no equilíbrio e Σ_a é a secção de choque macroscópica de absorção.

. 4

 B_{lmn}^2 , a curvatura geométrica do sistema, é uma função crescente dos índices⁽²⁾. Isto implica em que, a partir de um cer to valor de t⁽³⁾ a única contribuição importante para o fluxo se rá a da harmônica fundamental (1 = m = n = 0). Então, o comporta mento temporal da população de neutrons será descrito por

exp (
$$-\lambda$$
 (B²)t) II.4

com

$$\lambda$$
 (B²) = $\bar{v} \Sigma_a + DB^2$ II.5

onde fizemos

$$B_{000}^2 = B^2 \qquad e \qquad \lambda_{000} = \lambda$$

Assim, λ é uma função linear de B² e os coeficientes da reta são $\bar{v} \sum_{a}$ e D. A determinação experimental de vários pares (λ , B²) permite a obtenção daqueles parâmetros.

Contudo, a dependência linear é válida apenas num certo intervalo de valores de B². Para grandes valores de B² (aqui, o têr mo "grande" depende do material em estudo), λ (B²) toma forma para bólica. Um maior escape dos neutrons mais energéticos do espectro maxweliano diminui a temperatura da população de neutrons. Pode--se obter uma melhor descrição do processo considerando-se uma teoria de dois grupos. Com tal teoria, λ (B²) passa a ser dado por

$$\lambda(B^2) = \bar{v} \Sigma_a + DB^2 - CB^4$$
 II.6

O coeficiente C é o coeficiente de resfriamento de difusão (diffusion cooling coefficient.) (Al).

- (2) Para geometrias cilíndricas, $B_{mn}^2 = \left(\frac{j^{(m)}}{\bar{R}}\right)^2 + \left(\frac{(2n+1)}{\bar{H}}\right)^2$ onde $\bar{R} \in \bar{H}$ são as dimensões extrapoladas do sistema e $j^{(m)}$ é o zero de ordem m da função de Bessel de ordem zero.
- (3) Êste instante pode ser calculado se os coeficientes de II.1 são conhecidos explicitamente.

III - ARRANJO EXPERIMENTAL

Descrição do equipamento

A figura l é um diagrama de bloco do arranjo. O alvo é isolado de terra. A incidencia de um jato de ions produz um pulso elétrico. Do pré-amplificador o pulso vai para o osciloscópio monitor e para a unidade Al que é um amplificador-discriminador fornece pulsos formados para o disparo do analisador. O período é fixado, e escolhido de modo a permitir o completo decaimento da. população de neutrons antes do próximo pulso. Naturalmente, este intervalo de tempo deve ser suficiente para que o ciclo de análise se processe completamente. O sinal do detetor (BF_z) vai para um scaler, o qual serve como monitor e também fornece pulsos formados para o analisador. O micro-amperímetro dá uma leitura da corrente média.

Na figura 2 dá-se o esquema do arranjo fonte-moderador--detetor. No fundo do cilindro foi colocada uma máscara de cádmio, cortada segundo a função $rJ_0\left(\frac{2.405r}{R}\right)$ (DS2). Com esta máscara es pera-se que tôdas as harmônica radiais, com exceção da fundamental sejam eliminadas. O detetor de BF_3 (45 cm comprimento, 5 cm diâmetro) foi posicionado na base do cilindro. O recipiente usado foi um cilindro de alumínio, colocado no interior de uma caixa cujas paredes consistiam de uma mistura de ácido bórico e parafina, blin dadas com cádmio. As diversas curvaturas geométricas foram obtidas variando-se o nível de água.

Fonte de neutrons

Foram acelerados deuterons a 200 kv contra um alvo de tr<u>í</u>tio.

As características do pulso foram as seguintes:

período	1100	µseg
duração	20	μseg
amplitude	65	μA
rise⊶time	6	μseg

5.

. 6 .

Analisador de tempos

Um analisador TMC de 256 canais foi usado, com a sua un<u>i</u> dade de tempo-de-voo, que tem um tempo de armazenamento de 16μ seg, permitindo a contagem de mais de um neutron por pulso.

A unidade 220A do analisador (fig. 1) foi usada para pre determinar o número de "bursts".

IV - RESULTADOS E MÉTODOS DE ANÁLISE

Análise das curvas de decaimento

As curvas de decaimento foram analisadas pelo método de mínimos quadrados (ML). A expressão a ser minimizada é

$$s^{2} = \frac{1}{n-k} \sum_{i=1}^{n} \left(Y_{i} - Y(t_{i}) \right)^{2} \cdot w_{i}$$

onde n = nq de pontos experimentais

k = número de parâmetros Y_i = pontos sôbre a curva calculada Y(t_i) = valores experimentais w_i = $1/S_{Y_i}^2$ = pesos $\mathbf{\tilde{Y}}_i$ = desvio padrão em Y(t_i) = $\sqrt{Y(t_i)}$

Os pontos no eixo dos tempos foram considerados sem erros e cada canal foi referido pelo seu instante inicial. As curvas de decaimento foram obtidas com canais de $4 \ \mu$ seg de largura. As análises foram efetuadas com um retardo mínimo de 80 μ seg, a partir do início do pulso.

O fato de alguns canais consecutivos permanecerem fechados após a contagem de um evento, (devido ao tempo de armazenamen to) leva a uma correção das perdas de contagem, que, em certos ca sos é importante. Esta correção é efetuada normalizando-se as con tagens em cada canal referindo-as ao número de ciclos de análise. Outra correção foi feita para o tempo de resolução do conjunto BF_z - Pré Amplificador-Scaler.

Os canais foram grupados dois a dois, ou três a três para o ajuste por mínimos quadrados.

As curvas de decaimento foram ajustadas para uma ou duas exponenciais, mais um "background" constante.

Ajuste da função $\lambda(B^2) = \bar{v} \Sigma_a \rightarrow DB^2$

Neste caso, a expressão minimizada foi

$$s^{2} = \frac{1}{n-k} \sum (W_{B}V_{B}^{2} * W V^{2})$$

onde $W_B \in W_{\lambda}$ são, respectivamente, os pesos nas coordenadas $B^2 \in \lambda$ e são iguais ao inverso do quadrado dos erros. $V_B \in V_{\lambda}$ são os desvios dos valores experimentais em relação à curva calculada.

Os erros no raio do cilindro e sobre os volumes de água foram avaliados para o cálculo dos erros em B². Possivelmente, os erros nos volumes foram superestimados em 30%, mas a sua correção não implicaria necessàriamente num melhor ajuste dos dados.

Para ambos os ajustes foram escritos programas em lingua gem Fortran para o Computador IEM-1620 do Centro de Cálculo Numérico da Escola Politécnica da USP. O programa para análise das cur vas de decaimento foi escrito com base no programa de Moscati(M1). As modificações introduzidas visavam adaptar o programa às nossas condições experimentais.

Resultados

Na figura 3 é dado λ_{00} (constante de decaimento funda - mental) em função da curvatura geométrica B_{00}^2 . A tentativa de ajuste dos valores experimentais por uma curva a + bx + cx² mos-

trou serem os dados insuficientes para a caracterização de uma p<u>a</u>rábola.

A tabela I é um resumo dos valores experimentais.

Devido ao uso da máscara de cádmio segundo a função $rJ_{o}(\frac{2.405 r}{R})$, deve-se esperar apenas a presença de harmônicas axiais (m=0, n=1, 2, 3,...) além da componente fundamental. A figura 4 mostra as componentes de segunda ordem obtidas no nosso experimento, em função de B_{01}^2 . A linha reta foi construida com $v \Sigma_a$ e D dados na figura 3, e pode ser considerada como uma previsão semi-teórica para os valores de λ_{01} .

A completa discordância dos pontos experimentais com a curva calculada indica que, provàvelmente, os pontos experimen tais da figura 4 representam o decaimento devido ao espalhamento nas paredes do laboratório.

V - CONCLUSÕES

Comparando-se os resultados com os já publicados por outros autores (vide tabela I no artigo LBL e RSW1) pode-se observar que os desvios padrão em $\bar{v} \sum_{a}$ e D neste experimento são mui to altos. Os desvios dos pontos experimentais em relação à curva calculada chegam a 4%. Nas medidas efetuadas por López e Beyster (LBL) há um desvio de 1% no máximo.

Além disso, foram considerados apenas valores de B^2 entre .08 e .201 cm⁻² ao passo que outros autores exploram intervalos mais largos. Naturalmente seria interessante manter a dens<u>i</u> dade dos pontos experimentais no caso de aumento do intervalo de valores de B^2 .

Para avaliação da qualidade dos nossos resultados, uma comparação com o experimento de (LB1) foi feita. Foram selecionados daquele trabalho, os valores de λ_{00} compreendidos na região das curvaturas geométricas por nós explorada. A análise numérica

. 8 .

. 9 .

daqueles valores pelo método de mínimos quadrados forneceu aos pa râmetros desvios comparáveis aos por nós obtidos.

Relativamente aos valores λ_0 , acreditamos que os desvios podem ser reduzidos, melhorando-se a estatística de contagem, que nunca foi além de 10⁵ contagens no primeiro canal. Razões de Proteção Radiológica foram um fator importante nesta limitação⁽⁴⁾. Além disso, se estamos realmente detetando a "meia vida do labor<u>a</u> tório", conforme sugerem os dados da figura 4, é razoável esperar--se que êste ruído de fundo variável com o tempo esteja presente nas curvas ajustadas para uma exponencial (isto é, a componente fundamental). Significa que a influência do ruído de fundo não p<u>o</u> de ser avaliada com precisão. Em conclusão, a eliminação do ruído de fundo é um fator importante para melhoria da qualidade dos no<u>s</u> sos resultados.

AGRADECIMENTOS

Os autores agradecem ao Sr. H.R. Franzen e à Srta. W.S. C. Hehl pela instalação do Van de Graaff e a série de experiências preliminares que efetuaram; ao Sr. R. Brenner que chefiou a equipe de Eletrônica e ao Sr. J.M. Cohenca, cuja colaboração no estudo comparativo de métodos de análise dos dados experimentais e preparação dos programas em Fortran foi essencial.

Os autores são gratos ao Prof. Paulo Saraiva de Toledo pela orientação durante a realização do trabalho.

(4) Atualmente, com a remoção do Van de Graaf para um galpão ex terno, estas restrições serão, eliminadas. . 10 .

1

ţ

BIBLIOGRAFIA

- Al A.V. Antonov e col. Proc. Intern. Conf. Peaceful Uses of Atomic Energy, Geneva vol. V, pag. 3 (1955)
- DS2 G.F. Von Dardel e N.G. Sjöstrand, Progr. in Nuclear Energy, Série I, vol. I (1958)
- Ml G. Moscati, Tese de Doutoramento apresentada à F.F.C.L.
 U.S.P. (1962)
- IBI W.M. Lopez e J.R. Beyster, Nucl. Sci. Eng. vol. 12, pag. 190 (1962)
- HSW1 R.S., Hall, S.A. Scott, J. Walker, Proc. Phys. Soc., vol. 79, pag. 257, (Fev. 1962)
- Dl Deming, W.E., Statistical Adjustment of Data, J. Wiley & Sons, Londres (1948)

Resumo dos Resultados

B²₀₀(cm⁻²)

. .

$\lambda_{_{OO}}(seg^{-1})$

 $\lambda_{\text{Ol}}(\text{seg}^{-1})$

		•					
.0780	.0014	7652	± 123	,		16700 [‡]	809
.0877	.0017	8003	109			1 9521	1278
.1012	.0021	8036	134			17482	1043
.1054	.0022	8340	115			18019	1148
.1171	.0026	8593	19 1	•		17919	1996
.1254	.0029	× 9235	50			27730	2298
•1431	.0036	9286	287			17117	3238
.1608	.0042	10288	- 94	; •	•	22317	5260
.1807	.0055	11145:	23				
.2010	.0057	11580	19				

. 12 .

13.

