

MATRIX REPRESENTATION FOR CALCULATION OF THE SECOND ORDER ABERRATIONS IN PARTICLE OPTICS FOR HOMOGENEOUS AND INHOMOGENEOUS ($\mathrm{n}=\mathrm{I}$) MAGNETIC FIELDS

A. A. SUAREZ and F. A. B. COUTINHO

PUBLICAÇAO IEA N. ${ }^{\circ}$ 144
 Abril - 1967

INSTITUTO DE ENERGIA ATOMICA

Caixa Postal 11049 (Pinheiros) CIDADE UNIVERSITARIA "ARMANDO DE SALLES OLIVEIRA" SÃo PAULO - BRASIL

A.A. Suarez and F.A.B. Coutinho

> Divisão de Física Nuclear Instituto de Energia Atômica São Paulo - Brasil

Publicação IEA No 144 Abril - 1967

```
Comissão Nacional de Energia Nuclear
    Presidente: Prof. Uriel da Costa Ribeiro
Universidade de São Paulo
    Reitor: Prof.Dr. Luis Antonio da Gama e Silva
```

Instituto de Energia Atômica
Diretor: Prof. Rômulo Ribeiro Pieroni

Conselho Técnico-Científico do IEA

Prof.Dr. José Moura Gonçalves
Prof.Dr. José Augusto Martins
Prof.Dr. Rui Ribeiro Franco
Prof.Dr. Theodoreto H.I. de Arruda Souto

Divisões Didático-Científicas

Divisão de Física Nuclear -
Chefe: Prof.Dr. Marcello D.S. Santos
Divisão de Radioquímica -
Chefe: Prof.Dr. Fausto Walter de Lima
Divisão de Radiobiologia Chefe: Prof.Dr. Rômulo Ribeiro Pieroni

Divisão de Metalürgia Nuclear Chefe: Prof.Dr. Tharcísio D.S. Santos

Divisão de Engenharia Química Chefe: Lic. Alcídio Abrão

Divisão de Engenharia Nuclear Chefe: Eng ${ }^{9}$ Pedro Bento de Camargo

Divisão de Operação e Manutenção de Rẹatores Chefe: Engo Azor Camargo Penteado Filho

Divisão de Física de Reatores Chefe: Prof.Dr. Paulo Saraiva de Toledo

Divisão de Ensino e Formação Chefe: Prof. Rui Ribeiro Franco

Matrix Representation for Calculation of the Second Order Aberrations in Particle Optics for Homogeneous and Inhomogeneous ($\mathrm{n}=1$) Magnetic Fields

A. A. Suarez and F. A. B. Coutinho
(Received January 15, 1968; presented by Marcello Damy de Souza Santos)

INTRODUCTION

In the calculation of the properties of magnetic systems to analyse the energy of charged particles beams, the use of analytical procedures is tedious and heavily time consuming.

In analogy with the geometrical optics, S. Penner [1] introduced a matrix method to calculate the propertias of magnetic deflection systems involving a first order aberration. I. Takeshira [3] has extended this formalism to the second order in the case of a two dimensional motion, utilising a nine-dimensional matrix for an homogeneous magnetic field. Later on, K. L. Brown [1, 4] developed the general theory of first and second order aberrations of deflecting magnets.

We have used that formalism to calculate the elements of a twelve-dimensional matrix, extended to a three dimensional particle motion close to the central orbit (paraxial orbits), in two special cases: homogeneous and imhomogeneous magnetic fields ($n=1$). This calculation was extended for the case of a rotation fo the field boundary; neglecting however the effects due to fringing fields, which will be published in a future paper.

METHOD OF CALCULATION

Since the particle trajectories near to the central axis can be expressed by linear functions, one can use the matrix representation to express the transformation of object to image coordinates as the usual procedures in geometrical optics.

Using such procedure, several deflecting elements can be coupled easily to each other by multiplying matrices and then analysing optical properties such as the object magnification, particle dispersion and resolution of the system. This formalism is also convenient for digital computation of the particle trajectories in complicated systems where the analytical evaluation is time consuming and tedious.

Let's suppose that we have a symmetric magnetic field relative to a plane situated between the pole faces of a magnet (figure 1) (median plane). One particle with momentum p_{o} will describe a trajectory $A B$ (central trajectory) and a particle with momentum $p_{0}+\Delta p$ will be displaced in relation to the central orbit, describing a trajectory CD. Let the entrance and exit coordinates be: x_{0} and x, the distances of the $C D$ trajectory from the central trajectory measured on a perpendicular to $A B$ in the entrance and exit point respectively; θ_{0} and θ,
the angle between the central trajectory and CD in the entrance and exit of the magnet respectively and $\frac{\Delta p}{P_{1}}$ the momentum variation of the particle.

Analogously we define the coordinates y and ϕ on the perpendicular plane to the meridian plane.

Figure 1

For paraxial rays one can expand x in terms of $\left(x_{0}, y_{0}, \theta_{0}, \phi_{0}, \frac{\Delta p}{p_{0}}\right)$ until the second order approximation, dropping out all the higher order terms.

$$
\begin{aligned}
\mathrm{x} & =\left\langle\mathrm{x} \mid \mathrm{x}_{0}\right\rangle \mathrm{x}_{0}+\left\langle\mathrm{x} \mid \theta_{0}\right\rangle \theta_{0}+\langle\mathrm{x} \mid \delta\rangle \delta+\left\langle\mathrm{x} \mid \mathrm{x}_{0}^{2}\right\rangle \mathrm{x}_{0}^{2}+\left\langle\mathrm{x} \mid \mathrm{x}_{0} \theta_{0}\right\rangle \mathrm{x}_{0} \theta_{0}+\left\langle\mathrm{x} \mid \mathrm{x}_{0} \delta\right\rangle \mathrm{x}_{0} \delta+ \\
& +\left\langle\mathrm{x} \mid \theta_{0}^{2}\right\rangle \theta_{0}^{2}+\left\langle\mathrm{x} \mid \theta_{0} . \delta\right\rangle \theta_{0} \delta+\left\langle\mathrm{x} \mid \delta^{2}\right\rangle \delta^{2}+\left\langle\mathrm{x} \mid \mathrm{y}_{0}^{2}\right\rangle \mathrm{y}_{0}^{2}+\left\langle\mathrm{x} \mid \mathrm{y}_{0} \phi_{0}\right\rangle \mathrm{y}_{0} \phi_{0}+\left\langle\mathrm{x} \mid \phi_{0}^{2}\right\rangle \phi_{0}^{2}
\end{aligned}
$$

The coefficients of $y_{0}, y_{o} x_{0}, y_{0} \theta_{0}, y_{0} \delta, \phi_{0}$ and $\phi_{0} \delta$ are identically equal to zero as will be demonstrated later on.

These initial coordinates span a twelve dimensional vector space giving for the transfer matrix the following aspect:

A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}	A_{7}	A_{8}	A 9	A_{10}	A_{11}	A_{12}
B_{1}	B_{2}	B_{3}	B_{4}	B_{5}	B_{6}	B_{7}	B_{8}	B_{9}	B_{10}	B_{11}	B_{12}
C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	$\mathrm{C}_{\text {30 }}$	C_{11}	C_{12}
D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{1}	D_{3}	D_{9}	D_{10}	D_{11}	$\mathrm{D}_{1 \mathrm{l}}$
E_{1}	E_{2}	E_{3}	E_{1}	E_{5}	E_{6}	E_{7}	E_{8}	E_{9}	E_{10}	E_{11}	E_{12}
F_{1}	F_{2}	F_{3}	F_{4}	F_{5}	F_{6}	F_{7}	F_{8}	F_{3}	F_{10}	F_{11}	F_{12}
G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}	G_{9}	G_{10}	G_{11}	G_{12}
H_{1}	H_{2}	H_{3}	H_{4}	H_{6}	H_{6}	H	H_{8}	H_{9}	H_{10}	H_{17}	H_{12}
11	I_{2}	I_{3}	I	I_{5}	I_{6}	I_{7}	I_{8}	I_{9}	I_{10}	I_{11}	I_{12}
J_{1}	J_{2}	J_{3}	J_{4}	J_{5}	J_{6}	J_{7}	J_{8}	J_{5}	J_{10}	J_{11}	J_{12}
K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	\mathbf{z}_{6}	K_{7}	K_{3}	K_{0}	K_{10}	K_{11}	K_{12}
\mathbf{L}_{1}	L_{5}	L_{3}	L_{4}	L_{5}	L_{6}	L_{7}	L_{8}	L_{0}	\mathbf{L}_{10}	L_{11}	L_{12}

Defining a coordinate system on the central trajectory as given by figure 2 , the second row can be obtained of the first row observing that:

$$
\theta=\frac{y^{\prime}}{1+h x}
$$

where $h^{-1}=\rho_{o}$ (curvature radius of the central orbit) and $x^{\prime}=\frac{d x}{d t}$, where t is the distance travelled by the particle from its origin in the central orbit.

Since the velocity of the particles is not changed by the magnetic field, the matrix elements of the third row are zero except $C_{33}=1$.

All the other rows may be obtained by means of the combination of the three first rows and the tenth and eleventh rows.

In the space free of magnetic field, the matrices become

Translation Matrix (x)

Translation Matrix (y)
since the trajectory is simply a straight line.
Let's now doscribe succintly the procedure developped by K. L. Brown [1] to find the matrix elements.

Taking the relativistic equation of motion of a particle of momentum p placed in an arbitrarily shaped magnetic field.

$$
\frac{\mathrm{d} \mathbf{p}}{\mathrm{dt}}=\mathrm{e}(\mathbf{v} \times \mathbf{B})
$$

and eliminating the time in that equation using the coordinate system described in figure 2 one obtains

$$
\frac{d^{2} \mathbf{s}}{d t^{2}}-1 / 2 \frac{\frac{d \dot{\mathbf{s}}}{d t}}{\left(\frac{d s}{d t}\right)^{2}} \frac{d}{d t}\left(\frac{d s}{d t}\right)^{2}=\frac{e}{p} \frac{d s}{d t}\left(\frac{d \mathbf{s}}{d t} \times \mathbf{B}\right)
$$

where t is the distance along the central trajectory and s is the path along an arbitrary trajectory.

Figure 2

Expressing this equation in terms of the coordinates x and y we get:
(1)

$$
x^{\prime \prime}-h(1+h x)-x^{\prime}\left(h x^{\prime}+h^{\prime} x\right)=\frac{e}{p} s^{\prime}\left[y^{\prime} B_{t}-(1+h x) B_{y}\right]
$$

(2)

$$
y^{\prime \prime}-y^{\prime}\left(h x^{\prime}+h^{\prime} x\right)=\frac{6}{p} s^{\prime}\left[(1+h x) B_{x}-x^{\prime} B_{t}\right]
$$

where (') means $\frac{\mathrm{fl}}{\mathrm{dt}}$

The central trajectory is defined by the initial conditions

$$
x=x^{\prime}=y=y^{\prime}=0 ; \text { i.e., } h=\frac{e}{p_{o}}=B_{y}(0,0, t) .
$$

One can derive the magnetic field components B_{x}, B_{y} and B_{t} from a scalar potential ϕ which is a simetric odd function of y.

Expanding these magnetic field components B_{x}, B_{y} and B_{t} we get,

$$
\begin{aligned}
& B_{x}(x, y, t)=\frac{\partial \phi}{\partial x} A_{11} y+A_{12} x y+. \\
& B_{y}(x, y, t)=\frac{\partial \phi}{\partial y}=A_{10}+A_{11} x+\frac{A_{12}}{2!} x^{2}+\frac{A_{30}}{2!} y^{2}+.
\end{aligned}
$$

where

$$
A_{l n}=\frac{\partial^{n}}{\partial x^{\mathbf{a}}} B_{y}(x, 0, t) \quad \therefore y=0
$$

and

$$
\mathrm{A}_{30}=-\left[\mathrm{A}_{10}^{\prime}+\mathrm{h} \mathrm{~A}_{11}+\mathrm{A}_{12}\right]
$$

Defining two dimensionless quantities $\mathrm{n}(\mathrm{t})$ and $\beta(\mathrm{t})$ by

$$
\mathrm{n}(\mathrm{t})=-\left[\frac{1}{\mathrm{~h} \mathrm{~B}_{y}}\left(\frac{\partial \mathrm{~B}_{y}}{\partial \mathrm{x}}\right)\right] \quad, \begin{aligned}
& \mathrm{x}=0 \\
& \mathrm{y}=0
\end{aligned}
$$

and

$$
\text { Rity, }-\left[\frac{1}{2::^{x} B,}\left(\frac{a^{2} v_{y}}{a x^{x}}\right)\right] \quad \begin{aligned}
& x=0 \\
& y=0
\end{aligned}
$$

which characterize the magnetic field and using the equation of motion for the central trajectory one gets for the two equations (1) and (2) the following expressions:

$$
\begin{align*}
x^{\prime \prime} & +(1-n) h^{2} x=h \delta+(2 n-1-\beta) h^{3} x^{2}+h^{\prime} x x^{\prime}+1 / 2 h x^{\prime 2}+ \tag{1a}\\
& +(2-n) h^{2} x \delta+1 / 2\left(h^{\prime \prime}-n h^{3}+2 \beta h^{3}\right) y^{2}+h^{\prime} y y^{\prime}-1 / 2 h y^{\prime 2}-h \delta^{2}+ \\
& + \text { higher order terms. }
\end{align*}
$$

$$
\begin{equation*}
y^{\prime \prime}+\mathrm{nh}^{2} \mathrm{y}=2(\beta-\mathrm{n}) \mathrm{h}^{3} \mathrm{xy} y+\mathrm{h}^{\prime} \mathrm{x} \mathrm{y}^{\prime}-\mathrm{h}^{\prime} \mathrm{x}^{\prime} \mathrm{y}+\mathrm{h} \mathrm{x}^{\prime} \mathrm{y}^{\prime}+\mathrm{nh} h^{2} \mathrm{y}+ \tag{2a}
\end{equation*}
$$

+ higher order terms.

Now expanding x and y until the second order in terms of $\mathrm{x}_{0}, \mathrm{x}_{\mathrm{o}}^{\prime}, \delta=\frac{\Delta p}{\mathrm{p}_{\mathrm{o}}}, \mathrm{y}_{0}, \mathrm{y}_{0}^{\prime}$ with all the cross terms and substituting in (1a) and (2a) the coefficient of $y_{0}, y_{2} x_{0}, y_{0} \theta_{0}$, $y_{0} \delta, \phi_{0}, \phi_{0} \delta$ will be identically zero and the others will be defined by equations

$$
\begin{align*}
& \mathrm{c}^{\prime \prime}+\mathrm{k}^{2} \mathrm{c}=0 \tag{3}\\
& \mathrm{~s}^{\prime \prime}+\mathrm{k}^{2} \mathrm{~s}=0 \tag{4}
\end{align*}
$$

with the boundary conditions

$$
\begin{array}{ll}
c(0)=1 & c^{\prime}(0)=0 \\
s(0)=0 & s^{\prime}(0)=1
\end{array}
$$

and

$$
\begin{equation*}
q^{\prime \prime}+k^{2} q=f \tag{5}
\end{equation*}
$$

where the coefficient k^{2} is equal to $(1-\mathrm{n}) \mathrm{h}^{2}$ for the x motion and equal to nh^{2} to the y motion. c is the coefficient of x_{0}, s is the coefficient of θ_{0} and the third equation is the differential equation of the dispersion and of all the second order aberrations. f is a function of h, n, β and of the coefficients of the first order aberrations which can be obtained from substitutions of the Taylor's expansions into the general differential equations (1a) and (2a).

This equation may be solved using the integral Green's function.

$$
q=\int_{0}^{t} f(\tau) G(t,-\tau) d \tau
$$

where the convenient Green's function is:

$$
\mathrm{G}(\mathrm{t}-\tau)=\mathrm{s}(\mathrm{t}) \mathrm{c}(\tau)-\mathrm{s}(\tau) \mathrm{c}(\mathrm{t})
$$

giving to q the following expression:

$$
\mathrm{q}=\mathrm{s}(\mathrm{t}) \int_{0}^{\mathrm{t}} \mathrm{f}(\tau) \mathrm{c}(\tau) \mathrm{d} \tau-\mathrm{c}(\mathrm{t}) \int_{0}^{\mathrm{t}} \mathrm{f}(\tau) \mathrm{s}(\tau) \mathrm{d} \tau
$$

In order to construct the transfer matrix in terms of convenient parameters one should remember the relations:

$$
\theta=\frac{x^{\prime}}{1+b x} \quad \text { and } \quad \phi=\frac{r^{\prime}}{1+h x}
$$

TRANSFER MATRIX

Since our interest lies in the transfer matrix for homogeneous magnetic field and for fields varying as $1 / r$ we should use the proper values of $n(t)$ and $\beta(t)$ in equations (3), (4), (5) and solve them.

For an homogeneous magnetic field these values are $n(t)=0$ and $\beta(t)=0$ and 2 for a field varying as $1 / \mathrm{r} ; \mathrm{n}(\mathrm{t})=1$ and $\beta(\mathrm{t})=1$.

Thus, the obtained transfer matrices are:

Homogeneous Matrix (y)

An. Acad. brasil. Ciênc., (1968), 40 (2).

Inhomogeneous Matrix ($n=1$) (x)

万him:

ROTATION MATRIX

Let be figure 3 the situation for an entrance particle in a magnetic field with the magnet pole edges rotated by an angle β_{1}.

To get the rotation matrix in the median plane we should correlate the coordinates x_{1}, θ_{1} without pole rotation, with the coordinates x_{0}, θ_{0} of the rotated pole edges. This can be done by getting first the transfer matrix from x_{0}, θ_{0} to x_{s}, θ_{s} and then from x_{s}, θ_{s} to $\mathrm{x}_{1}, \Theta_{\mathbf{1}}$.

Figure 3 - Entrance pole edge

The calculation of the matrix elements from x_{0}, θ_{0} to x_{s}, θ_{s} can be accomplished by using the following relations:
(6) $\quad \left\lvert\, \begin{aligned} & x_{A}=x_{0}+Z_{A} \theta_{0} \\ & y_{\mathrm{A}}=y_{o}+Z_{A} \phi_{0}\end{aligned}\right.$
(7) $\quad x_{\mathrm{A}}=\mathrm{Z}_{\mathrm{A}} / \operatorname{tg} \beta_{1}$
$\left(\rho+\mathrm{X}_{\mathrm{s}}\right) \operatorname{sen} \alpha=\mathrm{Z}_{\mathrm{A}}$
(8). $\left(\rho+x_{\mathrm{s}}\right) \cos \alpha=\mathrm{x}_{\mathrm{A}}$
$y_{A}=y_{s}$
equations of the particle trajectory in the field free region
equation of the rotated pole edge.
equations relating X_{A}, y_{A}, Z_{A} measured in the x, z coordinate system with x_{s}, y_{s}, z_{s} measured in the coordinate system given by figure 2 .

Supposing that $\Theta_{0} \operatorname{tg} \beta_{1} \ll 1$ and $x_{0}<\rho$ we get:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{s}}=\mathrm{x}_{0}+1 / 2 \rho \operatorname{tg}^{2} \beta_{1} \mathrm{x}_{0}^{\mathrm{2}}+\operatorname{tg} \beta_{1} \mathrm{x}_{\mathrm{o}} \theta_{0} \\
& \theta_{\mathrm{s}}=\theta_{0}+\operatorname{tg} \beta_{1} / \rho \mathrm{x}_{0}-\operatorname{tg} \beta_{1} / \rho^{2} \mathrm{x}_{0}^{2}+\mathrm{tg}^{2} \beta_{1} / \rho \mathrm{x}_{0} \theta_{0} \\
& \mathrm{y}_{\mathrm{s}}=y_{0}+\operatorname{tg} \beta_{1} \mathrm{x}_{0} \phi_{0} \quad \text { and } \\
& \phi_{\mathrm{s}}=\phi_{0} .
\end{aligned}
$$

These expressions give the entrance transfer matrix from x_{0}, θ_{0} to x_{s}, θ_{s} on the median plane, which is shown in the following page.

Note that this matrix is independent of the magnetic field.

To get the transfer matrix from x_{0}, θ_{0} to x_{1}, θ_{1} one should only multiply the matrix $B\left(\beta_{1}\right)$ by the inverse transfer matrix of a small magnet which goes from x_{1}, θ_{1} to x_{8}, θ_{8}. One should remember that the bending angle of this small magnet must be substituted by the appropriate aproximation obtained using the relation

$$
\alpha \cong \frac{\operatorname{tg} \beta_{1}}{\rho} x_{0}-\frac{\operatorname{tg} \beta_{1}}{\rho^{2}} x_{0}^{2}+\frac{\operatorname{tg}^{2} \beta}{\rho} x_{0} \theta_{0}
$$

The resulting entrance rotation matrix for an homogeneous magnetic field is given by Entrance Rotation Matrix (x) (Homogeneous) - see on page 139.

Enlrance Matrix $B\left(\beta_{1}\right)$

s_{0}	${ }_{0}$	δ	x_{0}^{2}	* ${ }^{2}$	$\mathrm{x}_{0}{ }^{\delta}$	$\begin{array}{r} \theta_{0}^{2} \\ \hline \end{array}$	00°	δ^{2}	y_{0}^{2}	\%000	ϕ_{0}^{2}
1	0	0	$-\frac{1}{2} \frac{\operatorname{tg}_{\rho}^{2} \beta}{\rho}$	0	0	0	0	0	0	0	u
$\frac{\operatorname{tg} B}{\rho}$	1	0	0	$\frac{\cos ^{2} \beta}{\rho}$	$-\frac{\operatorname{tg} \beta}{\rho}$	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	$\frac{\operatorname{tg} B}{\rho}$	1	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	$\frac{5_{8}^{2} 8}{02}$	$\frac{2 \operatorname{tg} B}{\rho}$	0	1	0	0	0	0	0
0	0	0	0	0	$\frac{5 g _B}{D}$	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	1

Entrance Rotation Matrix (x) (Homogeneous)

The exit rotation matrix in the median plane can be obtained in a similar way, piving for an homogeneous magnetic field.

For the axial motion one gets the rotation matrix at the entrance and exit of the magnet by using the same relations (9) to get the $B\left(\beta_{1}\right)$ and $B\left(\beta_{2}\right)$ matrices and then by multiplying these by the proper transfer matrices of the small maguets.

The results are:

Entrance Rotation Marix (y) (Homogeneous)

ACKNOWLEDGEMENTS

The authors are very much indebted to Professor Marcello Damy de Souza Santos for the incentive and support during the period of execution of the paper.

RESUMO

A teoria geral de óptica de partículas descrita por K. L. Brown [1] foi utilizada pelos autores no cálculo dos elementos de matriz correspondendo ao movimento de uma partícula em campos magnéticos homogêneos e inomogêneos $(\mathrm{n}=1$). Esta teoria foi estendida para a rotagão da borda do magneto.

RÉSUMÉ

La théorie générale des faisceaux optiques, de K. L. Brown [1] a été utilisée par les auteurs pour troüver les éléments de matrice dus aux mouvements d'une particule dans un champ magnétique homogène et inhomogène ($n=1$). Cette théorie a été developpée pour une reorientation du champ de fuite au moyen d'un bord ajustable.

SUMMARY

The general theory of beam transport optics, as described by K. L. Brown [1] was used by the authors to find out the matrix elements corresponding to the motion of a particle in homogeneous and inhomogeneous ($\mathrm{n}=1$) magnetic fields. This theory was extended for the rotation of the field boundary.

BIBLIOGRAPHY

[1] Brown, K. L., (1966), A General First and Second Order Theory of Beam Transpoort Optica. Proceedings of the International Symposium of Magnet Technology, Stanford, California.
[2] Penner, S., (1961), Calculations of Properties of Magnétic Deflection Systems. Rev. Sci. Instr., 32, 150.
[3] Takeshlta, I., (1966), Matrix Representation of Magnetic Deflection Systems. Z. fû̀r Naturforschung, 21, 9.
[4] Brown, K. L., (1964), First and Second Order Magnetic Optic Matrix Equations for the Midplane of Uniform Field Wedge Magnets. Rev. Sci. Instr., 35, 481.

