

TWO-GROUP MILNE PROBLEM: A NUMERICAL STUDY OF THE EFFECT OF SCATTERING ANISOTROPY

YUJI ISHIGURO and ELISABETE JORGE

INSTITUTO DE ENERGIA ATÔMICA Caixa Postal 11049 (Pinheiros) CIDADE UNIVERSITARIA "ARMANDO DE SALLES OLIVEIRA" SÃO PAULO — BRASIL

TWO-GROUP MILNE PROBLEM : A NUMERICAL STUDY OF THE EFFECT OF SCATTERING ANISOTROPY

Yuji Ishiguro and Elisabete Jorge

Coordenadoria de Engenharia Nuclear Instituto de Energia Atômica São Paulo Brasil

> Publicação IEA Nº 368 Dezembro 1974

Instituto de Energia Atômica

Conselho Superior

Eng⁰ Roberto N. Jafet - Presidente Prof.Dr.Emilio Mattar - Vice-Presidente Prof.Dr.José Augusto Martins Prof.Dr.Milton Campos Eng⁰ Helcio Modesto da Costa

Superintendente

Rômulo Ribeiro Pieroni

TWO GROUP MILNE PROBLEM : A NUMERICAL STUDY OF THE EFFECT OF SCATTERING ANISOTROPY

Yuji Ishiguro and Elisabete Jorge

ABSTRACT

The Milne problem in two group neutron transport theory for linearly anisotropic scattering is solved in terms of H matrices using half range orthogonality relations of the eigenfunctions

The effect of scattering anisotropy is studied numerically using Metcalf and Zweifel's isotropic scattering data set for light water and considering the anisotropic part of the transfer matrix given by $\underline{B} = \underline{CP}$ where <u>C</u> is the isotropic part and <u>P</u> is a 2 x 2 matrix with elements $p_i \delta_{ij}$

INTRODUCTION

As an energy dependent model in transpot theory, the multigroup equation has been extensively investigated in recent years. One of the earliest applications of the Case method to the multigroup model was made by Siewert and Zweifel,^{20,21} to a model of radiative transfer. Inherent to the method, they obtained rigorous general solutions to the transport equation, showing their full and half range completeness and full range orthogonality. Further they obtained half range orthogonality relations of the eigenfunctions in a special case. Two-group neutron-transport problems were studied by, among others, Zelazny and Kuszell²⁵, Metcalf and Zweifel^{9,10}, and Siewert and Shieh¹⁹ within the time independent, plane paralled medium and isotropic scattering model. Siewert and Shieh, in particular, obtained concise solutions and analysed the discrete spectrum. General solutions of the N-group neutron-transport equation have also been obtained by Yoshimura and Katsuragi²⁴.

Most of these works, however, were restricted to isotropic scattering and their applications to transport problems were some what limited in that the half-range completeness and orthogonality of the eigenfunctions were not shown.

Extentions to anisotropic scattering^{8 14 15 23} and to half-range problems^{11 13 15} have been studied by several authors Pahor^{11 13}, with co-workers, has solved half-space problems, applying the principle of invariance, in the energy dependent as well as one-group model. However, Siewert's work¹⁶ suggested the possibility of another approach to half-range problems in the multigroup model. His work was followed by Siewert and Ishiguro¹⁸ who obtained the half-range orthogonality relation in the two-group model with isotropic scattering. Though the work was based on invariance principles, which are restricted to nonmultiplying media, the works of Siewert, Burniston, and Kriese¹⁷ and Burniston, Mullikin, and Siewert⁴ have shown that the obtained theorem can be placed on a firm mathematical basis in the multiplying as well as nonmultiplying case. The technique has also been applied to the case of linearly anisotropic scattering by Ishiguro⁵ to derive half range orthogonality relations of the sigenfunctions.

Though several problems have been solved for isotropic scattering and numerical results

reported^{10,18,7}, numerical calculations for the case of anisotropic scattering have been reported only for a few cases^{5,1} Further, to our knowledge, no study has been made on the behavior of the neutron population when anisotropy is taken into consideration compared to isotropic scattering. Therefore we would like to study here the effect of scattering anisotropy considering the half space. Milne problem. The expansion coefficients are obtained in terms of matrix functions, similar to Chandrasekhar's H-function, which can be calculated from regular integral equations.

In section 2, we list the results of Reith and Siewert¹⁴ to establish our notation and the half range orthogonality relation previously obtained⁵. Though the analysis of the half-range completeness or the existence and uniqueness of the fundamental matrices has not been completed, we base our study on the principle of invariance and numerical checks of the results.

In section 3, we report our numerical results for several sets of parameters and also discuss numerical checks we have employed.

BASIC ANALYSIS

We consider here the two-group equation written as

$$\mu \frac{\partial}{\partial x} \underline{\Psi}(\mathbf{x}, \mu) + \underline{\Sigma} \underline{\Psi}(\mathbf{x}, \mu) = \underline{\Sigma} \int_{-1}^{1} \underline{\Psi}(\mathbf{x}, \mu') d\mu' + \mu \underline{B} \int_{-1}^{1} \underline{\Psi}(\mathbf{x}, \mu') \mu' d\mu'$$
(1)

where all symbols are the same as in Reith and Siewert¹⁴ (hereafter refered to as RS). The general solution of Eq. (1) has been obtained and thus the Milne problem solution can be written as

$$\begin{split} \Psi(\mathbf{x},\mu) &= A(-\nu_{1}) \Phi(-\nu_{1},\mu) \exp(\mathbf{x}/\nu_{1}) + \sum_{i=1}^{K} A(\nu_{i}) \Phi(\nu_{i},\mu) \exp(-\mathbf{x}/\nu_{i}) \\ &+ \int_{0}^{1/\sigma} \left[A_{1}^{(1)}(\nu) \Phi_{1}^{(1)}(\nu,\mu) + A_{2}^{(1)}(\nu) \Phi_{2}^{(1)}(\nu,\mu) \right] \exp(-\mathbf{x}/\nu) d\nu \\ &+ \int_{1/\sigma}^{1} A^{(2)}(\nu) \Phi^{(2)}(\nu,\mu) \exp(-\mathbf{x}/\nu) d\nu, \ \mathbf{x} \ge 0, \ \mu \ \epsilon(-1,1), \end{split}$$
(2)

where the eigenfunctions $\underline{\Phi}$ are also given in RS, and κ is the number of pairs of the discrete eigenvalues $\pm \nu_1$. Since all our cases correspond to $\kappa = 1$, we consider hereafter only that case. With the normalization $A(-\nu_1) = 1$, the expansion coefficient, must be determined from the boundary condition

$$- \underbrace{\Phi}(-\nu_{1},\mu) = A(\nu_{1})\underbrace{\Phi}(\nu_{1},\mu) + \int_{0}^{1/\sigma} \left[A_{1}^{(1)}(\nu)\underbrace{\Phi}_{1}^{(1)}(\nu,\mu) + A_{2}^{(1)}(\nu)\underbrace{\Phi}_{2}^{(1)}(\nu,\mu)\right]d\nu + \int_{1/\sigma}^{1} A^{(2)}(\nu)\underbrace{\Phi}_{0}^{(2)}(\nu,\mu)d\nu, \ \mu \ \epsilon(0,1).$$
(3)

We would now like to summarize, the half-range orthogonality relation of the eigenfunctions⁵ which enables us to solve Eq. (3) in a concise manner. Since we use different notations from those of RS, we would first like to list some of their results in our notation.

We write Eq. (1) as

$$\mu \frac{\partial}{\partial x} \Psi(x,\mu) + \Sigma \Psi(x,\mu) = Q(\mu) \Sigma \int_{-1}^{1} \widetilde{Q}(\mu') \Psi(x,\mu') d\mu', \qquad (4)$$

where $Q(\mu)$ is a 2 x 4 matrix and D a 4 x 4 matrix defined as

$$\mathbf{Q}(\boldsymbol{\mu}) = \begin{bmatrix} \mathbf{I} & \boldsymbol{\mu} \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}.$$
(5)

$$\underbrace{\mathbf{D}}_{\mathbf{v}} = \begin{vmatrix} \mathbf{C} & \mathbf{O} \\ \mathbf{O} & \mathbf{B} \end{vmatrix}$$
(6)

and we have used a superscript tilde to denote the transpose operation. In the usual manner, proposing solutions of the form

$$\Psi(\mathbf{x},\boldsymbol{\mu}) = F(\boldsymbol{\nu},\boldsymbol{\mu}) \exp(-\mathbf{x}/\boldsymbol{\nu}), \qquad (7)$$

Eq. (4) reduces to

$$\left[\sum_{\nu} - \frac{\mu}{\nu} \right] \stackrel{*}{\underset{}{\sum}} (\nu, \mu) = \stackrel{*}{\underset{}{Q}}(\mu) \stackrel{*}{\underset{}{\bigcup}} \stackrel{*}{\underset{}{\sum}} (\nu) \stackrel{*}{\underset{}{\boxtimes}} (\mu)$$
(8)

where we have defined

$$\bigotimes_{i=1}^{\infty} (\nu) = \int_{-1}^{1} \underbrace{\mathsf{F}}_{i} (\nu, \mu) d\mu$$
(9)

and

$$\Gamma_{\nu}(\nu) = \begin{bmatrix} 1 \\ \nu [\Sigma - 2 \zeta] \end{bmatrix}$$
(10)

We write the solution of Eq. (8) as

$$\mathcal{F}(\nu,\mu) = \mathcal{E}(\nu,\mu) \mathcal{Q}(\mu) \mathcal{Q}(\Gamma) \mathcal{M}(\nu), \qquad (11)$$

where

$$\mathbf{E}(\pm \nu_{1},\mu) = \begin{bmatrix} \frac{\nu_{1}}{\sigma\nu_{1} \mp \mu} & 0\\ 0 & \frac{\nu_{1}}{\nu_{1} \mp \mu} \end{bmatrix}$$
(12a)

$$\underline{E}_{\alpha}^{(1)}(\nu,\mu) = \nu \underline{K}(\nu,\mu) + \omega_{\alpha}^{(1)}(\nu)\underline{\delta}(\nu,\mu) \quad \nu \epsilon(-\frac{1}{\sigma},\frac{1}{\sigma}), \alpha = 1,2, \quad (12b)$$

$$\underbrace{\mathsf{E}}^{(2)}(\nu,\mu) = \nu \underbrace{\mathsf{K}}(\nu,\mu) + \omega^{(2)}(\nu) \underbrace{\delta}(\nu,\mu), \ \nu \epsilon (-1, -\frac{1}{\sigma}) \cup (\frac{1}{\sigma}, 1), \qquad (12c)$$

$$\mathbf{K}(\nu \mu) = \begin{vmatrix} \mathbf{P} & \mathbf{0} \\ \sigma \nu \mu & \mathbf{0} \\ \mathbf{0} & \nu \mu \\ \mathbf{0} & \nu \mu \end{vmatrix} = \begin{vmatrix} \delta(\sigma \nu + \mu) & \mathbf{0} \\ \delta(\nu \mu) = \\ \mathbf{0} & \delta(\nu + \mu) \end{vmatrix}. \quad (12d e)$$

and we have used the symbol P to denote that the integral is to be evaluated in the Cauchy principal value sense. The discrete eigenvalue ν_1 is the positive zero of the dispersion function $\Lambda(z) = \det \Lambda(z)$ with

$$\underline{\Lambda}(z) = \underline{1} + z \int_{-\infty}^{1} \underline{\Theta}(\mu) \ \underline{Q}^{*}(\mu) \ \frac{d\mu}{\mu - z} \ \underline{D}\underline{\Gamma}(z).$$
(13)

and the normalization vector M ($\pm v_1$) must satisfy

$$\Delta(\pm \nu_{\pm}) = 0$$
(14)

Here we have defined

$$\Theta(\mu) = \begin{vmatrix} \Theta(\mu) & 0 \\ 0 & 1 \end{vmatrix}$$
(15)

with $\Theta(\mu) = 1 \mu \epsilon (-\frac{1}{\sigma} - \frac{1}{\sigma})$, and $\Theta(\mu) = 0$, otherwise, and a superscript * is used to denote the operation $\mu \to \sigma \mu$ in the top row, hence

$$\mathbf{Q}^{*}(\boldsymbol{\mu}) = \left[\begin{array}{c} \boldsymbol{\mu} \\ \boldsymbol{\Sigma} \end{array} \right]$$
(16)

For the continuum eigenvalue $\iota \in (-1, 1)$, the functions $\omega_{\mathbf{G}}^{(1)}(\iota)$ and $\omega_{i}^{(2)}(\iota)$ are determined by

$$\det \left| \underline{\lambda}(v) - \omega(v) \Theta(v) \underline{Q}^*(v) - \underline{D} [\underline{\Gamma}(v)] \right| = \mathbf{0}, \qquad (17)$$

where

$$\chi(\iota) = [1 + \iota P \int_{-1}^{1} \Theta(\mu) Q^{*}(\mu) \frac{\partial \mu}{\mu}, \quad \bigcup_{i=1}^{n} U(\iota).$$
(18)

and corresponding vectors $M_{\alpha}^{(1)}$ (ν) and $M_{\alpha}^{(\nu)}$ can be determined from

$$\left[\underline{\lambda}(v) - \omega_{\alpha}^{(1)}(v) \ \underline{\Theta}(v) \ \underline{\Theta}^{*}(v) \ \underline{D}(\underline{U}(v) \right] = \underline{0}$$
(19a)

and

$$\left[\underbrace{\Lambda}(\nu) + \omega^{(2)}(\nu) \ \underbrace{\Theta}(\nu) \ \underbrace{Q}^{*}(\nu) \ \underbrace{D}(\underline{\Gamma}(\nu)) \right] \underbrace{M}^{(2)}(\nu) = \underbrace{Q}$$
(19b)

The adjoint transport equation defined by replacing \underline{D} in Eq. (4) by $\underline{\widetilde{D}}$ can be solved in the same manner. In particular, it has been shown²² that the eigenvalue spectrum of the adjoint equation is identical to that of Eq. (4). Hereafter we use a subscript a to denote functions related to the adjoint equation.

The half range orthogonality relation was derived using the invariant imbedding

technique. Thus if we define 2 x 2 matrices $\mathfrak{g}(\mu,\mu'), \mathfrak{h}(\mu)$, and $\mathfrak{g}(\mu)$ by

$$\Psi(0, -\mu) = \frac{1}{2\mu} \int_0^1 \sup_{x} (\mu, \mu') \Psi(0, \mu') d\mu', \ \mu \in (0, 1),$$
(20)

$$\int_{-1}^{1} \underline{\Psi}(\mathbf{x},\mu) d\mu = \int_{0}^{1} \widetilde{\mathfrak{h}}(\mu) \underline{\Psi} (\mathbf{x},\mu) d\mu, \qquad (21)$$

and

$$\int_{-1}^{1} \Psi(\mathbf{x},\mu)\mu d\mu = \int_{0}^{1} \widetilde{\chi}(\mu) \Psi(\mathbf{x},\mu) d\mu, \qquad (22)$$

where $\Psi(x,\mu)$ is a half-space solution of Eq. (1), following relations can be derived using the principle of invariance and the reciprocity of the s-matrix :

$$\widetilde{\widetilde{h}}(\mu) = 1 + \frac{1}{2} \int_0^1 \underline{s}(\mu',\mu) \frac{d\mu'}{\mu'}, \qquad (23)$$

$$\widetilde{\varrho}(\mu) = \mu \underbrace{l}{_{\sim}} - \frac{1}{2} \int_{0}^{1} \underbrace{s}{_{\sim}} (\mu', \mu) d\mu', \qquad (24)$$

and

$$\frac{1}{\mu}\sum_{\infty}(\mu,\mu_0) + \frac{1}{\mu_0}\sum_{\infty}(\mu,\mu_0)\sum_{\infty} = 2\Phi(\mu)\widetilde{D}\widetilde{\Psi}(\mu_0), \qquad (25)$$

where we have defined 2 x 4 matrices $\Psi(\mu)$ and $\Phi(\mu)$ by

$$\Psi(\mu) = \left[\underbrace{h}(\mu) \underbrace{\ell}(\mu) \right]$$
(26)

and

$$\Phi(\mu) = \left[h_{2}(\mu) - g_{a}(\mu) \right].$$
(27)

-

If we now define

$$\mathbf{\underbrace{S}}(\mu,\mu_{0}) = \begin{bmatrix} s_{11}(\sigma\mu,\sigma\mu_{0}) & s_{12}(\sigma\mu,\mu_{0}) \\ s_{21}(\mu,\sigma\mu_{0}) & s_{22}(\mu,\mu_{0}) \end{bmatrix},$$
(28)

$$\underbrace{H}(\mu) = \underbrace{h^{*}(\mu)}_{\mu} = \begin{bmatrix} h_{11}(\sigma\mu) & h_{12}(\sigma\mu) \\ h_{21}(\mu) & h_{22}(\mu) \end{bmatrix}, \quad (29)$$

and

$$\mathbf{L}(\mu) = \mathbf{\ell}^{*}(\mu) = \begin{bmatrix} \mathbf{\ell}_{11}(\sigma\mu) & \mathbf{\ell}_{12}(\sigma\mu) \\ \mathbf{\ell}_{21}(\mu) & \mathbf{\ell}_{22}(\mu) \end{bmatrix}, \quad (30)$$

the S-matrix can be expressed as

$$\underline{S}(\mu,\mu_0) = \frac{2\mu\mu_0}{\mu+\mu_0} \, \underline{\Phi}^*(\mu) \underline{D} \widetilde{\Psi}^*(\mu_0) \,, \qquad (31)$$

and from Eq. (23) we obtain an integral equation

$$\underline{H}(\mu) = \underline{I} + \mu \underline{H}(\mu) \widetilde{\underline{C}} \int_{0}^{1} \widetilde{\underline{H}}_{a}(\mu') \underline{\underline{\Theta}}(\mu') \frac{d\mu'}{\mu' + \mu} - \mu \underline{\underline{L}}(\mu) \widetilde{\underline{B}} \int_{0}^{1} \widetilde{\underline{L}}_{a}(\mu') \underline{\underline{\Theta}}(\mu') \frac{d\mu'}{\mu' + \mu} \quad (32a)$$

and, similarly, its adjoint

$$\underbrace{H}_{a}(\mu) = \underbrace{I}_{a} + \mu \underbrace{H}_{a}(\mu) \underbrace{C}_{0} \int_{0}^{1} \underbrace{\widetilde{H}}(\mu') \underbrace{\Theta}(\mu') \frac{d\mu'}{\mu' + \mu} - \mu \underbrace{L}_{a}(\mu) \underbrace{B}_{0} \int_{0}^{1} \underbrace{\widetilde{L}}(\mu') \underbrace{\Theta}(\mu') \frac{d\mu'}{\mu' + \mu}.$$
 (32b)

Similar integral equations can be derived for \underline{L} and \underline{L}_a matrices. It can easily be shown, however, that these matrices are related by

$$\mu \underbrace{\mathbb{H}}(\mu) \left[\underbrace{\mathbb{I}}_{-} \widetilde{\mathbb{C}} \underbrace{\widetilde{\mathbb{H}}}_{ao} \right] = \underbrace{\mathbb{L}}(\mu) \left[\underbrace{\Sigma}^{-1}_{-} - \mu \underbrace{\widetilde{\mathbb{B}}}_{ao} \right], \qquad (32c)$$

and

$$\mu \underbrace{H}_{a}(\mu) \left[\underbrace{I}_{a} - \underbrace{C}_{a} \underbrace{H}_{a} \right] = \underbrace{L}_{a}(\mu) \left[\underbrace{\Sigma}^{-1} - \mu \underbrace{B}_{a} \underbrace{L}_{a} \right], \qquad (32d)$$

where we have defined the moment of \underbrace{H} of order α by

$$\mathcal{H}_{\alpha} = \int_{0}^{1} \Theta(\mu) \mathcal{H}(\mu) \mu^{\alpha} d\mu , \qquad (33)$$

and similarly of other matrices.

From Eq. (21), we can also derive a singular integral equation of the H-matrix,

$$\widetilde{\mathfrak{H}}(\nu) \ \underline{\lambda}(\nu) = \underline{\mathfrak{l}} + \nu P \int_{0}^{1} \widetilde{\mathfrak{H}}(\mu) \underline{\mathfrak{Q}}(\mu) \underline{\mathfrak{Q}}^{*}(\mu) \ \frac{d\mu}{\mu - \nu} \underbrace{\mathfrak{Q}} \ \underline{\Gamma}(\nu), \quad \nu \epsilon(0, 1) , \qquad (34a)$$

and a discrete constraint on H,

$$\left[\begin{array}{c} \downarrow + \nu_1 \ \int_0^1 \widetilde{\mathfrak{H}}(\mu) \underline{\mathfrak{Q}}(\mu) \underline{\mathfrak{Q}}^*(\mu) \ \frac{d\mu}{\mu - \nu_1} \ \underline{\mathfrak{Q}} \ \underline{\Gamma}(\nu_1) \ \right] \ \underline{\mathfrak{M}}(\nu_1) \ = \ \underline{\mathfrak{Q}} \ . \tag{34b}$$

Considering the H-matrix as a function of the complex variable z, it can be shown that H(z) (and other matrices) is analytic everywhere in the complex plane cut from - 1 to 0 along the real axis except at $z = -\nu_1$, where it has a simple pole.

Based on these matrices, $1 \sin \theta = 0^5$ has shown that the eigenfunction $F(\xi,\mu)$, $\xi = \nu_1$ or $\epsilon(0,1)$, is orthogonal on the half-range $\mu\epsilon(0,1)$ to the related set $G(\xi,\mu)$ in the sense that

$$\int_{0}^{1} \widetilde{\mathfrak{G}}(\xi',\mu) F(\xi,\mu) \mu d\mu = 0, \quad \xi \neq \xi'; \quad \xi,\xi' = \nu_{1} \quad \text{or } \epsilon(0,1),$$
(35)

where

$$\mathcal{Q}(\xi,\mu) = \mathcal{E}(\xi,\mu)\Psi(\mu)\widetilde{\mathcal{D}}\Omega_{a}(\xi) \mathcal{M}_{a}(\xi), \qquad (36)$$

with the 4 x 2 matrix $\Omega_a(\xi)$ being defined by

$$\Omega_{\mathbf{a}}(\xi) = \Gamma_{\mathbf{a}}(\xi) - \xi \int_{0}^{1} \widetilde{\mathfrak{Q}}^{*}(\mu) \Theta(\mu) \Omega^{*}(\mu) \frac{d\mu}{\mu + \xi} \widetilde{\mathfrak{Q}} \Gamma_{\mu}(-\xi)$$
(37)

For the explicit eigenfunction $\bar{\Psi}$ derived in RS, Eq. (35) can be modified as

$$\int_{0}^{1} \widetilde{\Theta}(\xi',\mu) \Phi(\xi,\mu) \mu d\mu = \mathbf{0}, \xi \neq \langle \xi', \xi \rangle \xi' = c_1 \text{ or } \epsilon(\mathbf{0},\mathbf{1}), \qquad (38a)$$

where

$$\Theta(\xi,\mu) = [\xi \chi(\xi,\mu) \Psi(\mu) \widetilde{\mathbb{Q}} \Omega_{\alpha}(\xi) + \xi(\xi,\mu) \chi_{\alpha}(\xi) + \chi(\xi)$$
(38b)

Here the two vector $\underline{V}(\boldsymbol{\xi})$ is defined by

$$\mathbf{\underline{V}}(\boldsymbol{\xi}) = \begin{vmatrix} -\Lambda_{0,1_2}(\boldsymbol{\xi}) \\ -\Lambda_{0,1_1}(\boldsymbol{\xi}) \end{vmatrix}, \quad \boldsymbol{\xi} = \nu_1 \text{ or } \boldsymbol{\epsilon}(\frac{1}{o}, 1), \quad (39a)$$

and

$$\underbrace{\mathbf{y}_{1}^{(1)}(\xi)}_{1} = \begin{bmatrix} \mathbf{N}_{1,2}(\xi) \\ -\mathbf{N}_{1,2}(\xi) \end{bmatrix}, \quad \underbrace{\mathbf{y}_{2}^{(1)}(\xi)}_{2} = \begin{bmatrix} -\mathbf{N}_{2,1}(\xi) \\ -\mathbf{N}_{1,1}(\xi) \end{bmatrix}, \quad \xi \epsilon(\mathbf{0}, \frac{1}{0}), \quad (39b,c)$$

where the functions $N_{\alpha\beta}(\xi)$ are given in RS. For eventual applications, the following integral has been evaluated⁵:

.

$$\int_{0}^{1} \widetilde{\Theta}(\xi',\mu) \psi(-\xi,\mu) \mu d\mu = \frac{\xi\xi'}{\xi + \xi} \quad \widetilde{V}(\xi') \widetilde{\Omega}_{0}(\xi') \mathbb{D} \Omega(\xi) \mathbb{U}(\xi), \quad \xi,\xi' = \nu_{1} \quad \text{or} \quad \epsilon(0,1) \; . \tag{40}$$

where the vector $\psi(\sharp)$ is also given in RS and the 4 x 2 matrix $\Omega^{(\beta)}$ is defined by

$$Q(\xi) = \prod_{i=1}^{n} (-\xi) - \xi \int_{0}^{1} \widetilde{\Psi}^{*}(\mu) Q(\mu) Q^{*}(\mu) \frac{d\mu}{\mu + \xi} \mathcal{Q}(\xi) \quad (41)$$

(Comparing with Eq.(37), the definition of $\Omega_a(i)$ is one (and only) exception to the convention of subscript a)

The Milne problem, Eq. (3), can now be solved using Eqs. (38) and (40) to give

$$A(\iota_1) = -\frac{\iota_1}{2} \frac{1}{N(\iota_1)} \widetilde{\mathcal{V}}(\iota_1) \widetilde{\mathfrak{Q}}_a(\iota_1) \mathcal{D}_{\mathfrak{Q}}(\iota_1) \mathcal{U}(\iota_1), \qquad (42a)$$

$$\mathbf{A}_{\alpha}^{(1)}(\nu) = -\frac{\psi_1}{\nu+\psi_1} - \frac{1}{N} \sum_{(\nu)}^{(1)} \widetilde{\mathbf{y}}_{\alpha}^{(1)}(\nu) \widetilde{\mathfrak{Q}}_{\alpha}(\nu) \underline{\mathfrak{Q}}_{\alpha}(\nu) \underline{\mathfrak{Q}}_{\alpha}(\nu) \underline{\mathfrak{Q}}_{\alpha}(\nu), \qquad (42b)$$

and

$$A^{(2)}(\iota) = -\frac{\nu_{\iota'1}}{\nu + \nu_{1}} \frac{1}{N} \frac{\widetilde{\chi}^{(2)}}{(\iota)} \widetilde{\chi}^{(2)}(\nu) \widetilde{\Omega}_{a}(\nu) \mathbb{D} \Omega_{a}(\nu_{1}) \mathbb{U}(\nu_{1}), \qquad (42c)$$

where

8

and the functions $N(v_i)$, N = (v), and N = (v) are the full range normalization integrals derived in RS

At this point, three mathematical problems arise³, namely,

- 1) the half range completeness of the expansion in Eq. (3),
- the equivalence of the nonlinear Eqs (32) and the singular integral Eqs (34) (with related equations), and
- 3) the existence of a unique solution of either set of equations

We have not been able to resolve any of these problems. However, since we believe that, mathematical proofs aside, the half range orthogonality theorem is valid, we proceed to study the effect of scattering anisotropy, relying on numerical checks of the above problems.

NUMERICAL RESULTS

We consider the data set, given in Table I, used by Metcalf and Zweifel¹⁰, and later also by Siewert and Ishiguro¹⁸, to describe light-water medium. The elements of the matrices Σ and C are given by

$$\sigma = \frac{\sigma_{i}}{\sigma_{i}}, \quad c_{ij} = \frac{1}{2\sigma_{i}}\sigma_{ij}, \quad (44a,b)$$

and we define the matrix B by

$$\mathbf{B} = \mathbf{C} \begin{bmatrix} \mathbf{P}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_1 \end{bmatrix}.$$
(45)

where we consider various combinations of p_1 and p_2 within the range $0 \le p_1 < 1$

The discrete eigenvalue v_1 was calculated first using the analytical solution⁵⁻² of $\Lambda(z) = 0$ and then refined by iteration to at least twelve significant figures (Table II)

To calculate the fundamental matrices, \underline{H} , \underline{H}_a , \underline{L} , and \underline{L}_a , we used a set of rapidly converging equations⁵, rather than Eqs (32), which can be derived using the discrete constraint Eq (34b) and similar equations⁶. The matrices were solved at discrete points using Gauss quadrature sets to evaluate integrals. All calculations were performed in double precision on an IBM 370/155 computer. In Table III we report a sample calculation. To check the accuracy of the converged solutions we used, for the <u>H</u> matrix, (1) the discrete constraint Eq (34b), (2) det $\underline{H}^{-1}(\cdot v_1) = 0$, and similar equations for other matrices, and (3) the moment relation of the matrices,

$$\left[\underbrace{\Psi}_{0} - \underbrace{1}_{4}\right] \widetilde{\mathbb{D}} \left[\underbrace{\widetilde{\Phi}}_{0} - \underbrace{1}_{4}\right] = \widetilde{\mathbb{D}} \left[\underbrace{1}_{4} - 2 \widetilde{\mathbb{Q}}_{0} \widetilde{\mathbb{D}}\right], \tag{46}$$

where

$$\Psi_0 = \widetilde{\mathbb{D}} \int_0^1 \widetilde{\mathbb{Q}}^*(\mu) \Theta(\mu) \Psi^*(\mu) d\mu, \qquad (47a)$$

$$\underline{\Phi}_{0} = \underline{D} \int_{0}^{1} \widetilde{Q}^{*}(-\mu) \underline{\Theta}(\mu) \underline{\Phi}^{*}(\mu) d\mu, \qquad (47b)$$

$$\mathbf{Q}_{\mathbf{0}} = \begin{bmatrix} \mathbf{\Sigma}^{-1} & \mathbf{Q} \\ \mathbf{Q} & \frac{1}{3} \mathbf{\Sigma}^{-1} \end{bmatrix}.$$
(47c)

and \underline{I}_3 is the 4 x 4 unit matrix. In all these checks we found an accuracy of at least twelve significant figures (after thirteen iterations). We also calculated Eq. (34a) at various points (not equal to nodal points) by regularizing the singular integral and analytically evaluating the principal-value integral and further, compared moments of order up to ten of each side of Eq. (34a), namely, writing the equation symbolically as $\underline{L} = \underline{R}$, we calculated

$$\int_0^1 \underline{\cup} \rho^{\alpha} d\nu = \int_0^1 \underline{R} \rho^{\alpha} d\nu, \ \alpha = 0, 1, \dots, 10,$$

to confirm the equivalence of the two sets of equations.

Having obtained the fundamental matrices, the expansion coefficients, Eqs. (42), can be evaluated easily at arbitrary points (Table IV).

The essential question (related to the half-range completeness) is how accurately the obtained coefficients satisfy Eq. (3). For this, we employed the same checks as for the singular integral Eq. (34a), namely, the pointwise check and the comparison of moments. We report some of the results in Table V.

Finally we repeated calculations using higher order quadratures and confirmed that the results were unchanged and that the accuracy of various checks increased.

Based on these checks, we believe that our solutions are indeed valid and that all values reported in the following tables are accurate within the usual round-off convention.

We would now like to define and make some comments on the quantities reported in the tables.

Table I. The neutron energies considered are

group 1: $0 \le E \le 0.0253 \text{ eV}$ group 2: $0.0253 \le E \le 0.532 \text{ eV}$

The set represents pure light water (Set 1 of Metcalf and Zweifel¹⁰).

Table IV The values of the coefficients at $\nu = 0$, $1/\sigma$, and 1 are evaluated taking the limit analytically in Eqs. (42).

Table V. The Δ in the table is the absolute value of the difference between the two sides divided by the left hand side, $\Delta(\mu)$ refering to the pointwise check at μ and $\Delta(\alpha)$ to the comparison of moments of order α . The notation $\mathbf{Q} = \mathbf{N}_1 + \mathbf{N}_2$ refers to the use of two quadrature sets, a \mathbf{N}_1 -point set in (0, 1/ σ) and a \mathbf{N}_2 -point set in (1/ σ , 1). The accuracy for group 2 is of the same order.

Table VIII. The total flux is defined by

$$\phi(\mathbf{x}) = \int_{-1}^{1} \Psi(\mathbf{x}, \mu) d\mu$$

and the asymptotic flux, ϕ_{asy} (x), is the total flux corresponding to only the discrete terms.

Table IX The current is defined by

$$\underbrace{J}(\mathbf{x}) = \int_{-1}^{1} \underbrace{\Psi}(\mathbf{x}, \mu) \mu d\mu$$

Table X The extrapolated endpoint, z_o , is defined by $\phi_{asy}(\cdot z_o) = 0$ and is given by

$$z_o = -\frac{\nu_0}{2} \ln \left[-A(\nu_1)\right]$$

Table XI. Although all values reported in Tables IV \cdot IX are based on the normalization $A(\cdot v_1) = 1$, numerical comparisons of various cases should be based on the same source condition. We have calculated the coefficient $A(+v_1)$ for the half space with an incident flux $\Psi(0,\mu) = F$, $\mu \in (0,1)$. The Q in the table is the ratio of $A(v_1)$ for the case of anisotropic scattering to that for isotropic scattering, Q₁ corresponding to $F = [1 \ 0]^T$ and Q₂ to $F = [0 \ 1]^T$.

CONCLUSIONS

We have investigated the effect of scattering anisotropy based on propositions that transfer functions can be represented by two-term series in Legendre polynomials and that the ratio of coefficients in the series is dependent only on the initial speed of neutrons $(b_{ij} / c_{ij} = p_j)$ Although the second proposition may not be realistic in general, and though we have considered only one medium we believe we have gained some insight into the behavior of the neutron population when we consider two terms as compared to one term.

We also believe our results show that the half-range orthogonality theorem, though lacking some mathematical proofs to be considered established, can be used successfully, combined with numerical checks of the results, to solve half-space and slab problems, at least in some cases.

10

TABLE I

Data Set for Isotropic Scattering

σι	4 8822	σ_2	3 2343
σ_{11}	3 8180	σ_{11}	0 3524
0,1	1 0326	σ_{c2}	2 8669

TABLE II

Discrete Eigenvalues

P1	0 0	00	00	00
P2	00	01	03	05
ν ₁	7 190978	7 287445	7 494821	7 , 24217
p,	01	01	03	
P 2	0.3	05	05	
ν _i	7 519677	7 749547	7 804291	

μ	Η ₁ , (μ)	Η _{1 2} (μ)	$H_{s,1}(\mu)$	Η, (μ)
00	10	00	00	10
01	1 196762	0 137860	0 034539	1 19360 0
02	1.326058	0.274349	0 065446	1 342018
0.3	1 431995	0 413361	0 095386	1 476304
04	1 523488	0 553615	0 124591	1 601823
0.5	1.604756	0 694044	0 153116	1 720848
06	1 678271	0 833876	0 180981	1 834609
07	1 745642	0 972563	0 208197	1 943867
08	1 807989	1 109719	0 234774	2 049144
09	1 866132	1 245072	0 260723	2 1 508 17
10	1 920687	1 378434	0 286058	2 249178
μ	Η _{a1,} (μ)	H _{a12} (μ)	Η _{a ; 1} (μ)	Η _{a],} (μ)
00	10	00	00	10
01	1 196771	0 046987	0 101324	1 193590
0.2	1 326070	0 093469	0 192050	1 342002
0.3	1 432001	0 140774	0 279986	1 476287
04	1 523478	0 188465	0 365811	1 601811
05	1.604721	0 236180	0 449685	1 720847
06	1.678199	0 283656	0 531661	1 834623
07	1 745523	0 330706	0 611770	1 943903
0.8	1 807813	0 377199	0 690043	2 049207
09	1 865887	0 423044	0 766511	2 150911
10	1 920365	0 468178	0 841212	2 249309
Matrix	Element 11	12	21	22
.₩.	0 950316	0 303922	0 150217	1 69 51 83
Hao	0 950305	0 103447	0 441347	1 695204
۲	0 198366	-0 152128	- 0 078128	0 162992
Lao	0 198366	-0 051757	-0 229638	0 162992

Fundamental Matrices, $p_1 = 0.1$, $p_2 = 0.3$

IABLEIV	T	A	BL	E	ı٧	
---------	---	---	----	---	----	--

Expansion Coefficients, $p_1 = 0.1$, $p_2 = 0.3$

 	$A_1^{(?)}(\nu)$	$A_2^{(1)}(v)$	v	A ⁽²⁾ (L)
0 02 0 10 0 20 0 30 0 40 0 50 0 60 0 66	0 0060679 0 0049270 0 0040180 0 0033289 0 0027294 0 0021195 0 0012826 0 0000332	- 0 0143569 - 0 0121060 - 0 0101885 - 0 0086964 - 0 0074366 - 0 0063181 - 0 0053109 - 0 0049402	0 70 0 76 0 82 0 86 0 88 0 90 0 94 0 98	0 008293 0 012472 0 009207 0 211537 0 383416 0 269097 - 0 094693 - 0 037670
$\begin{array}{rcl} A(v_1) &= & - \ 0 \ 823386 \\ A_1^{(1)}(0) &= & - \ 0 \ 0065707 \\ A_1^{(1)}(1/o) &= & 0 \ 0004480 \end{array}$			$A_{2}^{(1)}(0) \\ A_{1}^{(1)}(1/\sigma) \\ A^{(2)}(1/\sigma)$	= - 0 0152801) = - 0 0052221) = A ⁽²⁾ (1) = 0

TABLE V

	Q = 20 + 20	20 + 40	40 + 40
μ		<u>∆(µ)</u> *	
0 05	60 (-6)	83 (7)	32(7)
0 10	61 (6)	89 (~7)	34 (-7)
0 20	64(6)	10 (+6)	37 (7)
0 30	67(6)	11(6)	42 (7)
0 40	69 (•6)	13(6)	47 (7)
0.50	70(6)	16 (6)	5.4 (-7)
0.60	68(6)	19 (6)	63 (7)
070	61 (6)	25 (6)	75(7)
080	40(6)	36 (6)	96 (7)
090		68 (6) 1 2 (5)	
0 00		13 (·5) 55 (·5)	22 (6)
	47 (* 5)		70(3)
a	 	Δ(α)	
0	54 (6)	15 (~6)	59(7)
1	43 (6)	17 (-6)	71(7)
2	37 (.6)	15 (+6)	75(-7)
3	32 (6)	11 (+6)	74(7)
4	3.0 (6)	43 (~7)	71(7)
5	29(6)	33 (-7)	66 (7)
6	30 (6)	12 (6)	59(.7)
7	33(6)	22(6)	50 (7)
8	37 (6)	32 (6)	40 (7)
9	41(6)	44 (6)	29(7)
10	47 (6)	56 (6)	18 (-7)

4

	p ₁ = 00	p, = 00	p ₁ = 0 1	p = 0 3
μ	$\Psi_1(\mathbf{x},\boldsymbol{\mu})$	Ψ, (x,μ)	$\Psi_{1}(\mathbf{x},\boldsymbol{\mu})$	Ψ (x,μ)
		×	- 1	
-10	0 021322	0 074932	0 020777	0 074308
-06	0.019960	0.062726	0 019422	0.061826
0.4	0 017263	0 056860	0 016734	0 055811
-02	0 015916	0 051106	0 015386	0 049902
02	0 014555	0 045422	0.012614	0.038122
04	0 01 1642	0 033514	0 011084	0 031825
06	0 010074	0 028274	0 009491	0 026447
0.8	0 008529	0 024216	0 007911	0 022282
09	0.007/32	0 022554		0 020576
		× 	= Z F	
-10	0.031256	0 105182	0 030043	0 102593
-08	0.029813	0.098553	0 028674	0.095851
-0.4	0 026980	0 085966	0 025799	0.083003
-02	0 025577	0 079942	0 024400	0 076837
0.0	0 024 169	0 074057	0 022993	0 070802
	0 022/43	0.0682/5	0 021562	0.064867
04	0 019701	0 056827	0 018486	0 053109
08	0 017960	0 051588	0 016709	0 047728
09	0 016980	0 049195	0 015702	0 045271
		X	= 5	
- 10	0 065529	0 210509	0 061745	0 200288
08	0 063668	0 201724	0 059934	0 191516
-06	0.061851	0 193363	0 058162	0 183139
-02	0 058324	0 177733	0.054706	0 167409
ŏõ	0 056595	0 170385	0 053003	0 159984
02	0 054870	0 163301	0 051297	0 152808
04	0 053124		0 049562	0 145851
08	0 049318	0 143/35	0 045735	0 139085
09	0 048188	0 140147	0 044586	0 129254
		x ·	= 10	haa ah
- 10	0 152418	0 480657	0 140108	0 444900
- 08	0 149082	0 464519	0 136977	0 429331
-06	0 145858	0 449306	0 133941	0 414605
-04	1) 142/34 () 130701	0 434932	0 130993	0 387388
ŏõ l	0 136744	0 408403	0 125311	0 374769
Ő2	0 133845	0 396117	0 122546	0 362734
04	0 130977	0 384408	0 119798	0 351233
	0 128091	03/3225	011/013	0 340221
09	0 123452	0 357337	0 112479	0 324528

TABLE VI Angular Fluxes inside the Medium

TABLE VII

Exit Angular Fluxes

μ	p1 = 00	00	00	00	01	01	03
	p; = 00	01	03	05	03	05	05
				$\Psi_1(0,-\mu)$			
0 05	0 004841	0 004885	0 004980	0 005084	0 004903	0 005006	0 004848
0 10	0 005277	0 005323	0 005424	0 005534	0 005342	0 005451	0.005283
0 20	0 006066	0 006116	0 006224	0 006343	0 006135	0 006253	0.006070
0 30	0.006803	0 006857	0 006971	0 007097	0 006876	0 007002	0.006806
0 40	0 007515	0 007570	0 007690	0 007822	0 007590	0 007721	0 007515
0 50	0 008210	0 008268	0 008391	0 008528	0 008286	0 008422	0 008207
0 60	0 008896	0 008954	0 009081	0 009221	0 008972	0 009112	0.008887
070	0 009574	0 009634	0 009763	0.009907	0 009651	0 009793	0.00956
080	0 010249	0 010309	0 010440	0 010586	0 010324	00104/0	0 010230
090	0 010921	0 010982	0 011115	0 011263	0 010995	0 011142	0.010895
1 00	0 01 1592	0.011654	0 011787	0 011937	0 011664	0011813	0.011559
			• ** • • • • • • • • • • • • •	Ψ, (0, - μ)			
0.05	0 017021	0 017295	0 017876	0 018511	0 017435	0 018057	0.017149
0.10	0 01 8736	0 0 1 9 0 3 9	0.019685	0 020388	0 019195	0.019885	1.018380
0 20	0.021900	0 022259	0 023024	0.023858	0.022446	0.023263	0.022074
0.30	0 024920	0 025333	0 026213	0 027172	0 025550	0.026488	0.025124
0 40	0 027879	0 028346	0 029338	0.030420	0 028591	0 029650	0.028112
0.50	0 030813	0 031332	0 032438	0 033639	0.031605	0 032783	0 031072
0 60	0 033739	0 034311	0 035526	0 036849	0 034611	0 035907	0.034024
0 70	0 036672	0 037295	0 038620	0 040064	0 037621	0 039035	0 036979
0 80	0.039620	0.040294	0 041729	0 043292	0 040645	0 042176	0.039947
0 90	0 042590	0 043316	0 044860	0 046542	0 04369()	0.045337	0.042932
1 00	0 045588	0.046366	0.048018	0 049818	0 046762	0.048525	0.045943

TABLE VIII

Total Fluxes

_ · _ · _ · _ ,		, <u> </u>	r			·				
×	ρ ₁ = 0 0 ρ ₂ = 0 0	0 0 0 1	0 0 0 3	0.0 0.5	01 03	0.1 05	0 3 0.5			
	φ ₁ (x)									
00	0 008151	ი 0 08206	0.008326	0 008459	0.008223	0 008355	0 008144			
0.5	0.020050	0 020067	0.020108	0 020163	0.019624	0.019580	0.018718			
1.0	0.030107	0.030042	0 029912	0 029788	0 029115	0 028999	0.027427			
2.0	0 049828	0 049546	0 048968	0.048371	0 047591	0.047019	0.044323			
5.0	0 115069	0.113824	0.111260	0.108592	0.108008	0.105441	0.099152			
10 0	0 275830	0 270950	0 261057	0.250981	0 253032	0.243337	0.228099			
		•	φ1	$asy(x) / \phi_1(x)$	x)					
0.0	1 50131	1 51559	1.54545	1.57714	1.52536	1.55648	1.51507			
0.5	1 07179	1 07530	1 08279	1 09094	1.07975	1.08785	1.08130			
10	02452	1.02589	1.02885	1 03211	1 02790	1.03116	1.02908			
20	1 00449	1 00477	1.00538	1 00607	1.00526	1.00595	1.00567			
5.0	1.00007	1 00007	1 00008	1 00009	1.00008	1.00009	1. 00009			
100	10	10	1.0	10	1 0	1.0	1.0			
		I	L	φ ₂ (x)		• •, <u>.</u>	h. —			
00	0 030729	0 031246	0.032345	0.033542	0.031515	0.032687	0.030980			
05	0.063085	0 063345	0.063910	0.064550	0.062185	0.062819	0.059367			
10	0.091643	0 091577	0 091464	0.091386	0 088929	0 088870	0.083853			
2.0	0 149148	0 148375	0 146789	0 145149	0 142610	0.141046	0 132861			
50	0 342995	0 339356	0.331851	0 324030	0 322070	0 314550	0.295638			
10 0	0 822133	0.807752	0 77 8580	0.748840	0.754456	0.725856	0.680045			
			¢2	_{asy} (x) / φ ₂ ()	<)	└				
0.0	1 18692	1 18666	1 18645	1 18666	1 18679	1 18676	1,18740			
0.5	1 01529	1 01550	1 01604	1.01672	1.01597	1 01659	1.01644			
10	1 00321	1 00330	1 00350	1 00377	1.00343	1 00367	1 00352			
2.0	1.00023	1 00025	1 00028	1.00033	1 00026	1.00030	1.00024			
50	1.0	10	10	1.0	10	1.0	1.0			
10 0	10	1.0	1.0	10	10	10	1.0			
ل	. بيد . ويو د سيد مصحب ب	1		الديدين والمتراجع والمتعاد			ليستحم والمراد والمراد			

	١X
INDLL	1

Currents

r	r	T	г	F	-	,	·			
	$n_1 = 0.0$	00	00	00	01	01	03			
×	$c_{1} = 0.0$	01	0.3	05	03	05	05			
	$p_2 = 0.0$	l					J			
	- J. (x)									
						r • • • • • • •	·····			
00	0 004664	0 004693	0 004756	0 004827	0 004701	0.004771	0 004657			
05	0 004447	0.004461	0 004493	0 004529	0 004459	0 004495	0 004424			
10	0 004362	0 004367	0 004380	0 004396	0 004356	0 004372	0 004322			
2.0	0.004407	0 004402	0 004392	0 004385	0 004375	0 004368	0 004333			
50	0.005391	0 005358	0 005290	0 005225	0 005267	0 005203	0 005156			
10.0	0 009411	0 009257	0.008951	0 008650	0 008889	0.008593	0 008473			
		!	!	L	·	k	44			
	$-J_2(\mathbf{x})$									
00	0.017852	0.018154	0.018797	0 019498	0.018311	0 018998	0.017998			
05	0 018251	0 018570	0 019247	0 019984	0 018736	0 019458	0 018406			
10	0.018638	0 018966	0 019663	0 020421	0 019133	0 019876	0 018787			
2.0	0 019541	0 0 19876	0 020587	0 021362	0 020025	0 020784	0 019629			
50	0 024316	0 024629	0 025295	0 026020	0 024576	0 025289	0 023830			
10.0	0 042467	0 042578	0 042823	0 043106	0.041503	0 041795	0 039185			
L										

TABLE X

Extrapolated Endpoints

ρι	0.0	00	00	00	0 1	01	03
P2	0.0	0.1	0.3	0.5	03	05	05
z _o	0 665826	0 685091	0 7 275 70	0 776237	0 730648	0 779354	0 786477

TABLE XI

Source Normalization Constants

21	00	0.0	0.0	00	01	0.1	03
P ₂	0)	0.1	03	05	03	05	05
Q1	1.0	0.981801	0.945395	0 908966	0 988185	0 950117	1 041100
Q2	1.0	0.999785	0.999179	0 998303	1 021450	1 020562	1 068313

RESUMO

O problema de Milne e solucionado utilizando se a teoría de transporte de neutrons para espalhamiento Inearmente anisotropico em termos das matrizes H utilizando se relações de ortogonalidade de autofunções em semí intervalos

O eleito de espalhamento anisotropico e estudido numericamente utilizando o conjunto de dados de espalhamento isotropico para agua leve de Metcalt e Zweitel e considerando a parte anisotropica da matriz de transferencia dada por <u>B</u> $\stackrel{=}{=}$ <u>C</u> $\stackrel{=}{=}$ <u>onde</u> <u>C</u> e a parte isotropica e <u>P</u> uma matriz 2 x 2 de elementos $\rho_{i} \delta_{ij}$

RÉSUMÉ

Le probleme de Miline est resolu dans la theorie de transport des neutrons a deux groupes pour la ralent ssement l'inéairé anisotrope en termes des matrices H en utilisant les relations d'orthogonalise a demi portée entre fonctions propres

L'effet de ralentissement anisotrope est étudie nuomeriquement eu se servant des données de la ralentissement isotrope de Meicalf et Zweifel pour l'ean legere et en considerant la partie anisotrope de la matrice de transfert donnée par $\underline{B} = \underline{CP}$ ou \underline{C} est la partie isotrope et <u>P</u> une matrice 2 x 2 d'elements p_i δ_{ij}

REFERÊNCIAS BIBLIOGRAFICAS

- 1 BOSLER, G E a METCALF, D R Critical slab solution to the two-group neutron-transport equation for linearly anisotropic scattering Trans Am, nucl. Soc., Hinsdale, III., 15:913 4, 1972.
- 2 BURNISTON, E E & SIEWERT, C E The use of Reimann problems in solving a class of transcendental equations Proc. Camb Phil. Soc., Cambridge, <u>73</u>.111 8,1973
- 3 et alii Matrix Reimann-Hilbert problems related to neutron transpot theory Nucl Sci Engng, New York, 45.331 2 1971
- 4 et alii Steady state solutions in the two group theory of neutron diffusion J. math. Phys, Lancaster, <u>13</u>,1461 5, 1972
- 5 ISHIGURO, Y Two-group neutron-transport theory with lineary anisotropic scattering: half-range orthogonality and critical slab problem. São Paulo, Instituto de Energia Atómica Ago 1973 (IEA 306)
- 6 KRIESE, J T & SIEWERT, C E. An expedient method for calculating H-matrices Astrophys. J., Chicago, <u>164</u>:389-91, 1971
- et alii Two-group critical problems for slabs and spheres. Nucl. Sci. Engng, New York, 50:2-9, 1973
- 8 LEONARD, A. & FERZIGER, J. H. Energy-dependent neutron transport theory in plane geometry. 3. Half range completeness and half-space problem. Nucl. Sci. Engng, New York, 26:181 91, 1966.
- 9. METCALF, D R & ZWEIFEŁ P F Solution of the two group neutron transport equation | Nucl. Sci Engng, New York, 33:307-17, 1968

18

- WEIFEL, P. F. Solution of the two group neutron transport equation II.
 Nucl. Sci. Engng, New York, 33 318 26, 1968.
- 11 PAHOR: S. Albedo and Milne's problem for thermal neutrons. Nucl. Sci. Engng, New York, 31 110.6, 1968
- 12 One speed neutron transport in slab geometry Nucl. Sci Engng New York, 29.248-53, 1967
- 13 & SHULTIS, J K Half space general multigroup transport theory J nucl Energy, London, 23:477 93, 1969
- 14 REITH, R. J. & SIEWERT, C. E. Two group neutron transport theory with anisotropic scattering. Nucl. Sci. Engng, New York, 47, 156-62, 1972.
- 15 SHULTIS, J. K. Anisotropic multigroup transport theory. Nucl. Sci. Engng, New York, 38:83.93, 1969
- 16 SIEWERT, C E On the half range orthogonality theorem appropriate to the scattering of polarized light J Quant Spectrosc. Radiat Transfer, Oxford 12:683 94, 1972
- 17 SIEWERT, C E & BURNISTON, E E KRIESE, J T Two group neutron transport theory: Existence and uniqueness of the H matrix J nucl Energy, London, <u>26</u> 469 482, 1972
- 18 & SHIGURO Y Two-group neutron transport theory half range orthogonality, normalization integrals, applications and computation J nucl Energy, London, <u>26</u>:251 69, 1972
- 19 & SHIEH, P. S. Two-group transport theory J. nucl. Energy, London, <u>21</u>:383 92
 1967
- 20 & 2WEIFEL, P.F. An exact solution of equations of radioactive transfer for local thermodynamic equilibrium in the nongray case. Picket fence approximation Ann. Phys., Baltimore, <u>36</u> 61 85, 1966
- 21 & ZWEIFEL, P. F. Radiative transfer, II J. mith. Phys., Lancaster, 7:2092-102, 1966
- 22 SILVENNOINEN, P C. ZWEIFEL, P F. On the discrete spectrum of the transport operator. Nucl. Sci. Engng, New York, 42:103 4, 1970
- 23 & ZWEIFEL, P F On multigroup transport theory with a degenerate transfer kernel J m. th. Phys., Lancaster, <u>13</u>:1114 7, 1972
- 24 YOSHIMURA, T & KATSURAGI, S Multigroup treatment of neutron transport in plane geometry Nucl. Sci. Engng, New York, 33:297 302, 1968
- 25 ZELAZNY, R & KUSZELL, A Two group approach in neutron transport theory in plane geometry Alin. Phys., Baltimore, <u>16</u>,81-95, 1961