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DYNAMICS OF POPULATIONS OF BIOMPHALARIA GLABRATA 

AND THE VON FOERSTER EQUATION 

F.A.B. Coutinho* and A.B. Coutinho** 

ABSTRACT 

Changes in time of populations of. Biomphalaria Glabrata due to changes in the rate 
of infection by Schistosoma Mansom are investigated. This is done by applying von Foerster 
equations with boundary conditions derived from experiment.The resulting equation is solved 
in some simplified cases and applications of the formalism to ecological control is suggested. 

I - INTRODUCTION 

In a previous paper (Coutinho, 1968) we have proposed 

a model to describe populations of Biomphalaria glabrata in steady 

state. In this model the population is described by two parameters, 

namely, the rate of infection by trematodes p, and the biomass 

density of the habitat M. ' 

In the present paper we want to show that variations of 

the population with time due to variations in p with M constant 

can be described within the framework of the previous model by 

means of the use of the so called Von Foerster Equation. 

The content of the paper is as follows. In section II 

we describe briefly the stationary model together with the simpH 

fying assumptions made about the population. In section III the 

Von Foerster Equation is described and applied to the problem of 

representing the variation of the population in time for a given 

* Divisão de Física Nuclear do Instituto de Energia Atômica. 
** Instituto de Biociência da universidade Federal de Pernambuco. 
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variation of p and finally the equation is solved in simple 
cases. In conclusion in the section IV it is shown how the Von 
Foerster Equation can be applied to more general problems in the 
dynamics of the Biomphalaria glabrata's populations. 

The Biomphalaria glabrata is the intermediate host of 
the Schistosoma mansoni. The use of poison to control the popula. 
tions of snails presents difficulties and damages the natural en
vironment. This paper is particularly concerned with how to 
evaluate ecological methods of control. 

II - THE STATIC MODEL 

Let N^dT be the number of snails per unit area of the 
habitat, in a steady state population of Biomphalaria glabrata 
whose age is between T and T+dT. We are interested in populations 
where the external causes of death, which are age independent, add 
up to a high death rate. The habitat is assumed to be in steady 
state, that is, producing a certain amount of food per unit time 
which is constant in time and hence characterized by a Biomass 
density M. 

It was shown previously (Coutinho - 1968) that such a 
population of Biomphalaria glabrata can be described by the equa 
tions below and whose physical meaning will be explained immedi
ately afterwards: 

— XT N„dT = N e dT + V(T) dT (1) T o 

where 

N • - - £AMT)} 
° j;^{m(T)} ^ 

e '̂^ m(T)dT 

Here ^(T) is different from zero only in the neighbourhood of 
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the age T=0 (see Fig. I) and ra(T) gives the mass of the snail at 
the age T. 

The physical meaning of the formulae is the following. 
Since the causes of death by external factors are very large, we 
assume that those causes determine entirely the shape of the age 
distribution curve, except in the neighbourhood of the age T=0. 
In this region the death rate increases very much and so the in
credibly excessive birth rate evident in populations of Biompha
laria glabrata is curbed. On the other hand, as sho\m in Coutinho 
(1968), the excessive birth rate assure us that if the population 
is in steady state then the mass of the population per unit area 
equals the biomass density of the habitat. So, as in Eq. 1, the 
tot;al population was divided into tv/o parts. One part has the age 
distribution shape determined by the external causes of death and 
the total mass determined by the habitat. The other part is com
posed by very young individuals and is due to the fact that the 
birth rate is excessive. 

Figure I 
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This model, crude as it is, explains two phenomena 
observed in populations of Biomphalaria glabrata living in small 
lakes and permanent ponds. In fact it follows from Eq. 1, that 
the maximum age attainable in a given population is inversely prô  
portional to \ 

T = - ° (2) 
X 

where a is a number 0 < o < 1. 

But on the other hand X is related to the rate of in
fection by trematodes p by 

X = D(p + m - mp) (3) 

where D is a constant and m is the rate of all other causes of 
death lumped together. From Eq. 3 and Eq. 2 it follows 

- log g 
T (4) c I P + 1-m 

Since the diameter of the snails D, is proportional to 
age (Barbosa - 1951) for the values encountered in our experimen
tal data, it follows that the maximum diameter D which can be 

max 
found in the population is related with the value of p by 

D 
- a log g 
D(l - m) 

max m 
• 1 - m 

This relationship was observed experimentally (Coutinho 
1961a). 

The second consequence is that the population density 
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^ (5) 
^ >E>̂ {m'(T)} + m(0) 

where £>^{m'(T)} ^ XT _ d r a ^ Since ̂ ^{m(T)} 0 as 
0 

X —<*>, increases with X. This has also been observed (Couti
nho - 1961b). 

A practical consequence of this behaviour is an ecolo
gical method of control of the Biomphalaria glabrata populations. 
We shall return to this in section III of this paper. 

The model was also applied to populations of Biompha
laria glabrata living in rapid flowing channels and small rivers 
(Coutinho - 1970) with good qualitative results. 

Ill - THE VON FOERSTER EQUATION 

The Von Foerster Equation was invented in 1959 (Von 
Foerster - 1959) to describe self-sustained populations of cells. 
A very detailed study of this equation can be found in an article 
by Trucco (1965a and 1965b). 

If n(t,T)dT is the number of organisms whose age is 
between T and T+dT at a certain time t, then the Von Foerster 
equation is 

Jn(t^ . Jj-il^ = -X(t.T,...) n(t,T) (6) 
3t 9T 

In this equation X(t,T,...) is a function, known as 
loss function, and in the general case depends on t, T, and pos
sibly on n(t,T) and any other parameter characterizing the system. 

N varies with X as follows 
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In the same spirit of the model presented in section 
II, we assume that the bulk of the causes of death in our popula
tion of Biomphalaria glabrata are external causes which act inde
pendently of the age of the animal. We are concerned in this pa
per with knowing what happens with the population when those 
causes of death change with time, say from X^=X(0) to X2=X(t=t^). 
Again our population will be divided in two parts. One of these 
parts is composed of very young animals. The other part, x̂ rhose 
age distribution curve is determined by external causes, has the 
total mass equal to the maximum, mass of organisms x̂ hich can live 
continuosly in the habitat in study. We shall assume that this 
second part of the population evolves accordingly to the Von 
Foerster Equation and that its total mass equals the maximum. This 
means that the total mass equals the biomass density of the habi
tat at any time t. We shall call this part of the population 
n^(t,T). This is reasonable if the habitat is not changing with 
time and if we have only small discontinuous changes of mortality 
or slow continuous changes. In practical situations we are inte_r 
ested in this last condition, although in this paper we are going 
to treat only the case of small discontinuities. 

We can then x>rrite: 

n^(t,T) m(t,T) m(T)dT = M (7) 

To see that the equations (6) and (7) together, have a well dete£ 
mined solution, we note that in the case where X(t,T,...) doesn't 
depend on M(t,T) (Trucco - 1965a, 295 ff) we have 

r rT 
M^(t,T) = a(tTT) exp 

M^(t,T) = e(T-t) exp 

X(t-T+x,x)dx 
x=0 

X(t-T+x,x)dx 
-''X=T-t 

for t>T (8a) 

for t<T (3b) 



. 7 . 

where a(t) = Mĵ (t,0) and $(T) = M(0,T) 

We know B(T) = Mĵ (0,T) from Coutinho (1968) and it is: 

e(T) M where A(0,T) = X^. 

We have supposed X(t,T,...) = X(t,T) that is, function only of t 
and T, and we shall suppose that this function is known. We shall 
comment on this in the following section. 

If we substitute equation (8a) and (8b) in the equa
tion (7) we find: 

rt 

M = a(t-T) exp X(t-T+x,x)dx 
x=0 

m(T)dT + 

M 

Call m(T) exp 

e ^ exp X(t-T+x,x)dx 
x=T-t 

m(T)dT (9) 

X(t-T+x,x) 
x=0 

= K(t,T) 

and E(t) = M _X t e ^ exp X(t-T+x,x)dx 
x=T-t 

m(T)dT 

Then equation (9) becomes 

rt 
M = a(t-T) K(t,T)dT + E(t) (10) 

Equation (10) is a Volterra Integral equation of the first kind. 
The solution of (10) determines completely the equation (8a). 

To exemplify let us take a very simplified case. Let 
us suppose that X(T) is in fact a step function, that is: 
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A(t) = 
X(t) = X, 

for 
for 

t < 0 
t > 0 

M(t,T) = a(t-T) e 

The equations (8a) and (9a) reduces respectively to 

~^2T for t>T (11a) 

M(t,T) = M ^-Xi(T-t) ̂ -X2T (lib) 

and equation (9) reduces to: 

cT 
M = a(t-T)e"'*̂ 2Tĵ (T)dT+ M -(X2-Xl)t 

X»,{ra(T)} 
1̂ 

r^l''̂ Tn(T)dT (12) 

Instead of solving equation (12) for a general in(T) we 
shall first examine the behaviour of the solution for large values 
of t and then solve the equation in two simple cases. 

Suppose: 

Then 

m(t) = ^ m T " " 

n=0 

e"'^l\(T)dT= I m 
t n=0 ̂  

e^itr 
.n+1 
L^l 

(X^t)^+n(X^t)" ̂ +n(h-l)(X^t)'^"^+. .+n: 

So (12) becomes: 

M= W T ) e " ^ 2 \ ( T ) d T + ^ ^ ^ - ^ I m^ 
J&ĵ {m(T)} n=0 

r 
,n+l (X̂ t)"+n(Xĵ t)"~-'-+...+n: 

as t <» this reduces to: 

M a(t-T) e"^2T jj,(T)dT 



Taking Laplace transforas one gets 

M M a(s) = 
s &{e ^ 2 ' ^ ni(T)} s m(s+ X 2 ) 

where 

. 9 . 

m(s) = e m(T)dT and a(s) = e a(t)dt 

but lim s a(s) = lim a(t) 
ŝ O t-x" 

and hence 

M M lim a(t) = 
t-x" m ( X 2 ) % 2 ^ ™ ( ' ^ ^ ^ 

(13) 

This result agrees with what one should expect from the static 
model described in section II. 

Now let us consider the solution of the equation (12), 
for two special forms of m(T), namely m(T) = m^ and m(T) =m^+m^T. 
Of course these two simple forms does not fit the real m(T) for 
the Biomphalaria glabrata. We are nevertheless working out solu
tions in those two cases because of certain features we want to 
discuss. 

We find for the case m(T) = m^+ m̂ T̂ that 

a(t) = C e + 
AX, 

1 - e -bT 

where 

C = A-B, A = 
MX, 
m 

M 
m m. / V . lu o 1 1 o 

m^ " 1 
T and b = X- + 
X, m z va 

when m = 0 we get the case m(T) = m 
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cx(t) = ^ 

Let us discuss the solution in the simpler case 
m ( T ) = HIQ* In this case the equations (11a) and (lib) reduce to 

M. (t,T) = - - e"^2T f̂ j. 
^ £x2t™(t)} 

M (t,T) ^ e"̂ !̂ *̂ '̂ ^ e"^2t t < T (I4b) 
Jl,Xi{m(t)} 

The equations (14a) and (14b) are represented in 
three different times t=0, for ̂ 1^^2 ^i?* ̂  and 
for \^<\2 in Fig. III. 

Physically the two processes are described in the fo^ 
lowing way. Take the case ^•^'^^2 first. Before t = 0 
among a huge number born per unit time (dashed line in the fig
ures) only a number - 3 — f „ \ \ of snails per unit time is able to 
reach old age. The other have been eliminated at very early ages. 
At t=0 the mortality decreases suddenly and so more and more 
snails are reaching greater lifespans and as consequence less and 
less food is left to the younger ones. Because of this the num
ber of the snails at the age T=0, which has a chance to reach 
greater ages begins to decrease, that is, the mortality at low 
ages begins to increase. In our examples this occurs suddenly 
because we have assumed that changes suddenly in X 2 at t=0. In 
practice this occurs slowly. In the case of ^^^^^2 m ) 

since the mortality due to external causes increases at t=0, more 
and more food is being made available and so the mortality at 
very young ages decreases. 
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Equations (14a) and (14b) and the considerations we 
have just made show that if the population is not in steady state, 
the relationship between the maximum diameter and the rate of 
infection by trematodes (Equation (4) in this paper) can be vio
lated. In a previous paper (Coutinho, 1963) both cases ^i>^2 ^^'^ 
^l^^2 ̂ ^^^ described as "populatio in statu moriendi" and "popu-
latio in statu nascendi", respectively. 

IV - APPLICATIONS 

In this section we describe two possible applications 
of the formalism, both concerned with the viability of methods of 
control of the populations of Biomphalaria glabrata. 

It was shown in (Coutinho - 1968) that there is a limit 
to the infection rate that the populations of Biomphalaria gla
brata can sustain. The first method consists then in raising the 
infection rate by trematodes by artificially increasing the num
ber of definitive hosts in contact with the Biomphalaria popula
tion we want to control (Coutinho - 1961a). 

The formalism described above can be used, at least in 
principle, to calculate the final infection rate in the population 
of Biomphalaria glabrata when the population of definitive hosts 
has been raised artificially by a known amount. The problem is 
complicated since it involves three populations: the populations 
of definitive hosts, the population of intermediate hosts (Biom
phalaria glabrata) and the populations of sundry species of para
sites. The fact that in general the definitive host does not die 
because of the infection, simplifies things quite a lot, both from 
the theoretical and practical points of view. Indeed, because of 
this the change in the definitive host populations can be consid
ered as an known input datum. 
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The final ansvrer depends on both easily measurable 
parameters and some others that will require a huge amount of ex
perimental v7ork. As examples of easily measurable parameters 
there is the average number of parasites per definitive host, the 
fecundity of the parasites, etc. One parameter hard to measure is 
the probability of infection of both the definitive host or the 
intermediate host, the Biomphalaria glabrata. 

The second method was proposed recently by C.S.Richards 
(1970). He discovered strains of snails which are immune to cer
tain strains of Schistosoma mansoni. He has raised three kinds 
of snails classified with respect to their susceptibility to the 
puerto-rican Schistosoma mansoni. Susceptible at any age, juve
nile susceptible at any age, juvenile susceptible but adult re
fractory and refractory at any age. The variation in mortality 
with age in the case of snails juvenile susceptible but adult re
fractory can be easily incorporated in our treatment both in the 
stationary case as in the dynamic case described in this paper. 
The method of control proposed consists in introducing into the 
population of Biomphalaria glabrata snails x̂ rhich are immune to the 
particular strain of Schistosoma mansoni in the region. 

The formalisai can be used to calculate how long it 
would take for the population to shift completely to insusceptibi^ 
lity. The final answer will depend in one parameter which is very 
hard to measure, namely, the coefficient of self-fecondation 
(Coutinho - 1957). 
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RESUMO 

Os efeitos de mudanças na taxa de infecção por Schistosomose Mansonica__em popula
ções de Biomphalaria Glabrata são estudados. Isto é feito aplicando as equações^de Von 
Foerster com condições de contorno tiradas de estudos experimentais. As equações são resol 
vidas em casos simples e aplicações do formalismo ao controle ecológico são sugeridas. 

RÉsmt 

Dans ce travail sont étudiés les effets de changes du taux d'infection par Schis
tosoma Mansom dans les populations de Biomphalaria Glabrata. Gela est fait en appliquant 
les équations de Von Foerster avec des conditions de contour tirées expérimentalement. Les 
équations résultantes sont résolues pour des cas simples. En même temps, sont suggérées a£ 
plications du formalisme au control écologique. 
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