

MONTE CARLO CALCULATION OF MONOCHROMATIC GAMMA-RAYS ENERCY LOSS - APPLICATION FOR Nal(TI) CRYSTALS

H. R. FRANZEN, O. Y. MAFRA e F. G. BIANCHINI

INSTITUTO DE ENERGIA ATOMICA
Caixa Postal 11049 (Pinheiros)

Comissi̊o Nacional de Energia Nucleas

Presidente: Profa Uriel da Coste Ribeiro

Universidade de São Paulo

Reitor: Prof Dr. Luia Antonio da Gama Silve

Ingtizuto de Energia Atômica

Disetox: Prof. Rômulo Rdboiro Pieroņ

Conselho Técnico-Científico do IEA

DiLusoog pidético-Cientificas

Divisạo de Física Nucleas co
Chefe: Prof Dre Marcello D.S Sentos
Divise̊o do Radioquimica o
Ghefe: Prof ${ }^{\circ}$ Dr. Fausto Walter de Lima
Divia@̈o de Rediobiologia - -
Chefe: Prof ${ }^{D} \mathrm{Dr}_{0}$ Rômulo Ribeiro Pieroni"
Divisào de Metalurgia Nuclear -
Chefe: Prof. Dro Tharcisio $D_{0} S_{0}$ Sentos
Divigảo de Engenharia Quimica -
Chefe: Lic. Alcídio Abråo
Divisäo de Engenharía Mucleax.
Cbefe: Enge Pedro Bento de Camargo
.Diそ̧sẽo de Operação e Manutenção de Reatores'-
Chefe: Enge Azor Camargo Penteado Filho
Divisão de Fi̊sica de Reatores -
Chese: Prof. Peulo Saraiva de Toledo
Divisåo de Ensino e Formação -
Chefe: Prof.Dr. Rui Ribeiro Franco

MONTE CARLO CALCULATION OF MONOCHROMATIC GAMMA-RAYS

 ENERGY LOSS - APPLICATION FOR NaI(T1) CRYSTALSH.R. Franzen, O.Y. Mafra e F.G. Bianchini

ABSTRACT

A program (GINASB) using the Monte Carlo Method for calculating the energy loss spectra of monoenergetic gamma rays in $\mathrm{NaI}(T 1)$ is described, taking into account the following primary interaction effects: Rayleigh, Photoeletric, Compton and Pair Production.

The method can be applied for circular cylinders of various diameters and heights.
This program supplies the energy loss spectra for point sources, broad and collimated parallel beams, and for incident gemma ray of energies from a few keV to 4 MeV .

The experimental resolution effect was taken into account by another program (STRECH).

Both programs were written in Fortran-II-D for the IBM 1620 - II Computer.
In this paper, the lists of the programs, GINASB and STRECH, functions and subroutines are presented.

A comparison between the calculated photo-fraction efficiencies and the energy loss - spectra with the experimental data is also presented.

I - INTRODUCTION

The precise knowledge of the energy loss spectra of gamma radiation is important in various fields of Nuclear Science and Technology, chiefly in Nuclear Spectroscopy.

The theoretical and experimental values of this energy loss are of utmost importance for complex spectra. The program presented in this paper permits the evaluation of the energy loss spectra for any sort of detector, by employing the appropriate cross sections and the various physical constants which are caracteristics of the detector.

In these theoretical calculations, the detector type
(scintillators, semiconductors, etc) is not relevant since the physical processes of gamma radiation interaction are the same and do not depend on the nature of the substance considered. This physical process of interaction is simulated by the Monte Carlo Method, the photon history being followed completely inside the detector.

The informations which are obtained through gamma spectrometry are the measurement of the intensities and energies of the gamma rays.

In order to measure the gamma ray intensity it is necessary to know the photofraction and absolute total efficiency of the detector, which can be defined as follows:
i - photofraction - is the fraction of interacting gamma rays that are totally absorbed (including all the secondary particles).
ii - efficiency - is the fraction of emitted source gamma rays that interacts at least once in the crystal.

These factors can be calculated when the energy loss spectra is known.

The program, written in Fortran II-D, can be supplied to a wide range of the basic parameters such as crystal dimensions, source geometries and incident gamma ray energies.

Amongst others, one of the main reasons which led the authors to develop this program were the lack, in the literature available, of calculations with results concerning the various chosen parameters and the fact that there is not a good agreement between the results from different authors ${ }^{(1)}$ 。

The program when utilized for $\mathrm{NaI}(\mathrm{Tl})$ crystal is called GINASB without the inclusion of Bremsstrahlung effect because of
the insufficiency of the IBM 1620 II cores storage.
That is the reason why GINASB can be used only till 4 MeV , where the Bremsstrahlung effect has a negligible influence. On a computer IBM/360 the inclusion of the Bremsstrahlung effect permits the calculation till 10 MeV 。

II - PHOTON HISTORIES

The complete history of an incoming photon and its subsequent secondary radiation is simulated according to the following manner: for an incident photon of a known energy, the initial direction and the point at which it enters the crystal are chosen at random, taking into account the source distribution.

In order to calculate the position of the first collision, a random number (chosen in the interval 0-1) which represents the probability of a photon colliding at a distance ℓ from the surface of the crystal, is related to the total cross section of the Sodium Iodide at the initial photon energy. The coordinates of the collision point are calculated and compared with the crystal dimensions. In the case that the collision point will be found to lie outside the crystal boundaries, the photon history ends. A count is placed in the history number counter and a new history is started. If the collision point lies inside the crystal (a count is placed in the interaction counter), a selection is made to choose the type of the event (Rayleigh or Compton scattering, Pair Production or Photoelectric Effect). The type of interaction is determined by a comparison of a random number with the ratio between the photoelectric effect cross section and the total cross section for the photon. If the random number is smaller than this ratio, the event will be a photoelectric effect; in the contrary case, the random number is compared with the ratio of the sum of the cross sections for Compton scattering and photoelectric effect to the total cross section. If
the random number is smaller than this ratio, the event will be Compton scattering; in the contrary case it is compared with the ratio of the sum of cross sections due to the photoelectric effect, Compton scattering and pair production to the total cross section. If the random number will be smaller than this ratio, the event will be pair production; in the contrary case it will be a Rayleigh scattering.

In the case of a Compton effect, the energy and direction of the secondary photon is calculated according to the Klein-Nishina distribution and this secondary photon is analyzed in the same way as the initial photon. The length of the Compton electron track is calculated by using Wilson's theory ${ }^{(3)}$ and its energy is the difference between the primary and the secondary photon energies. In the Rayleigh effect, the energy loss of the photon is of 1 eV and its new direction is determined by comparing a random number with the critical angle θ_{c} (which is a function of the incident photon energy) and with another random number with the distribution $d n \equiv \exp \left(-b \cos \theta_{c}\right)$. In the pair production effect, the lengths of both the electron and the positron are calculated in order to check whether the whole track length of the particles lies inside the crystal or not. If the positron loses all of its energy inside the crystal, two annihilation gamma rays are produced at the end of the positron track. The direction of one of the gamma rays is chosen at random and, consequently the position of the other gamma ray is unambigously determined at 180° of the first. Such annihilation gamma rays are considered then in the same way as the initial photons.

In the photoelectric effect, besides the photoelectron (which is analyzed whenever its track lies inside the crystal) there is the production of a characteristic gamma ray whose energy, for the NaI is of approximately 26 keV and has an isotropic distribution. This X-ray is treated in the same way as a initial gamma ray.

The energy loss spectra is presented as a histogram, in which the sub-intervals have a width equal to E_{o} / n, where E_{0} is the incoming photon energy and \mathfrak{n} is the number of channels considered.

III - GENERAL CONSIDERATIONS AND CALCULATION METHODS OF THE GINASB PROGRAM

Transport Mean Free Path

The distance between two collisions of a photon is chosen by hazard following the distribution:

$$
\begin{equation*}
2=-\frac{1}{5}[\ln (1-\xi)] \tag{1}
\end{equation*}
$$

where
ξ is a random number uniformly distributed in the 0-1 interval.
Σ is the total cross section at the photon energy.
As the distributions $(1-\xi)$ and ξ are the same in the $0-1$ interval, it follows that:

$$
\begin{equation*}
\ell-\frac{1}{\Sigma}[\ln \xi] \tag{2}
\end{equation*}
$$

Coordinate Systems at the Crystal Surface (Broad and Collimated Parallel Beams)

Broad beam - It is assumed that the incident gamma rays are uniformly distributed at the crystal surface. The point of impact of the incident gamma ray is determined by selecting a random point on the face of the cylinder.

Collimated parallel beam - The incident gamma ray is sampled in the same manner, except that the point of impact is
, 6 .
restricted to an area defined by the radius of collimation

$$
\begin{align*}
& x_{\text {initial }}=R \cos \theta \\
& y_{\text {initial }}=R \sin \theta \tag{3}\\
& z_{\text {initial }}=0
\end{align*}
$$

where
R is the radial distance from the point of impact at the surface to the crystal center.

This distance R can be calculated by the following expression

$$
\begin{equation*}
R=R_{\text {crystal }} \sqrt{\xi} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{R}_{\text {crystal }} & =\text { crystal radius } \\
\xi & =\text { random number from } 0 \text { to } 1
\end{aligned}
$$

The angle θ is chosen according to the distribution

$$
\begin{equation*}
\theta=\pi(2 \eta-1) \tag{5}
\end{equation*}
$$

where
η is a random number between zero and 1

Therefore, the final expressions for the initial
coordinates are:

$$
\begin{aligned}
x_{\text {initial }} & =R_{\text {crystal }} \sqrt{\xi} \cos [\pi(2 n-1)] \\
y_{\text {initial }} & =R_{\text {crystal }} \sqrt{\xi} \sin [\pi(2 n-1)] \\
z_{\text {initial }} & =0
\end{aligned}
$$

Calculation of the New Coordinates After Collision

$$
\begin{aligned}
& x=x_{\text {initial }}+|\ell| \cos \alpha \\
& y=y_{\text {initial }}+|\ell| \cos \beta \\
& z=z_{\text {initial }}+|\ell| \cos \gamma
\end{aligned}
$$

where
ℓ is the mean free path and $\cos \alpha, \cos \beta, \cos \gamma$ the direction cosines of the scattering direction.

Von Neumann's Technique for Selecting a Uniformly

Distributed Azimuthal Angle

If \emptyset is the azimuthal angle and ξ_{1} and ξ_{2} two random numbers uniformly distributed at the $0-1$ interval, we can select $\sin \emptyset$ and $\cos \emptyset$ through the following block diagram

$$
\begin{aligned}
\mu= & \cos \breve{D} \\
A- & \text { first } \\
& \text { collision }
\end{aligned}
$$

If $\xi_{1}, \xi_{2}, \dot{\xi}_{3}$ are three random numbers uniformly distributed in the $0-1$ interval and, if $K=\sqrt{3} / \sqrt[3]{16}$, the direction cosines can be obtained from the following block diagram:

Kahn's Method for Randomly the Cosine of the Polar Angle of Scattering

If $\alpha=E / .511$ (where E is the photon energy in MeV) and $\xi_{1}, \xi_{2}, \xi_{3}$ are random numbers, the cosine of the polar angle of the scattering gamma ray, μ, is obtained through the following diagram

Rotation of the Coordinates. Choice of New Direction Cosines

If $\cos \alpha, \cos \beta, \cos \gamma$ are the new direction cosines of the incident photon, \emptyset the azimuthal angle, and μ the cosine of the polar angle, the new scattering direction will be given by the direction cosines, $\cos \alpha^{\prime}, \cos \beta^{\circ}$ and $\cos \gamma^{\circ}$ by means of the follow ing diagram:

Point Source - Forced Collisions

The direction of the initial photon is chosen by hazard, uniformly distributed in a solid angle, subentended by the source height and the crystal diameter.

If D is the distance from the point source to the crystal surface, R the crystal radius, ξ_{1} a random number uniformly distributed in*the $0-1$ interval, the direction cosine of the z axis is calculated from the following block diagram

The other direction cosines can be obtained by

where x_{i}, y_{i}, z_{i} are the incidence coordinates at the crystal surface 。

IV - RESOLUTION EFFECTS - "STRECH"

In the calculation of the energy loss spectra by the GINASB, no account was taken of the resolution effects accompanying light collection within the crystal and its amplification through the photomultiplier system. In this chapter, those effects are included in the calculations.

The function used to correct the resolution effects is a Gaussian curve in the form:

$$
G\left(E, E^{\prime}\right)=\frac{1}{k \sigma} \exp \left[-\frac{1}{2}\left(E-E^{\eta}\right)^{2} / \sigma^{2}\right]
$$

whose half width is determined experimentally.
The resolution used for a $\mathrm{NaI}(\mathrm{Tl}) 3^{\prime \prime} \times 3^{\prime \prime}$ crystal was taken as $R=A E^{-1 / 2}+B$ where A and B are parameters determined experimentally ${ }^{(5)}$.

V - RESULTS AND COMPARISON WITH EXPERIMENTAL DATA

Some calculations of photofraction and intrinsic efficiency were made. In order to allow a comparison with the data available other authors, the crystal dimensions and geometries were chosen accordingly. These comparisons are presented in the tables. of the figures 2 and 3 。

The errors signed correspond only to the statistic fluctuations intrinsic of the Monte Carlo Method; therefore, the systematic errors, due to the choosen model or to the values of the cross section employed, are not taken into account.

In figure 4 we present a comparison of the photofraction curve with theoretical ${ }^{(1)}$ data obtained also by the Monte Carlo Méthod; it refers to point source, 10 cm far away from the $\mathrm{NaI}(\mathrm{Tl})$ crystal $3^{\prime \prime} \times 3^{\prime \prime}$ 。

Our results for the photofraction and efficiency can be considered satisfactory because of the reasonable agreement with the experimental ${ }^{(4)}$ data, as can be observed in figure 5.

A further comparison was made between the calculated histogram, the results obtained after the resolution correction by the STRECH program and the experimental data ${ }^{(4)}$ (figure 6).

The lack of agreement between the theoretical and the experimental response function can be attributed to the experimental background. The fact that the experimental photopeak
considered in the STRECH program, is a perfect Gaussian and not a modified one are responsible for the disagreement; more correct approach should give rise to a deeper valley before the photopeak.

VỊ - GINASB PROGRAM, SUBROUTINE AND FUNCTIONS FOR IBM 1620 (Printer Unit 144 Positions)

Function ACC	om number
Function POLSC	gives the total cross section $\mathrm{NaI}(\mathrm{T} 1)$ crystal.
Function REPOL	gives the relation between the individual to total cross sections.
Function NEUMAN	cosine and sine of the azimuthal angle 0.
Subroutine GERAL	calculates the energy loss inside the crystal, direction cosines and verifies if the electrons, positrons, gamma rays and X rays are or not inside the detector.
Program GINASB	selects the interaction type, kinetic energies and performs the distribution of energy loss in the corresponding channel.

Number of Core Storage Positions.Required

$$
\text { ACC } 342
$$

POLSC 596
REPOL 2320
GERAL 8094
NEUMAN 680
GINASB 14730

Restriction

a) maximum number of channels : 128
b) the control card *FANDK1010 must be used in all functions, subroutine and main program
c) the random number used to begin a complete calculation must have an $1,3,7$ or 9 in the unit position.

Sense Switch Conditions

To interrupt the program whenever required turn on sense switch 2. After the program interruption, 15 cards will be punched. These cards contain the necessary data to a next process ing.

To study the point source case, the switch number 3 must be mantained on during the running.

End of Processing

The processing finishes when the total number of interactions in the spectra reaches 10.000 .

Equivalence

RCRIST	crystal radius (cm)	Format F7. 3
HCRIST	crystal height (cm)	Format F7. 3
RFEIXE	beam radius (cm)	Format F7. 3
DP	distance from point source (cm)	Format F7. 3
IMP	always zero to begin a complete calçulation	Format F7.3
INTERV	interval between the impression of partial results	Format I6
NI	interactions number	Format I6
NH	histories number	Format I6
NC	Compton events number	Format 16

NP	pair production events number	Format I6
NR	Rayleigh events number	Format I6
NF	Photoelectric events number	Format I6
IU	random number	Format I10
KANAL	counts per channel	Format I8

VII - MODIFICATIONS OF GINASB PROGRAM, SUBROUTINE AND FUNCTIONS FOR IBM/360 COMPUTER (Model 44)
a) In all functions; subroutines and main program, replace LOG by ALOG.
b) The random number IU must contain only 9 digits and must end with any odd digit.
c) Remove all cards *FANDK1010 of the functions, subroutine and main program, and also the cards LDISK.
d) The variable IDENT in the READ instruction substitutes the sense switch conditions (see list).
e) Function ACC must be replaced by a new function ACC (see list).

VIII - "STRECH" PROGRAM

The resolution effect applied to the final results of GINASB program can be obtained by the STRECH program written in Fortran II-D. The counts $N(K)$ in a channel K can be obtained by the following expression:

$$
N(K)=\sum_{i=1}^{N} \frac{\omega_{i} I\left(\xi_{i}\right)}{\sqrt{2 \pi} \sigma_{i}} e^{-\left(E_{i}-E_{k}\right)^{2} / 2 \sigma_{i}^{2}}
$$

where

$$
\begin{aligned}
& N=\text { number of analyzed channels } \\
& I\left(\xi_{i}\right)=\text { counts in the } i{ }^{\text {th }} \text { channel (results of the } \\
& \quad \text { GINASB program) } \\
& \cdot 0_{i}=B E+A\left(E_{i}\right)^{1 / 2} \text { where } A \text { and } B \text { are constants and } E_{i} \\
& \text { the energy of } i \text { channel }
\end{aligned}, \begin{aligned}
& E_{i}, E_{k}=\text { channel energy } i \text { and } k \\
& N(K)=\text { final counts of } k \text { channel } \\
& \omega_{i}=1 \text { if } i \neq 0 \text { and } \\
& \omega_{i}=1 / 2 \text { if } i=\text { first or last channel }
\end{aligned}
$$

Sense Switch Conditions

Sense switch 1 - ON - to interrupt the program.
Sense switch 2 - ON - to check the number of the channel being processed.

Core Storage Positions Required

10418 .

Restrictions

Maximum number of channels: 145
The program must contain the control card *FANDK1008

Equivalence

A, B constants in the expression
$\mathrm{A}(\mathrm{E})^{1 / 2}+\mathrm{BE} \quad$ Format 2E14.8

E128
N
energy of the 128 channel
number of channels

Format E14. 8
Format I4

RESUMO

Neste 'trabalho apresenta-se o programa GINASB escrito em FORTRAN-II-D, para o com putador IBM 1620 , modêlo II. Este progirama permite efetuar, através do método de Monte Carlo um estudo da distribuição da perda de energia em cristais de iodeto de sódio, para radiação gama monoenergética, isto $e_{\text {, }}$ de função de resposta do cristal.

Os efeitos de interação da radiação gama com a matéria considerados no programa são: Rayleigh, foto-elétrico, Compton e produção de pares.

Podem ser efetuados coie êste programa cálculos da perda de energia para fontes pon tuais ou feixes, para várias dimensões de cristal e para energias dos raios gama incidentes variando desde alguns keV até aproximadamente 4 MeV .

Para o estudo da influência da resolução no espectro de linhas fornecido pelo pro grama GINASB, foi desenvolvido ụi outro programa - STRECH.

Neste trabalho são apresentadas as listas dos programas, funções e sub-rotinas uti lizadas ${ }_{0} e_{0}$ tambèm as modificações para o processamento do GINASB no computador IBM / 360.

São apresentadas ainda comparações entre a foto-fração calculada pelo GINASB e vä lôres teóricos e experimentais de outros autores, assim como uma comparação entre o espectro calculado corrigido para resolução e o experimental.

RESUME

Le GINASB est un programne écrit en langage FORTRAN-II-D, pour le computateur IBM 1620, modèle II. Le programme utilize la méthode de Monte Carlo pour étudier la distribution de la perte d'énergie dans les cristaux d'iodure de sodium; pour des radiations gamma monochromatiques.

Les effets de l'interation de la radiation gamma avec la matière considerés sont: Rayleigh, photoéléctrique, Compton et production de paires.

Le programme permet calculer pour dea cristaux de différentes dimensions, la perte d'energie des rayons gamma provenant de sources ponctuelles ou de faisceaux d'énergies com prises entre quelques keV jusqu'à 4 MeV 。

Le rôle de la résolution dans le spectre de raies donné par le GINASB est étudié avec 1 'aide du programme STRECH.

Les listes des programmes, fonctions et subroutines utilizées sont ici presentées ainsi que les modifications pour leur utilisation dans l'IBM/360。

La comparaison entre la photofraction calculée par le GINASB, et quelques valeurs théoriques et expérimentales prouvées dans la littérature est faite. Nous avons calculé aussi le spectre affecté par la resolution et comparé avec les donnés expérimentales.

ACKNOWLEDGEMENTS

The authors wish to thank Professor Marcello D.de Souza
Santos for suggestions and special interest, Mr. Achilles A.
Suarez and Miss E. Mazzilli for valuable discussions during the
development of the work, and the Departamento de Matemätica Aplica da, FFCL-USP, in the person of Mr. Maxmillian Heh1, for the use of IBM/360 computer.

REFERENCES

(1) B.J. Snyder - Nuclear Instruments and Methods, 46 (1967) 173.
(2) Methods in Computational in Physics - Berni Alder.
(3) W.F. Miller, W.J. Snow - ANL 6318.
(4) R.L. Heath - IDO 16880 - vol. 1.
(5) C.D. Zerby, H.S. Moran - ORNL 3169.

Figure 1 - Variation of photofraction values against incident gamma ray energy.

Figure 2 - Table presenting a comparison between the photofraction data, for $\mathrm{NaI}(\mathrm{T} 1)$ crystal 2 inch $\times 2$ inch, broad beam.

Figure 3 - Table presenting a comparison of the efficiency data for NaI(T1) crystal 2 inch $x 2$ inch broad beam.

Figure 4 - Comparison between theoretical curves of photofraction against the incident gamma ray energy for crystal 3 inch x 3 inch point source 10 cm for away.

Figure 5 - Comparison of our photofraction data with experimental data.

Figure 6 - Comparison for Cs^{137} between response function obtained from GINASB (with and without the correction for the resolution effect) and the experimental one.

Fig. 1. Photofraction vs energy for $3^{\prime \prime} \times 3^{\prime \prime}$ solid crystal.

PHOTOFRACTION

BROAD BEAM - CRYSTAL : NaI 2" $\times 2^{\prime \prime}$

E(MeV)	GINASB	ANL-6318	ANL-5902
.279	$.831 \pm .001$.829	.855
.661	$.476 \pm .001$.470	.481
1.33	$.295 \pm .005$.297	.286
2.62	$.166 \pm .001$.189	.199
4.45	$.121 \pm .001$.11	.141

Fig. 2

EFFICIENCY

BROAD BEAM - CRYSTAL : $2^{\prime \prime} \times 2^{\prime \prime}$

E(MeV)	GINASB	ANL-6318	ANL-5902
.279	.966	.966	$.957 \pm .004$
.661	.764	.754	$.749 \pm .005$
1.33	.612	.602	$.613 \pm .005$
2.62	.501	.495	$.509 \pm .003$
4.45	.477	.471	$.484 \pm .002$

Fig. 3

Fig. 5

Fig. 6

```
C GINASB-1BM 1620
C************************************************************
```



```
c.
C******************NO BREMSSTRAHLUNG
C
CN***************************************************
```



```
C*****************IDENTIFICACTION********************
C KK=2 COMPTON EFFECT
C KK=4 PAIR PRODUCTION
C KK=6 ANNIHILATION GAMMAS
C KK=8. PHOTOELECTRIC EFFECT
C KK=9 RAYLEIGH SCATTERING
C KK=10 X RAY
C
```



```
C INTERV INTERVAL TO PRINT PARCIAL RESULTS
C IMP EQUAL ZERO
C XIN,YIN,ZIN POINT COORDENATES
C FOTOFR PHOTOFRACTION
C EINC INCIDENT ENERGY (MEV)
C KANAL(KL) CHANNEL COUNTS
C NH NUMBER OF HISTORIES
C NC NUMBER OF COMPTON INTERACTIONS
C NI PRIMARY INTERACTIONS NUMBER
C NF NUMBER PHOTOELETRIC INTERACTIONS
C NR NUMBER RAYLEIGH INTERACTIONS
C NP NUMBER OF PAIRS INTERACTIONS
C ALFAD, BETAD,GAMAD - DIRECTION COSINES OF INCIDENT
                GAMMA
C ENA TOTAL ENERGY ABSORBED
C YF PHOTOELETRIC TO TOTAL CROSS SECTION RATIO
C YC COMPTON TO TOTAL CROSS SECTION RATIO
C YP PAIR PRODUCTION TO TOTAL CROSS SECTION RATIO
C YR RAYLEIGH TO TOTAL CROSS SECTION RATIO
C
C
C******SWITCH 2 ON-TO INTERRUPT THE PROGRAM
C
C******SWITCH 3 ON-TO STUDY POINT SOURCE
C
    DIMENSION KANAL(128)
        COMMON IX,SHIFT,KK,XIN,YIN,ZIN,RCRIST,HCRIST,KS
            , K,U,COSF'I,SENFI,
        IALFAD, BETAD,GAMAD,UL,COSFIE,SENFIE,EINIC,EF, ENA
            S, X'S,Y'S,ZS,ADS,BDS,
```

```
    2GDS,ECPP,MARX,JU,IRAY,XKR
C
C
    SHIFT:10.***(-10.)
    1X=100003
    1 RAY=0
    XKR=SQRT(3*)/(4***(2./3%))
C
C
C
C*********START*********
    1222 READ.IO, RCRIST,HCRIST,RFEIXE,EIMC,DP
    10 FORMAT(5F7.3)
        READ g,NI,NF,NR,NC,NP,NH, INTERV,IMP,IU
    9 FORMAT(816,110)
    PRINT 998,RCRIST,HCRIST,RFEIXE,EINC,DP
    998 FORHAT(1H,15HCRYSTAL RADIUS=F7.3,2HCM,5X,15HCR
                YSTAL HEIGHT=F7.3.2
            1HCM,5K,12HBEAM RADIUS=F7.3,2HCM,5K,7HENERGY=F7.
            *.3.3H|LEV//.7H ,13HDI
            2ST. SOURCE=F7.3//)
            READ 8900, (KANAL(KL),KL=1,128)
    8900 FORMAT(1018)
C
    MMP=, MPP+|MTERV
C
C
    101 EINIC=EINC
        MAPPP=0
        ENA=0
C
C
C NUMBER OF HISTORIES
        NH=NH+1
        Z IN=0
C
C
    IF(SENSE SWITCH 3)2034,2035
C. POINT SOURCE
2034 AX=SQRT(RCRIST*RCRIST+DP*DP)
    COSMAX=-DP/AX
    COSG=ACC}(1U)*(i+\operatorname{cosmAx)-1.
    RI=ABS(DP*SQRT(1,-COSG**2)/COSG)
    TETA=3.1416*(2.*ACC(1U)-1.)
    X|N=RI*COS(TETA)
    YIN=R|*SIN(TETA)
```

```
    ALFAD =XIN/SQRT(XIN*XIN+YIN*YIN+DP*DP)
    BETAD=Y|N/SQRT(XIN*XIN+YIN*YIN+DP*DP)
    GAMAD=COSG
    GO TO 40SO
C
C DISTANCY FROM CRYSTAL CENTER
    2035 R=RFEIXE*SQRT(ACC(IU))
C
C*****ENTANCF COORDEMATES OF INCIDENT GAMMA RAY
    462 TETA=3.1416*(2.*ACC(1U)-1.)
    XIN=R*COS(TETA)
    YIN=R*SIN(TETA)
C
C DIRECTION COSINES OF INCIDENT GAMMA RAY
    3034 ALFAD=0
    BETAD=0
    GAMAD=-1
C
C
    4080 ELECOL=-1./POLSC(EINIC)*LOG(ACC(IU)) *
C
        IF(SENSE SWITCH 3)2397,2396
    2397 XIN=X!N+ALFAD*ELECOL
        Y|N=Y|H+EETAD*ELECOL
    2396 ZNN=ZIN+ELECOL*GAMAD
    2398 KK=1
        CALL GERAL
        ENA=ENA+ENAS
        GO"TO (1,102),KS
    102 NI=NI+1
C
C**********TYPE OF INTERACTIONS
    105 CALL REPOL(EINIC,YR,YF,YC,YP)
    4566 Y=ACC(IU)
        IF(Y-YF)18,18,107
    107 IF (Y-(YF+YC))108,108,109
    108 NC=NC+I
        GO TO &
    109 IF(Y-(YF+YC+YP))280,280,9111
C
C
C**********OMPTON, EFFECT
    8 ALFA=EINIC/.511
    23 RI=ACC(1U)
        IF(RI-(2.*ALFA+1.)/(2.*ALFA+9.) ) 21, 21, 22
    2 1
    R2=ACC(1U)
```

```
    Y=1.+2**ALFA*R2
    R3=ACC(IU).
    IF(R3-4.*(1./Y-1./Y**2))24.24.23
24 U=1,-2.*R2
    GO T0 2G
22 R2=ACC(IU)
Y=(2.*ALFA+10)/(1.+2.*ALFA*R2)
U=1,-1,/ALFA* (Y-1. )
R3=ACC(IU)
IF(R3-.5*(U**2+1./Y))26,26,23
26 ALFAL=ALFA/Y
EF=.511%ALFAL
CALL NEUMAM(IU,COSFI,SENFI)
CAA=(1.+EINIC/.511)**2*(1.-U)
UL=SQRT (CAA/ (CAA+1. +U))
COSFIE=-COSFI
SENFIE=-SENFI
KK=2
K=2
CALL GERAL
ENA=ENA+ENAS
GO TO (1,104),KS
104 X1N=XS
Y|N=YS
Z|N=ZS
C
C
C FINAL-DIRECTION COSINES
    ALFAD=ADS
    BETAD=BDS
    GAMAD=GDS
        EINIC=EF
        GO TO 105
C
C
C*********PAIR PRODUCTION
    280.1F(EINIC-1.50)4556,5280,5280
    5280 ECPP=.5*(EINIC-1.022)
        NP=NP+1
        U=\operatorname{cos(.5II/ECPP)}
        CALL NEUMAM(IU,COSFI,SEMFI)
        UL=U
        IF(KK-1)33,34,33
    33 ALFAD=ADS
        BETAD=BDS
        GAMAD =GUS
34 COSFIE=-COSFI
```

SENFIE=-SENFI
$K K=4$
$K=2$
CALL GERAL
ENA $=E N A+E N A S$
GO TO (1,1 ,1010), KS
C
C
C FIRST ANMIHILATION GAMMA RAY
$1010 \times 1 N=X S$
$Y 1 H=Y S$
$Z \| N=Z S$
$X \mid N N=X S$
YINN=YS
$Z 1 N N=Z S$
$E L E=-1 . / \operatorname{PDLSC}(.511) * \operatorname{LOG}(\operatorname{ACC}(1 U))$
$K K=6$
C
C DIRECTION CQSINES OF ANNIHILATION GAMMA RAY
3999 XAN=XKR*(2 * $\left.\operatorname{*ACC}(I U)-I_{0}\right)$
YAN=XKR*(2 **ACC(IU)-1.)
$V A N=A C C(1 U)$
$D D=X A N * X A N+Y A N * Y A N+V A N * V A N$
IF (DO
$4476 \quad A L F A D=2 . * X A N * V A N / D D$
$B E T A D=2 . * Y A N * V A N / D D$
GAMAD = (VAN*VAN-XAN*XAN-YAN*YAN)/DD
2731 XIM=XIN+ALFAD*ELE
$Y \mathrm{H}=Y \| N+B E T A D * E L E$
5441 Z $1 N=Z 1 N+E L E * G A M A D$
1002 CALL GERAL
ENA=ENA+ENAS

- MAPPP= MARX

GO TO (1011,1,1105),KS
1105 EINIC $=.511$
gO TO 105
6
C SECOND ANNIHILATION GAMMA RAY
$1011 K K=7$
EINIC $=.511$
GAMAD $=-G A M A D$
$A L F A D=-A L F A D$
$B E T A D=-B E T A D$
$X I N=X I N N$
YIN=YINA
$Z N=Z 1 N N$
$E L E=-1 . / P O L S C(E \mid N I C) * \operatorname{LOG}(A C C(1 U))$
GO TO 2731
C
C
C******PHOTJELETRIC EFFECT
$18 \quad$ IF $(E I N I C-2.00) 5218,5218.4566$
$5218 \mathrm{NF}=\mathrm{NF}+1$
IF (EINIC-.033164)5220.5220.5219
5220 ELIG $=.005187$
GO TO.6588
5219 ELIG $=.033164$
$6588 \mathrm{ECIN}=\mathrm{EIN} / \mathrm{COFLG}$
$\operatorname{CCC}=(E|N| C /=511) * * 2$
$D D D=1 .+1.022 / E C I N$.
$B C=S Q R T(C C C * D D R /(1 .+C C C * D D D))$
587 TETA $3.1416 \%(1 .-A C C(1 U))$
$A K=2, * B C *(1 .+E L I G / E C I H)$
DNDCM $=$ SIN (TETA $) * 2 *\left(I_{0}+A K * \operatorname{COS}(T E T A)\right)$
IF (DNDOM) $587: 586,586$
$586 \operatorname{COSMAX}=\operatorname{SORT}\left(\left(1_{0}+A K\right) * * 2+A K * * 2\right) / A K-\left(1_{2}+A K\right) / A K$
DNDTET $=\operatorname{SIN}(T E T A) * * 2 *(1,+A K * \operatorname{COS}(T E T A)) /((1 .-C O S M$ $A X * * 2) *(1,+A K * \operatorname{cosmA}$
1X))
1F(ACC(1U)-DNDTET)1586.1586.587
$1586 \mathrm{UL}=\operatorname{COS}(\mathrm{TETA})$
CALL NEUMAM(IU。COSFIE, SENFIE)
IF (KK-1)914.913.914
914 ALFAD=ADS
$B E T A D=E D S$
$G A M A D=G D S$
$913 K K=8$
$K=-1$
CALE GERAL

- ENA =ENA+ENAS

1 IF (MAPPP)911,911,1012
1012 MAPPP $=0$
GO TO 1011
C
C**훙RAYEIGH SCATTERING
9111 IF (EINIC-1.500) 8886.4566.4566
$8886 \quad \mathrm{HR}=\mathrm{NR}+1$
\mid RA. $Y=1$
SENC $=.026 * 53 . * *(1 . / 3) * ..511 / E I N I C$
$\operatorname{COSC}=1 .-2 . * S E N C * S E N C$
$7466 \quad \operatorname{COSTQ}=2 * \operatorname{ACC}(1 U)-1$ 。
IF (ABS $(\operatorname{COSC})-1.) 7411,7411,1273$

```
    7411 IF(cosTQ-cosC)7456,1273,1273
    1273 DN=EXP(-.100*COSTQ)
    8101 Y=ACC(IU)
    IF(-DN-Y)7466,1808,1808
    1808 UL=COSTQ
    2605 IF(KK-1)2607,2603,2607
    2607 ALFAD=ADS
        BETAD=BDS
        GAMAD=GDS
    2608 KK=9
    CALL NEUMAM(IU,COSFIE,SENFIE)
    ENNIC=E|NIC-.00I
    2712 K=-1
    CALL GERAL
    I RAY=0
    ENA=ENA+.001
    GO TO(1.9105),KS
    9105 K1N=XS
    Y|N=YS
    ZIN=ZS
    ALFAD=ADS
    BETAD=EDS
    GAMAD=GDS
    GO TO 105
C************TOTAL ENEPGY DISTRIBUTION
C
    911 IF(ENA)912,2010,912
    912 I|=ENA/EINC*128.
    IF(||-128)4914,915,8316
    915 KANAL(I|)=KANAL(1|)+1
    GO TO 2010
    8316 PRINT 9,NH
    919 STOP 1
    4914 KANAL(I|+1)=KANAL(||+1)+1
C
C
C**********PRINTING RESULTS
2010 1F(SENSE SHITCH 2)996,601
601 1F(NI-IMP)101,1180,1180
1180 IMP = MMP + IHTERV
    IF(IMP-10000-INTERV)996, 996.919
996 PRINT 997,NH,NI,NC,NR,NF,NP,IU,IMP
    PRINT 849,(KL,KANAL(KL),KL=1,128)
        LI=0
    DO 5656 KL=1,128
6666 LI=LI +KANAL(KL)
```

```
        ALI=LI
        SSS=KANAL(128)
        FOTOFR=SSS/ALI
        ANI=N1
        ANH=NH
        EFIC=ANI/ANH
        ERRO=SQRT (FOTOFR*(1, -FOTOFR)/ANI)
        PRINT 4896,LI,FOTOFR,ERRO,EFIC
4896 FORINAT(/1H, 10HTOTAL SUM = 110,6%,14HPHOTOFRACTIO
        . N=F7.4.3X,6HERROR=F.
        38.4.6X,IOHEFICIENCY=F6.3//)
        IMPI=1MP-INTERV
        PUNCH 10, RCRIST,HCRIST,RFEIXE,EINC,DP
        PUNCH 9,NI,NF,NR,NC,NP,NH, INTERV,IMP1,IU
        PUNCH 8900,(KANAL(KL),KL=1,128)
        IF(NI-10000) 101,1222,1222
849 FORIAT(10(IH, 13,15,4X)).
997 FORIMAT(IH, 3HNH=17,4X,3HNI = 17,4X,3HNC = 17,4X,3HM
        R=17,4X,3HNF=17.4X,
    13HNP=17,4X,3HIU=110,4X,4H1MP=15//)
    END
```


为安汸方

```
*LDISKHEUIMAM
*FANDK1010
    SUBROUTINE NEUMAM(IU,COSFIS,SENFIS)
    COMMON, IXX,SHIFTT,
25 XIS=2 *ACC(IU)-1.
    Y|S=ACC(IU)
    D=X|S**2+Y|S**2
    IF(D-1.) 27,27,25
27 COSFIS=(XIS**2-Y|S**2)/D
    SENFIS=2.*XIS*Y!S/D
1 RETURN
    END
```

```
*LDISKPOLSC
*FANDK1010
        FUNCTIOH POLSC(X)
        COHMON IXX,SHIFTT
        A}=.43429448*LOG(X
        Y=((()((C.1630869*A+.079652939)*A-.66729676)*A-
        .11527865)%A+.9045%
        1708)*A-.2132722)*A+.24577625)*A-.58069245)*A-.6
        7765706
    POLSC=10.**Y
    RETURN
    END
```


*LDISKREPOL

```
*FANDK1010
    SUBROUTINE REPOL (X,YR,YF,YC,YP)
    COMMON IXK, SHIFTT
C \(\quad Y R=\) RAYLEIGH/TOTAL
C YF=PHOTOELETRIC/TOTAL
C YC=COMPTON/TOTAL
C \(\quad Y P=P A / R S / T O T A L\)
    IF \((X-.033) 402,401,401\)
    \(401 \quad \mathrm{~A}=.43429448 \% \operatorname{LOG}(X)\)
        \(Y C=(()(()(-.17024671 * A-.084704039) * A+.58939041)\)
            *A+. 12726459\() * A-.90\)
        \(1236745) * A+.25930447) * A-36749336) * A+.053181121)\)
```



```
            \(Y C=10 . * * Y C\)
            IF Y ( -2.00\() 256,256,257\)
                                    म1=:
```



```
            \(* A+.12898819) * A-1.0\).
    1959355.\() * A+.21999997) * A+.50032088) * A-1.4761774) *\)
                        A-1. 2033302
    \(Y F=10 . * * Y F\)
    GO TO 258
\(257 \quad Y F=0\)
258 IF \((X-1.5) 10,11,11 \quad \ldots\)
    \(10 \quad Y P=0\).
    GO TO 60
```

$11 \mathrm{YP}=(\mathrm{C}($（（（（（ $-5.2057247 * \mathrm{~A}+11.729524) * \mathrm{~A}-2.1291118$ $) * A-6.8502781) * A-1$.
$1552049) * A+.93532872) * A+4.2913581) * A+6.5603012) *$ $A-15.53 .9123) * A+10.3$
$117165) * A-3.273708$ $Y P=10 . * * Y P$
$60 \mathrm{IF}(X-1,5) 20,20,21$
$21 Y R=0$ ．
GO TO 30
$20 \mathrm{YR}=((((-1.3547494 * A-3.0337056) * A-1.506932) * A-.5$
$7961172) * A-1.182879$
19）＊A－1．749261
$Y R=10 . * * Y R$
30 RETURN
$402 \quad Y R=0$
$Y C=0$
$Y P=0$
$Y F=1$
RETURN
END

シねうか
＊LDISKACC
＊FANDKIO10
FUNCTION ACC（IU）
COMMON IXX，SHIFTT
$1 X=1 \times X$
SHIFT＝SHIFTT
$1 U=1 X^{*} 1 U$
$R U=I U$
$A C C=R U * S H I F T$
RETURN
END

```
*lDISKgERAL
*FANDKIO10
    SUBROUTIINE GERAL
C
C
    COMMON IXX,SHIFTT,KKK,X,Y,Z,RCRIST,HCRIST,KKKS,
                KENT,UE,COSE,SENE,
    IALFE,BETE,GAME,UEE,COSFE,SENFE,EINICI,EFI,ENAS,
        XTAUX,YTAUX,ZTAUX,
    2ALFAUX, BETAUK,GAMAUX, ECPPI,MARX,IU,IRAYS,XKRR
    KF=0
    NF=0
    HARX=0
    ENAS=0
    I KKK=KKK
    MARP=-1
    KONT=0
    XT=X
    YT=Y
    ZT=Z
    GO TO (301,302,1,302,1,301,301,302,302), 1KKK
1 STOP
302 A=UEE
    B=COSFE
    C=SEMFE
    D=GAME
    E=ALFE
    F=BETE
    KE=KENT
6 IF(ABS(D)-1.)21,2,21
21 CA=SQRT(1.-A*A)
    GA=SQRT (1.-D*D)
    AA=A*E+CA/GA*(E*D*B-F*C)
    BB=A*F+CA/GA*(F*D*B+E*C)
    GG=A*D-CA*GA*B
    GO TO 3
2 CA=SQRT(I.-A*A)
    AA=CA*B
    BB=CA*C
    GG=D*A/ABS(D)
3 IF(KE)I400.5,4
1400 IF(IRAYS)8775,1311,8775
1311 KF=1
    ALFASS=AA
    BETSS=BB
    GAMSS=GG
    IF(KF)328,328,918
```

```
328 A=UE
    B=COSE
    C=SENE
    KE=KE-2
    GO TO 6
5 ALFAS=AA
    BETAS=BB
    GAMAS=GG
    IF(IKKK-2)701,701,702
702 EELETR=ECPP1
    GO TO 506
701 EELETR=E|NICI-EFI
506 DISTAN=.693*LOG(EELETR/10.7415*1.)*2.86
203 XE=X+DISTAN*ALFASS
    YE=Y+DISTAN*BETSS
    ZE=Z+DISTAN*GAMSS
1009 XT=XF
    YT=YE
    ZT=ZE
    301 IF(ZT)1301,8,9
1301 IF(ABS(ZT)-HCRIST)}8,8,
8 D=SQRT (XT*XT+YT*YT)
- IF(D~RCRIST)I1,11,9
11 GO TO (403,401,405,408,404,418,419,420,4031,303
        3).1KKK
9.GO TO (303,304,303,306,305,303,403,800,303,712)
800 MF=1
    GO TO 304
408 ENAS=EELETR
    IKKK=1KKK+I
    MARP=MARP+1
    GO TO 600
507 ALFASS=ALFAS
    BETSS=BETAS
    GAMSS=GAMAS
    gO TO 203
306 MARP=MARP+1
304 AK1=XT*ALFASS+YT*BETSS
    RIQ=XT*XT+YT*YT
    DISTAI=AKI-SQRT(AKI*AKI +(RCRIST*RCRIST-RIQ)*(1.
        -GAMSS**2))
    DISTA1=DISTAI/(1.-GAMSS*GAMSS)
    IF(DISTAI)1477,6765,6765
6765 DIF=DISTAN-DISTAI
    IF(ABS(Z+DIF*ALFASS)-HCRIST)4476,1477,1477
1477 IF(ZT)2477,1479,1479
```

1.479 DISTAI $=2 T / G A M S S$

GO TO 4476
2477 DISTAI $=(H C R I S T+Z T) / G A M S S$
4476 IF (DISTAN-DISTA1)4611,1476,1476
4611 DISTAI=DISTAN
$1476 \mathrm{EI}=(\operatorname{EXF}(\mathrm{D} \mid S T A 1 /(.693 * 2.86))-1) *$.
IF (MF) $501.501,421$
501 ENAS $=E N A S+E E L E T R-E 1$
$1 K K K=1 K K K+1$
600 IF (MARP)201,507,303
404 ENAS =ENAS + EELETR
KOHT $=K O N T+1$
405 XTAUX $=X E$
Y TAUX $=Y E$
$Z T A U X=Z E$
ALFAUX=ALFASS
BETAUXX=BETSS
GAMAUX=GAMSS IF (KONT)4I8,403.418
403 KKKS $=2$ RETURN
$201 \mathrm{IF}(E F I-033) 13.14,14$
14 ELECG $=-1 . / P O L S C(E F I) * \operatorname{LOG}(A C C(I U))$
8813 DISTAI=ELECG
GO TO 5Q7
$13 \quad \mid F(E F 1-.010) 813.814,814$
$814 \operatorname{COEFAB}=E X P(-7.1827) * E F 1 * *(-2.8871)$
ELECG $=-1 . / \operatorname{COEFAB} * \operatorname{LOG}(A C C(1 U))$
60 TO 8813
813 ENAS=ENAS+EFI
GO TO 303
401 EI=0
GO TO 501
303 KKKS $=1$
RETURN
$418 \quad \operatorname{MAFX}=1$
419 KKKS=3
RETURN
918 EELETR=EINIC1-.033164
IF (EELE TR) 9271,420,506
9271 EELETR=EINIC1-.005187
GO TO 506
421 ENAS=EELETR-E1
gO TO 1006
$420 \quad$ ENAS = EELETR
GO TO 1006
8775 ALFAUX=AA

```
    BETAUX=BB
    GAMAUX=GG
    ELER=-1./POLSC(EINICI)*LOG(ACC(IU))
    XE=X+ELER*ALFAUX
    YE=Y+ELER*BETAUX
    ZE=Z+ELER*GAMAUX
    GO TO 100g
4031 XTAUX=XE
    YTAUX=YE
    ZTAUX=ZE
    KKKS=2
    RETURN
1006 IF(E|N|C1-.033164) 6011.5211.5211
5211 COEFX=23.165056
5212 EL=-I./COEFX*LOG(ACC(IU))
3999 XAN=XKRR*(2.*ACC(IU)-1.)
    YAN=XKRR*(2.*ACC(IU)-1.)
    VAN=ACC(IU)
    DD=XAN*YAN+YAN*YAN+VAN*VAN
    IF(DD*DD-VAN)5476,5476,3999
5476 FAD=2.*XAN*VAN/DD
    TAD=2.*YAN*VAN/DD
    AMAD=(VAN*VAN-XAN*XAN-YAN*YAN)/OD
2731 KXIN=X+FAD*EL
    YYIN=Y +TAD*EL
    ZZIN=Z+EL*ANAD
879 YT=XXIN
    YT=YYIN
    ZT=ZZIN
    1KKK=10
    GO TO 301
3035 IF(EINIC1-.033164)6011,6033,6033
6011 ENAS=ENAS+.005187
    GO TO 303
6033 ENAS = ENAS +.033164
    GO TO 303
712 IF(EINICI-.033164)332,333.333
333 ENAS=ENAS +.005187
    gO TO 303
332 ENAS=ENAS
    GO TO 303
    END
```

```
C***************GINASB | BHi / 360****************
C
C
C****************************************************
```



```
C
C
C******************NO BREMSSTRAHLUNG
C
```



```
                ********************
C*****************IDENTIFICACTI ON#***********心*2******
C KK=2 COMPTON EFFECT
C KK=4 PAIR PRODUCTIOM
C KK=G ANFIHILATION GAPHAS
C KK=8. PHOTOELECTRIC EFFECT
C KK=9 RAYLEIGH SCATTERING
C KK=IO X RAY
C
C*******************COMMENTS*********************
C INTERV INTERVAL TO PRINT PARCIAL RESULTS
C IMP EQUAL ZERO
C XIN,YIN,ZIH POINT COORDENATES
C FOTOFR PHOTOFRACTION
C EINC INCIDENT ENERGY (MEV )
C KANAL(KL) CHANNEL COUNTS
C NH NUMBER OF HISTORIES
C HC NUPBER OF COMPTON INTERACTIONS
    C HI PRIMARY INTERACTIONS NUMBER
C NF HUMBER fHOTOELETRIC INTERACTIONS
C NR NUMBER RAYLEIGH INTERACTIONS
C NP NUMBER OF PAIRS INTERACTIONS
C ALFAD,BETAD,GANAD - DIPECTION COSINES OF INCIDENT
                    gAMMA
C ENA TOTAL ENERGY ABSORBED
C YF PHOTOELETRIC TO TOTAL CROSS SECTION RATIO
C YC COMPTON TO TOTAL CROSS SECTION RATIO
C YP PAIR PRODUCTION TO TOTAL CROSS SECTION RATIO
C YR RAYLEIGH TO TOTAL CROSS SECTION RATIO
C
C
C
C
C*****IDENT EQUAL ZERO- BROAD OR NARRON BEAM
C*****IDENT EQUAL ONE- POINT SOURCE
C
    DIMENSION KANAL(128)
```

COMMON IX, SHIFT, KK, XIN,YIN,ZIN, RCRIST,HCRIST, KS , K, U, COSFI, SENFI
IALFAD, BETAD,GAMAD, UL, COSFIE, SENFIE, EINIC, EF, ENA $S, X S, Y S, Z S, A D S, B D S$,
2GDS,ECPP,MARX,IU,IRAY,XKR
${ }^{\circ}$
C
C

$$
\text { SHIFT }=10_{0} * *\left(-10_{0}\right)
$$

$$
1 x=100003
$$

$$
\mid R A Y=0
$$

$$
X K R=\operatorname{SQRT}(3 .) /(4 . * *(2.13 .))
$$

C
C
C
C*********START*********
1222 READ 10, RCRIST,HCRIST, RFEIXE,EINC, DP
10 FORIAT (5F7.3)
READ G, NI, NF, NR, NC, NP, NH, INTERV, IMP, IU, IDENT
3 FORMAT $816,19,12$)
PRINT 998, RCRIST, HCRIST, RFEIXE, EINC, DP
998 FORMAT (IH, 15HCRYSTAL RADIUS $=F 7.3,2 H C M, 5 X, 151 \mathrm{ICR}$ YSTAL HE!GHT=F7.3,2
$1 \mathrm{HCM}, 5 \mathrm{X}, 12 \mathrm{HBEAM}$ RADIUS $=\mathrm{F} 7.3,2 \mathrm{HCM}, 5 \mathrm{X}, 7 \mathrm{HENERGY}=\mathrm{F} 7$. , 3. ЗHMEVF/, IH , 13HDI
2ST. SOURCE=F7.3//)
READ 8900, (KANAL (KL), $K L=1,128$)
8900 FORTAT (1018)
C
IMP = IMP + IATERV
C
C
101 EINIC=EINC
MAPPP=0
$E N A=0$
C
C
C NUMBER OF HISTORIES
$\mathrm{NH}=\mathrm{FH}+\mathrm{H}$
$Z \mid N=0$
C
C
C POINT SOURCE
IF (IDENT $) 2034,2635,2034$
2034 AX $=$ SQRF (RCRIST*RCRIST+DP*DP)
$\cos A A X=-D P / A X$
$\operatorname{COSG}=\mathrm{ACC}(1 U) *(1 .+\operatorname{COSMAX})-1$.

```
            RI=ABS(DP*SQRT(1,-COSG**2)/COSG)
            TETA=3.1416*(2.*ACC(|U)-1.)
            X!N=R|*COS(TETA)
            Y|N=RI*SIN(TETA)
            ALFAD=XIN/SQRT(XIANXIN+Y|N*Y|A+DP*DP)
            BETAD=Y/N/SQRT(X|N*X|N+Y|N*YIN+DP*OP)
            GANAN=COSG
            GO TO 4080
C
C
C DISTANCY FROHI CRYSTAL CEHTEP
    2035 R=RFE!XE*SQRT(ACC(IU))
G
C*****ENTANCE COORDENATES OF IHCIDENT GAMMA RAY
    462 TETA=3.1416*(2.*ACC(1U)-1,)
        X|N=R*COS(TETA)
    Y|N=R*S||(TETA)
C
C DIRECTION COSIMES OF IHCIDENT GAMMA RAY
    3034 ALFAD=0
            BETAD=0
            GAMAD= = 2
C
C ,
    4080 ELECOL=-1./POLSC(E|M|C)*ALOG(ACC(IU))
C
            1F(IDENT)2397.2396,2397
        2397 X||*X|N+ALFAD*ELECOL
            Y!H=Y|H*RETAD*ELSCOL
        2396 Z|N=Z|M+ELECOL*GAMAD
        2338 KK=1
            CALL CERAL
            EMA=ENA+ENAS
            QO TO. (1,102),KS
    102 N|=M1+1
C
C*********TYPE OF IHTERACTIONS
    105 CALL REPOL(EINIS,YR,YF,YC,YP)
    4566 Y=ACC(IU)
            |F(Y-YF)1S,18,107
    107 IF(Y-(YF+YC))]18.108.100
    108 NC=NC+1
    GO TO.8
    209 IF(Y-(YF+YC+YP))280.280.9111
C
C
C**********COBTPTON EFFECT
```

```
    8 ALFA=EINIC/.511
    23 R1=ACC(1U)
        IF(R1-(2**ALFA+1.)/(2.*ALFA+9.))21,21,22
    21 R2=ACC(1U)
        Y=1.+2.*ALFA*R2
        RB=ACC(IU)
        IF(RJ-4**(I./Y-1./Y**2))24.24.23
    24 U=1,-2.*R2
    GO TO 26
    22 R2=ACC(IU)
        Y=(2.*ALFA+10)/(1.+2.*ALFA*R2)
        U=1.-1./ALFA* (Y-1.)
        RB=ACC(IU)
        IF(R3-.5*(U**2+E./Y))26,26.23
26 ALF自L=ALFA/Y
        EF=.511%ALFAL
        CALI NEUMAM(IU,COSFI,SENFI)
        CAA=(I.+EINIC/.511)**2*(1,-U)
        UL=SQRT (CAA/ (CAA+1.+U))
        COSFIE=-COSFI
        SENFIE=-SENFI
        KK=2
        k=2
        CALL GERAL
        ENA=ENA+ENAS
        GO TO (1,104),KS
    104 <1N=XS
        Y|N=YS
        Z|N=ZS
C
C
C FINAL-DIPECTION COSINES
    ALFAD=ADS
    BETAD=BDS
    GAMAD=GDS
    EINIC=EF
    GO TO 105
C
C**********PAIR PRODUCTION
    280 IF(E|H1C-1.50)4565,5280,5280
    5280 ECPP= .5*(EINIC-I.022)
    NP=NP+1
    U=\operatorname{COS(.511/ECPP)}
    CALL MEUMAM(IU,COSFI,SENFI)
    UL=U
        IF(KK-1)33,34,33
```

C

```
    33 ALFAD=ADS
    BETAD=BDS
    GAMAD=GDS
34 COSFIE=-COSFI
    SENFIE=-SENFI
    KK=4
    k=2
    CALL GERAL
    ENA=ENA+ENAS
    GOTO(I.I ,1010),KS
C
    1010 K1N=XS
    Y|N=YS
    Z1N=ZS
    X|NN=KS
    YINN=YS
    ZINN=ZS
    ELE=-1./POLSC(.511)*ALOG(ACC(1U))
    KK=6
C
    3999 XAN=XKR*(2,*ACC(IU)-1.)
    YAH=XKR*(2,*ACC(1U)-1 , )
    VAH=ACC(IU)
    DD=XAN*XAN+YAN*YAM+VAN*VAN
    IF(DD*DD-VAN)4476,4476,3999
        4476 ALFAD=2**AN*VAN/DD
        BETAD=2 *YAONVAN/DD
        GANAD=(VAM*VAN-XAN*XAN-YANOYAN)/DD
        2751 X1H=X1N+ALFAD*ELE
    YIN=YIN+EETAD*ELE
    5442 2 IN= Z1N+ELE*GANAD
    1002 CALL GERAL
    ENA=ENA+ENAS
    MAPPP=MARK
    GO TO (1011,1,1105):KS
    1105 EIN1C=5.511.
    GO TO 165
C
C SECOND ANNIHILATION GAMMA RAY
1011 KK=7.
    E|N|C= ,511
    GAMAD=-GAMAD
    AL.FAD=-ALFAD
```

```
            BETAD=-BETAD
            XIN=XINN
            YIN=Y|NN
            Z|N=Z|NN
            ELE=-1./POLSC(EINIC)*ALOG(ACC(IU))
                            GO TO 2731
C
C******PHOTDELETRIC EFPECT
    18 IF(E|N|C-2.00)5213,5218,4566
    5218 NF=NF+I
        IF(EINIC-OS3264)5220,5220,5213
    5220 ELIG=.005187
    GO T0,6588
    5219 ELIG=.033164
    5588 ECIN=EINIG-FLIG
    CCC=(E|NIC/.511)**2
    DDD=1.+1.022/ECIN
    BC=SORT(CCC*DOD/(1.+CCC*DDD )
    587 TETA=3.1415*(1.-ACC(10))
    AK=2.*BC*(1.+ELIG/ECIN)
    DNDON=SIN(TETA)**2*(1.+AK*COS(TETA))
    IF(DNDOM)587,546,585
    586 COSMAX=SQRT ((1. +AK)**2+AK**2)/AK-(1.+AK)/AK
    DHDTET=SIH(TETA)**2*(I.+AK*COS(TETA))/((1.-COSM
        AX**2)*(1.+AK*\operatorname{cosmA}
    IX))
        IF(ACC(1U)-DNDTET)I586.1586.58.7
    1586 UL=COS(TETA)
    CALL NEUMAIA(IU,COSFIE, SENFIE)
    IF(KK-1)914.913.914
    914 ALFAD=AD'S
    BETAD=BDS
    GAMAD=GDS
    913 KK=8
        k=-1
        CALE GERAL
        ENA=ENA+ENAS
        I IF(MAPPP)O11,911,1012
    1012 MAPPP=0
            GO TO 1011
C
C
C*****RAYLEIGH-SGATTERING
    9111 IF(EINIC-1.500)8886,4565,4566
    8886 NR=NR+1
        | RAY=I
```

```
    SENC=.026*53.**(1./3.)*.511/EINIC
    COSC=1.-2.*SENC*SENC
    7466 COSTQ=2.*ACC(1U)-1.
    IF(ABS(COSC)-1.)7411,7411,1273
    7411 IF(COSTO-COSC)7466,1273,1273
    1273 DN=EXP(-.100*COSTQ)
    8101 Y=ACC(IU)
        IF(DN-Y)7456,1808,1808
        1808 UL=COSTQ
        2605 IF(KK-1)2607,2608,2607
        2607 ALFAD=ADS
        BETAD=EDS
        GAMAD=GDS
        2608 KK=9
        CALL NEUMAM(IU,COSFIE,SENFIE)
        ENNIC=EINIC-.001
        2712 K=-1.
        CALL-gERAL
        IPAY=0,
        EMA=ENA+.001
        GO TO(1,9105),KS
        9105 X1A=XS
        YIN=YS
        ZIN=ZS
        ALFAD=ADS
        BETAD=BOS
        GAMAD=GDS
        go TO 105
C**********TOTAL ENERGY DISTRIBUTION
C
    91]. IF(ENA)912,2010,912
    912 1I=ENA/ENNC*128.
    IF(11-128)4914,915,8316
    915 KANAL(11)=KANAL(11)+1
            GO TO 2010
    8316 PRINT 9,NH
    919 STOP I
    4914 KANAL}(11+1)=\operatorname{KanaL}(11+1)+
C
C
C**********PRINTIMG RESULTS
    2010 GO TO 601
    601 1F(N1-19P)101,1180,1180
    1180 1MP=IMP+INTERV
    IF(IMP-10000-1NTERV)996, 396,919
    996 PRINT 997,NH,NI,NC,NR,NF,NP,IU,MMP
```

```
    PRINT 849,(KI,KANAL(KL),KL=i,128)
    LI=0
    DO 6666 KL=1.128
6666 LI=LI+KANAL(KL)
    ALI=LI
    SSS=KANAL(128)
    FOTOFR=SSS/ALI
    ANI=N!
    ANH=NH
    EFIC=ANI/ANH
    ERRO=SQRT(FOTOFR*(I,-FOTOFR)/ANI)
    PRINT 4896,LI, FOTOFR,ERRO, EFIC
4896 FORMAT(KIH, 10HTOTAL SUM = 110,6K,14HPHOTOFRACTIO
                N=F7.4,3'X, GHERROR=F.
    38.4,6X,1OHEFICIENCY=F6.3//)
    IMPI= IMP-INTERV
    PUNCH IG, RCRIST,HCRIST, RFEIXE,EINC,DP
    PUNCH G,NL,NF,NR,NC,NP,NH, IHTERV, IMP1,IU, IDENT
    PUNCH-8900,(KANAL (KL),KL=1,128)
    IF(N1-10000)101,1222,1222
849. FORMAT(10(1H,13,15,4X))
997 FORMAT(1H,3HNH=17,4X,3HNI=17,4X,3HNC=17,4X,3HM
            R=17,4X,3HNF=17, 4X,
13HNP=17,4X,3HIU=19,4X,4H1MP=15//)
    END
```

FUNCTION ACC（IU）
$1 U=1 U * 65539$
IF（IU）5，6，6
$5 \quad I U=1 U+2147483647+1$
$6 \quad Y F L=1 U$
ACC $=Y F L * 4656613 E-09$
RETURN
END
*FANDK1008

C
c
C A, B-COEFFICIENTS OF SIGMA = A*E+B*EK*. 5
C E128-E日EPGY (MEV) OF CHANNEL NO. 128
$C \quad N$ - NO. OF CHANNELS
C N - COUNTS / CHANNEL - OUTPUT FROM GINASB PROGR AM
C C(N) - COUNTS AFTER TAKING INTO ACCOUNT THE RES OLUTION EFFECT
C****
C SWITCH I - ON - TO INTERRUPT THE PROGRAM
C SWITCH 2 - ON - TO CHECK THE CHANNEL THAT IS BE ING PROCESSED
C SWITCH 3 - ON - TO CHECK THE LIMITS MAXIMUM AND MINIMUM OF THE
C INTEGRAL
C
C
DIMENSION C(145),AN(145),CN(145)
1 READ $10, A, B, E 128, M$
10 FORMAT (3EI4.8,14)
$\mathrm{FN}=\mathrm{N}$
DO $30-1=1, N$
$30 \quad \operatorname{CN}(1)=0 . \quad 1$
READ $9,(C(M), M=1, N)$
PRINT 3000, (C(M), M=1,N)
3000 FORMAT(IOF9.2)
Q FORMAT(1018)
$\operatorname{SOMA}=0$
DO $191 \mathrm{MM}=1, \mathrm{~N}$
191. SOMA = SOMA + C(MM)

PRINT 4080, SOMA
4080 FORMAT (/1H, 10HTOTAL SUM=E14.8//)
$\mathrm{A} N \mathrm{~N}=\mathrm{E} 128 / \mathrm{FN}$
$1=\mathrm{N}$
KONT=0
$90 \quad \mathrm{FI}=1$
DO 101 LKK=1, N
101 AN(LKK)=0
SIGMA=A*SQRT (FI*AINT)+B*AINT*FI
SIGMAZ $=$ SIGMA**?
SEXP=0
DO $5 \mathrm{~K}=1$, N

```
    IF(SENSE SWITCH 2)107,108
107 TYPE 9,l,K
108 FK=K
    X=(FI-FK)**2/(2.*SIGMA2)*AINT**2
    IF(ABS(X)-10.)202,202,5 .
202 SEXP=SEXP+EXP(-X).
    CONST=C(1)/((2.*3.1416)**.5*S IGMA)
    AN(K)=EXP(-X)*CONST
5 CONTHNUE
    FATN=(2.*3.1416)**.5*SIGMA/SEXP
    IF(I-N)402,1711,402
171 W=.5
402 Y=W*FATN*C(1)/(1,E-03*SIGMA*(2.*3.1416)**.5)
FI=1
    IF(Y)2089,2090,2089
2089. KMAX=FI+1./AINT*(2.*SIGMA2*LOG(Y))**.5
    KMIN=FI-1./AINT*(2.*SIGMA2*LOG(Y))**.5
    GO TO SSO2
2090 KmAX=FI
    KMIN=FI
9902 IF(SENSE SWITCH 3)1902,1901
1902 PRINT 902,KMIN, KMAX
902 FORMAT(214)
1901 IF(KMAX-N)700,700,702
702 KMAK=N
700. IF(KMNN-1)698,598,669
698 KMIN=1
669 1F(SENSE SWITCH 3)2902,3901
2902 PRINT 902,KMIN,KMAX
3901 DO.447 "JJ=KM IN,KMAX
    CN(JJ)=CN(JJ)+AN(JJ)*W*FATN
447 CONTINUE
701 IF(KONT)31,31,32
31 W=W+.5
    GO TO 555
32 W=1
555-1=1-1
    IF(W-1.)'90.403.403
403 KONT=1.
    IF(I-1)406,406,7000
7000 IF(SENSE SWITCH 1)406,90
406 PRINT 100, (KK,CN(KK),KK=1,N)
100 FORMAT(10(IH,1'3,IH),F3,1,1K))
    SOMACN=0
    DO 558\cdotsMLE1,N
558 SOMACN=SOMACN+CN(ML)
    PRINT 4080,SOMACN
```

PRINT 2656
2566 FORMAT (//IH, 24 HPHOTOPEAK NOPMALIZATION//) CC128=CN(128)
DO $598 \cdot \mathrm{ML}=1, \mathrm{~N}$
$598 \quad \mathrm{CN}(\mathrm{ML})=\mathrm{C}(128) / \mathrm{CC} 128 * \mathrm{CN}(\mathrm{ML})$
PRINT $100,(K X, C N(K X), K X=1, N)$
GO TO 1
END
\therefore 天央

