

SYSTEMATIC STUDY ON NUCLEAR RESONANT SCATTERING

A.A. SUAREZ and M.L. FREITAS

Setembro – 1974

INSTITUTO DE ENERGIA ATOMICA Caixa Postal 11049 (Pinheiros) CIDADE UNIVERSITARIA "ARMANDO DE BALLES OLIVEIRA" SÃO PAULO -- BRASIL

SYSTEMATIC STUDY ON NUCLEAR RESONANT SCATTERING

.

A A Suarez and M. L. Freitas

Coordenadoria de Fisica Nuclear Instituto de Energia Atômica São Paulo - Brasil

> Publicação IEA Nº 351 Setembro - 1974

Instituto de Energie Atômica

Conselho Superior

Eng^O Roberto N. Jafet - Presidente Prof.Dr.Emilio Matter - Vice-Presidente Prof.Dr.José Augusto Martins Prof.Dr.Milton Campos Eng^O Helcio Modesto da Costa

Superintender.te

Rômulo Ribeiro Pieroni

SYSTEMATIC STUDY ON NUCLEAR RESONANT SCATTERING

A. A. Suarez and M. L. B. C. Freitas

ABSTRACT

Is was absorved how resonant scattering effects of thermal neutron capture gemma rays from Triand Fe on Sb, Cu, Se and Ce targets. These results together with those published by other authors are summarized and discussed in terms of a possible systematic search for new resonant scattering effects,

INTRODUCTION

The scattering of photons by nuclei is, and will be in the next future, an interesting and promissing research field in nuclear structure physics.

Specially the development of an experimental arrangement which parmits the use of a reactor as a monochromatic gamma source of high intensity has improved appreciably the experimental techniques in photon scattering physics^(9,18). The main physical information and insight into the structure of nuclei subject to investigation by photons can be divided into the following groups:

- detailed structure of nuclear levels having appreciable strenght to the ground state and low excited states.
- as a tool for the experimentalists to test nuclear models in high energy region of excitation
- the coupling of giant multipole resonances to low energetic collective modes (collective correlations of nucleons)

While unbound nuclear levels can be populated using particle capture reactions, highy excited bound levels in stable nuclei can be convaniently reached through the electromagnetic interaction between the photons of the incident gamma beam and the nucleus.

The nuclear level spacing is usually small in the vicinity of the neutron threshold and requires an incident radiation with a narrow energy band (a few eV's) to permit the excitation of isolated levels. Such nearly monoenergetic gamma lines are obtained in the (n,γ) reaction using thermal neutrons. This method has been used extensively in the last decade to excite bound levels in a wide variety of nuclei.

Although this method is based on an accidental overlap in energy between on of the lines in the spectrum of the incident radiation and a level in the target nucleus, a large number of resonant levels have been detected so far.

Fundamentally the experimental method consists of measurements of the effective elastic cross section, angular distribution, temperature dependence of the intensity of scattered radiation and a measurement of the self abcorption of the particular gamma line.

These measurements provide information for the calculation of the total and partial

radioactive widths of the resonant levels, making use of the experimentally determined branching ratios of the inelastic transitions to low-lying levels as seen from the spectrum of the scattered radiation.

Even more, informations can be obtained also about the low-lying levels of the stable scatterer nucleus

The angular distribution of the resonarit scattered radiation depends on the spins of the energy levels involved and the multipolarity of radiation. So, the angular dependence of the scattering differential cross section $W(\theta, L, J_0, J_1)$, can be calculated by using standard angular correlation procedures. Here θ is the scattering angle, L is the multipolarity of the radiation, $\delta = (intensity of the L + 1 radiation)/(intensity of the L radiation), J_0 is the ground state spin, and J_1 the excited state spin of the nucleus$

The development of experimental arrangements and the consequences from them have improved rapidly in the past decade in such a way that would be seemed to us an opportune time to review all the data obtained until now. The results obtained in the present work, so as those published previously are discussed in this paper.

Experimental Arrangement

The experimental facilities for resonance scattering of gamma rays at the IEAR-1 reactor have been described priviously by F.G. Bianchini $^{(10-11)}$. The gamma source in this experimental arrangement is placed in the reactor core as it is shown in figure 1 since it was described in reference 50, the neutron density increases in the limits of the reactor core when graphite or water are used as reflectors.

Figure 1

With this arrangement a neutron density of about 5×10^{13} n/cm³ is available in the target position. Another advantage is that the exchange of targets is made without diemount the collimator system and the handling of the very active source is made in safety conditions since it is 10 meters deep in the moderator of the reactor. A small contamination exists in the gamma beam with the 7724 KeV line of aluminium from the structural material of the reactor core. This however contributes with less than 1% of the mein line of the target in the incident spectra.

This new gemma source arrangement into the reactor core as it was showed by Bianchini^{11,01}, has at least one order of magnitude higher gemme fluxes on the scatterer position than with other existing arrangements

The resulting gammas produced in the target are collimated, as it is showed in figures 2 and 3, and filtered in a special way in order to remove fission neutrons which enter into the beam direction. The thermal neutron flux was determined to be less than 50n/cm² sec which is the limit of sensibility of the method utilized.

The high energy scattered spectra is measured with a 42.5 cm³ Ge(Li) detector shielded from the room background radiation by 15 cm of lead. The spectra is obtained on a 4096 channel analyser and the data reduction of the spectra and the various calculations are done by standard computer techniques.

The Ge(Li) is fitted into a graduated rotating arm pivoted around a perpendicular exis passing through the scatterer

The design of the system permitted the variation of the distance between the detector and the scatterer as well as the one from the scatterer to the reactor shielding wall

Through a long run, the intensity of the incident gamma beam was monitored by detecting the neutron flux close to the target in the reactor core by using a neutron detector from the firma Reuter-Stokes (Canada) type RSW-20-2MI. The sensibility of such detector was 2.4×10^{-10} Amp/nv

This procedure is necessary when precise intensity measurements are required such as in self-absorption and angular distribution experiments.

Experimental Results

In this work some resonant levels were found in antimony, copper, selenium and cerium using sources of titanium and iron

The gamma sources were produced by neutron capture in separated plates of natural titanium given a total weight of 4630 g and natural iron with 7300 g, placed inside a double sized fuel element container. Details of the experimental system ware published previously ⁽¹⁰⁾ The energy resolution of the Ge(Li) was about 10 kev for the 6761 keV line of titanium.

Figure 4 shows the high energy part of the scattered spectrum from a netural copper as

well as the direct spectrum from the titanium target.

The resonant scattering of capture gamma rays from a Ti source on copper has been observed previously by other groups (51 - 21 - 64 - 5). Due to the use of Nail detectors it was not possible to distinguish unambiguously from which gamma ray the resonance comes.

In references ^(51 23 and 5) it was supposed to be the weak 6.07 MeV transition from Ti the responsible for the resonance scattering observed on ⁵³Cu and ⁵⁵Cu with a calculated cross section around 220 mb and 440 mb respectively. Toumbev⁽⁶⁴⁾, still using a Nai detector supposed to be the strong 6.41 MeV transition the origin of this resonance and calculated a cross section of 16.6 mb. Due to the fact that such calculations are so dependent of the hypothesis from which gemma ray the resonance comes, we performed an experiment in the gemma scattering facility of the IEAR-1 reactor of S. Paulo using a Ge-Li detector. From figure 4 it is possible to observe that the resonant energy is the weak 6.557 MeV line instead of the 6.07 or 6.417 MeV lines.

It was observed some lines in the spectrum of gemma rays scattered elastically and inelastically from a target of Sb when we were using a titanium gamma source.

The proposed decay scheme for the 6761 KeV level of ^{1,2,3}Sb is shown in figure 5 together with the schemes of Cu and Se. The partial decay scheme of Sb is based on few lines which fits immediately to the known levels of Sb.

In figure 6 it is showed the angular distribution from the gamma rays scattered elastic and inelastically by Sb where it was possible to identify the isotope responsible for the resonance scattering

In table I is aimed to be displayed all results obtained until now since the first paper on resonance scattering of capture gamma rays made by Fleischman⁽¹⁸⁾ appeared or at least the most important papers were related in this table. Small fluctuations on the energies of some gamma ray sources were permitted without any correction by us since we cannot be held the responsability for discrepancies other than our own contributions.

If we take a close look into the literature, the amount of papers which makes a complete study of the nuclides in question is negligible. Many of those previous papers were done by using Na1 detectors or were done only in order to search for new resonances without any intention to make a deeply study of the scatterer nuclide *So*, much work has to be done until a deeply systematic of the data can be made. It also happens sometimes that not all of the measurable resonance have enough intensity to permit accurate studies of level schemes and resonance level parameters. Much of the experimental difficulty is due also to the high level of background caused mainly by multiple electronic scattering from the intense; gamma rays belonging to the source material. As it has been observed by Y Kawarasaki⁽²⁷⁾ the application of week lines as a monochromatic beam of neutron-capture gamma rays would provide more information on highly excited levels near neutron threshold, because there remain many untried emitters and, hence, many monochromatic lines.

For instance we could use Cd as a gamma source since it is plenty of lines and, by proper choosing of the geometry a large amount of Cd could be put in the source position.

Figure 6

!

. . . .

Special attention should also be devoted to the methods utilized in the calculations since much of the discrepancies comer from the criterium utilized in the approximations. Only in a very few cases the nuclear level can be approximated by a pure Doppler form and so in the most of the cases the Doppler broadened shape of a gamma line has to be calculated accurately for guantitative analysis.

In figure 7 it is shown the average branching ratio versus the resonant energy for those nuclides of table 1 where it was possible to identify the resonant isotope. As it can be seen, the branching ratio seems to decrease slowly as the excitation energy increases.

In figure 8 it is displayed the number of resonances observed in each element and we can observe clearly the magic number structure. This picture serves also as a suggestion to find new resonant elements. We can see clearly in it that is highly probable to find new resonant levels in the region of 20, 28 and 50 neutron closed shells as in the 28 proton closed shell. Also, Indium is a high probable candidate to display new resonances effects.

As was ex_{μ} and by Ben-David^(B) the low density of low-lying levels in the region of closed shells reduces the probability of a dipole transition to an excited state, thus giving a ground state branching – ratio Γ_0 Γ close to unit for highly excited states below the neutron emission threshold. For nuclei far from closed shells this branching ratio is usually much less than unity, which greatly reduces the scattering cross section, and therefore the probability of ubserving resonant scattering from these nuclei

In figure 9 it is shown the elements which presents some resonant effect against the gamma sources. What is curious from this figure is that in spite of the rather small amount of data collected exist the aglomerate of resonances observed involving the magic numbers either from the scatterer element or the gamma source.

RESUMO

Foram observados novos efeitos de espainamento ressonante de ralos gama de captura de neutron term cos do 1º e Fielam alvos de Sb. Cui Sele Cel Estes resultados juntamente com aujuetes publicados por outros autores são relacionados e discutidos em termos de uma possivel pesquisa a silemativa de novos efeitos de expainamento ressonance.

RESUME

On a observee d'effets nouveaux de la diffusion par résonance des rayons gamme de capture des neutrons tents de 1 et Fellen cibles de Sb. Cu. Se et Ca. Ces resultats, em meme temps que ceux publiés par d'autres auteurs sont rapportes et débetis en termes d'une possible recherche systématique d'effets nouveaux de la diffusion par resonance.

REFERENCES

- ARAD, B. et alii. Soudy of the 7285-MeV in lead-208 using a rotor technique. Phys. Rev. B, New York, 136:370-3, 1964.
- 2 ARAD, B et all Studies of highly excited nuclear bound levels using neutron gemma

rays Phys Rev 8, New York, 133 684 700 1964

- 3 BARTHOLOMEW A et alii Compendium of Thermal Neutron Capture Y-ray measurements Part 12 Nuclear Data, 3 (1) 367 650. Aug 1967
- 4 BEGZHANOV R B & AKHRAROV S M Resonance scattering of y rays from neutron capture by nuclei Icv Akad Nauk uzbak SSR, Er Fiz Met Nauk, Tashkent, (3):43.9, 1969
- 5 BEGZHANOV, R. B. & AKHRAROV, S. M. Study of highly excited nuclear levels by means of neutron capture yrays. Somet J. nucl. Phys. (Engl. transl.), New York, 12:245-7, 1971.
- 6 BEGZHANOV, R B & AKHRAROV, S M Investigation of highly excited levels of nuclei with the aid of neutron capture gemma rays JETP Lett. (Engl. transl.), New York, 10:26.8, 1969.
- 7 BEGZHANOV, R. B. et all: Neutron capture resonance y ray scattering on zinc nuclei. Dokt. Akad. Nauk uzbek, SSR, Tashkent, (10) 25-7, 1967.
- 8 B E N-DAVID, G et alii Further study of nuclear resonance scattering using neutron-capture gamma rays Phys Rev, New York, 146:852-80, 1986
- 9 BEN-DAVID, G & HUEBSCHMANN, B The nuclear resonant scattering of neutron capture gamma rays Phys. Lett., Amsterdam, 3:87.9, 1982
- 10 BIANCHINI, F. G. Determinação de spins e larguras radioativas dos níveis nucleares do selúrio com raios gama de captura. Campinas, Instituito de Fisica de Universidade Estal, lat de Campinas, 1973. 130p. (Tese de doutoramento).
- 11 BIANCHINI, F. G. Nuclear elastic and inelastic scattering of iron capture gamme-rays from lead and nickel. Revta. bras. Fis., São Paulo, 2(3),191-9, 1972
- CESAREO, R. et alu. Nuclear resonant scattering of gemma rays in Ni, Cd, Sn, and Bi. Nucl. Phys., Amsterdam, A132:512-28, 1969
- 13 CESAREO, R et alli Recent results on (γ,γ) and (γ,γ') reactions from neutron capture gamma rays in: INTERNATIONAL ATOMIC ENERGY AGENCY, Vier. a Neutron capture gamma-ray spectroscopy: proceedings of the international Symposium on ... held in Studiwik, 11 15 Aug. 1969. Vienna, 1969.p. 491-505.
- 14 CESAREO, R et al.: The ^C Ti level scheme 45 investigated by nuclear resonant scattering of 7846 keV yrays Nucl Phys , Amsterdam, A141:561 76, 1970
- 15 DOWDY, E. J. & McINTYRE, J. A. Ground state transition width of the 7.297 MeV level in ^{20 A} Pb. Phys. Rev., New York, 145:982-7, 1966
- 16 ESTES, G. P. & MIN, K. Photoexcitation of the 7.64 MeV magnetic dipole levels in Cd112 and Ni62 by iron capture gamma rays. Phys. Rev. C. New York, 1:201-6, 1970.
- 17 ESTES, G. P. & MIN, K. Inelastic scattering of monochromatic photons from the 7.64-MeV licel of ^{6,7}Ni. Phys. Rev., New York, 154:1104-8, 1967.
- 18. Fill EISHMANH, Thesis, Technische Hochschule, München, Germeny, 1961 (unpublished)
- GIANNINI, M. et alii. Nuclear resonant scattering of gemme rays in Pb, Ni and Cd Nuovo Cim., Pise, 34:1116-8, 1964.
- 20 GIANNINI, M. et alii. Nuclear resonant scattering of gernma-rays in Pb, Ni and Cd. Nucl. Phys., Amsterdam, 65:344-52, 1965.
- 21 GIANNINI, M. et alii: Nuclear resonant scattering of gemme rays in Cu, Sn and Bi. Nucl. Phys., Amsterdam, A101:145-62, 1967
- 22 HASS, M. et alii. Experimental observation of the nuclear Raman effect Phys. Lett., Amsterdam, 368:68-70, 1971
- 23 ISRAEL ATOMIC ENERGY COMISSION, Tel Aviv. Research Laboratories annuel report, January December, 1968. Tel Aviv, July 1969. 308p. (IA-1190).

- 24 ISRAEL ATOMIC ENERGY COMMISSION, Tel Aviv. Research laboratories annual report for the period January December 1966. Tel-Aviv, 1967. 263p. (IA 1128).
- 25 JACKSON, H. E. & WETZEL, K. J. Deibruck scattering of 10.8 MeV γ rays. Phys. Rev. Lett., New York, 22:1008-10, 1969.
- 26 JACKSON, H. E. & WETZEL, K. J. Nuclear Raman scattering of 10.38-MeV photons by ²⁺¹⁹Th, and ²⁰⁻⁹Bi Phys. Rev. Lett., New York, 28:513-6, 1972.
- 27 KAWARASAKI, Y. Nuclear resonant scattering of the 6730 keV lead-capture gamma-rays from Tin-120 JAERI, Tokai Mura, Ibaraki-ken.
- 28 McINTYRE, J. A. & RANDALL, J. D. Nuclear spectroscopy with energy resolution of a parper million. Phys. Lett., Amsterdam, 17,137-0, 1965.
- 29 MECCA, S. J. & ROTHAMEL, J. R. Photoexcitation of ^{20,9} Bi and ^{nac}Hg using neutron-capture γ rays from cobalt. Nucl. Proc. Amsterdam, A201:570-8, 1973.
- 30 MICHALK, V. E. & McINTYRE, J. A copulation of nuclear energy levels via photon-excited levels. Nucl. Phys., Amsterdam, A137:115-128, 1969.
- 31 MIN K. Inelastic scattering of iron-capture gamma rays from the 7.64 MeV level of ¹¹²Cd. Phys. Rev., New York, 152:1062-7, 1986.
- 32. MOREH, R et alu Foward elastic scattering of 9 MeV gamma rays Phys. Lett., Amsterdam, 34B:494-6, 1971
- MOREH, R. et alii. Radioactive widths, spins and parities of nuclear levels in the 6-9-MeV region excited by neutron capture γ rays. Phys. Rev. C., New York, 2:1144-56, 1970.
- MOREH, R. et alii Small angle resonance absorption in ^{20 #}Pb and ^{20 3}Tl of resonantly scattered iron capture γ rays (abstract) Bull. Amer. Phys. Soc., New York, Ser. 2,13:1368, 1968.
- 35. MOREH, R et al.: Study of the energy levels of ⁶⁹Ga using nuclear photoexcitation. Phys. Rev. C., New York, 7:1885-94, 1973
- 36 MOREH, R et al. Study of the energy levels of ²⁰³ TI using (γ,γ') reaction Phys. Rev. C., New York, 2:249-55, 1970.
- 37 MOREH, R & BEN YAAKOV, G Precision study of highly excited nuclear levels using a gamma monochromator. Tel Aviv, Israel Atomic Energy Commission, February 1967, 34p (1A-1163).
- MOREH, R. et alii. The M2 radioactive widths of nuclear levels at about 7 MeV excitation. Phys. Lett., Amsterdam, 368.71-3, 1971.
- 39 MOREH, P. & WOLF, A Gamma ray intensity anomaly in the (γ,γ') reaction. In: INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna Neutron capture gamma-ray spectroscopy: proceedings of the International Symposium on ... held in Studsvik, 11-15 August 1969. Vienna, 1969. p 483-7
- 40. MOREH,, R & NOF, A Photoexcitation of the 7.632-MeV level in ¹¹²Cd and the 7.646 MeV in ⁶²Ni by the iron capture y rays (abstract). Bull. Amer. phys. Soc., New York, Ser. 2, 13:1451, 1968.
- 41 MOREH, R. & NOF, A. Study of the energy level of ¹¹²Cd using nuclear photoexcitation. Phys. Rev. C, New York, 4:2285-71, 1971.
- 42. MOREH R. & NOF, A. Study of the energy levels of ¹³⁹ La using nuclear photoexcitation. In: INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna Neutron capture gemme-ray spectroscopy: proceedings of the International Symposium on ... held in Studevik, 11-15 August 1969. Vienna, 1969. p.487-9.
- MGREH, R. & SHAHAL, O. Study of the energy levels of ⁷⁴Ge using nuclear photoexcitation Phys. Rev. C. New York, 2:2217-28, 1970.
- 44. MOREH R & NOF, A. Use of the (γ, γ') reaction for studying ¹⁴¹Pr levels. Phys. Rev.,

```
New York, 178.1961 7, 1969
```

- 45. MOREH, R. & NOF, A. Use of the (γ,γ') reaction for studying the energy levels of ^{1,3,4} La. Phys. Rev. C., New York, 2:1938-47, 1970.
- 46 MOREH, R. & SHAHAL, O. Use of the (γ,γ') reaction for studying the energy levels of ¹ As Phys. Rev., New York, 188:1765-70, 1969.
- 47 MOREH, R & WOLF, A Study of the energy levels of ^{20,5} Ti using the (γ,γ') reaction. Phys. Rev., New York, 182:1236-43, 1969.
- MOREH, R. et al.: Study of the energy levels of ¹⁰⁰ Mo using nuclear photoexcitation. Nucl. Phys. Amsterdam, A217:477-90, 1973.
- 49 PAVEL, D. et al.: Level structure of ¹⁺¹Pr studied by photonuclear excitation. Nucl. Phys., Amsterdam, A160:409-16, 1971
- 50 PENTEADO F^O, A.C. Irradiações no reator e cálculos de ativação. S. Paulo, Instituto de Energia Atômica, Nov. 1972 (IEA-Inf 23).
- 51 PROSPERI, D. & SCIUTI, S. Richerche di fisica dei nuclei com raggi gemma quasi monocromatici Nuovo Cim., Pise, 5(Suppl.):1265-85, 1967.
- 52 RAMCHANDRAN, S. & intelNTRE, J. A. Spins and width of energy levels in the 5-9 MeV region. Ptyc. Rev., New York, 179.1153-65, 1969.
- 53 SCHLESINGER, Y et al.: Nuclear spectroscopy using resonance scattering of cepture gemme-rays at the IRR-2 Research reactor. Tel-Aviv, Israel Atomic Energy Commission, Jan 1967 37p (IA-1097)
- SCHLESINGER, Y. et al.: Radiation width of bound nuclear levels in the vicinity of the neutron threshold. Phys. Rev. C, New York, 2:2001-9, 1970.
- 55 SCHLESINGER, Y et alii Resonance scattering of nickel capture γ from a natural tellurium target Phys. Rev., New York, 178:2013-9, 1969.
- 56 SCHLESINGER, Y et aliii (γ,γ') spectroscopy of even-even nuclei using the (n,γ) reaction in: INTERNATIONAL ATOMIC ENERGY COMMISSION, Vienna. Neutron capture gamma-ray spectroscopy: proceedings of the International Symposium on ... held in Studsvik, 11:15 August 1969.
- 57 SHIKAZONO, N & KAWARASAKI, I Nuclear resonant scattering of 6734-keV lead capture gamma rays from Tin J. phys. Soc. Japan Tokyo, 26(5): 1319, 1969.
- 58 SHIKAZONO, N & KAWARASAKI, Y The ground-state transition width of the 7368 keV level of ^{6,6} Zn J. Phys Soc Japan Tokio, 27:(2):273-7,1969
- 59 SHIKAZONO, N & KAWARASAKI, Y Nuclear photoexcitation of the 7368-keV level of ^{6,6} Zn by lead capture gamma rays. Nucl. Phys., Amsterdam A118:114-28, 1969.
- 60 STARODUBTSEV, S. V. et al.: Nuclear resonance fluorescence of highly excited states of 61 Ni, 114 Cd and 205 Pb. Soviet Phys. Dokl., New York (Engl. transl), 12:472-3, 1967.
- 61 SZICHMAN, H High precision studies on the level scheme of ⁸⁰Se by the resonant-scattering method Phys. Rev. C., New York, 8:1429-32, 1973.
- 62 SZICHMAN, H et alii The level scheme of ¹³⁹ La studied by photoexcitation with thermal neutron capture gamma rays Nucl. Phys.; Amsterdam, A148:369-79, 1970.
- TENENBAUM, J. et alii Properties of nuclear levels excited by neutron capture-y rays from Cobalt. Nucl. Phys., Amsterdam, A218:95-103, 1974.
- TOUMBEV, G. K. Resonance scattering of gamma rays by copper. C. R. Acad. Bulg. Sci., Sofia, 20:541-3, 1987.
- 65. YOUNG, G. S & DONAHUE, D J Nuclear elastic scattering of monoergetic neutron-capture gamma rays. Phys. Rev., New York, 132:1724-32, 1963.
- WOLF, A. et alu. Large El and MI radioactive widths in nuclei near closed shells. Phys. Rev. C., New York, 6:2276-81, 1972

Table 1	
---------	--

z	Scatterer	•	Gamme Source	E _γ (MeV)	Γ ₀ (eV)	Γ_0/Γ	£ (0V)	σγγ ^(mb)	Comments	Ref
17	C		Fe	7 285				34		8
22	T(ł	Hg	6.31				2		8
24	Çr		Co	7.214						63
24	Cr	50	Fe	8 688	0 675 ± 0 180	0 90	18 31	905		33
24	Cr	[7.646						33
25	Min	55	C0	7 491	0 080 ± 0 040	0 24	17 ± 1	6 ± 2		63
28	н.	62	Fe	7.646	0 307 ± 0.032	0 64	14 ± 1	569		33
28	Ni		Fe	7.646				1		12
28	Ni		Fe	7 646			12 ± 1	105	С	2
28	Ni		Fe	7 546	0 31	0 65				23
28	NE	-	Fe	7.34±0.05	0 074	0.69 ±0.08	11	190 ± 40	BN	17
20	Ni		Fe	7 64				15	N	9
28	Ni	62	57Fe	7.64	0.15 ±0.02	071 ±007	110±05	375 ± 8	N	19
28	N	-	⁵⁷ Fe	7 64	063 ±017	0.21 ±0.14	125±014	375 ± 6	N	20
28	Ni	62	Fe	7 64	~02		11 ±05	370 ± 110	N	51
28	Ni	62	Fe	7 64	1 ±01	0 185	125±05	53.1 ± 20	N	60
28	N		Fe	7.64				7	N	8
28	Ni	62	Fe	7 64					N	11
28	Ni	62	Fe	7.64	1 ±01	0 185 ± 0 058		530 ± 20	N	5
28	Ni		F.	6 977					D	12
28	N,		F.	6 266					D	12
29	Cu		Cr	8 500	094 ±029	008 ±004	94±07	42 1 13		21
29	Cu	65	Cr	8 500	047 ±0.10	0 045 ± 0 031		36±9		5,6

Z	Scatterer	•	Gamma Source	E _γ (MeV)	Γ _ο (eV)	Γ_{o}/Γ	E(oV)	ση(mb)	Comments	Ref
29	Cu	63	Cr	8.500	0.26 ± 0.08	0 30 ± 0.021		22 ± 7		56
29	<u>Cu</u>	63	Cr	8.500	0.28 ± 0.09		86±04	19 2 6		51
29	Cu	65	Cr	8.500	0.94 ± 0.29		94±07	42 ± 13		51
29	ີ	}	Cr	8 4 9 9				24		8
29	Cu	63	Cr	8 499				25	E	2
29	Cu	65	Cr	8 4 9 9				80	E	2
29	Cu	65	Cr	8 4 8 4]	13
29	Cu	.	Cr	8.4.19	9			15		9
29	Cu	·	Cr	7.93\$						13
29	Cu	·	Ti	6.550	•				1	present.
[{								work
29	Cu	-	Τι	6.41	-			166±34	F	64
29	Cu	63	Ťi	6.07	0 16 ± 0 03		92±0.8	200 ± 60	F	51
29	Cu	65	Tè	6.07	0.36±0.07	5	93±08	440 ± 130	F	51
29	Cu	65	τι	6.07					F	4
29	Cu	63	Ti	6.07	0.18 ± 0.04	0.62 ±0.37		215 ± 71	F	5,6
29	Cu	65	TI	8.07	0.34 ± 0.06	0.58 ± 0.34	•	423 ± 108	F	5.6
29	Cu	65	Ti	607	016±003	051 ±018	92108	200 ± 60	F	21
29	Cu	65	TÌ	6.07	0 36 ± 0.07	054 ±0.19	93±08	40 ± 130	F	21
30	Zn		Fe	7.279		· · ·		· ·		33
30	Zn	-	Ni	8.119		· · ·	-	13		8
30	Zn		Ni	7.696	*		•			53
30	Zn	66	Ni	7.696		0.360 ± 0.048			· ·	56
30	Zn	66	Ni	7 696	0.10 ± 0.02	0.47 ±0.13	•]		54

Z	Scatterer	•	Gemme Source	E _γ (MeV)	Γ _o leV)	Γο/Γ	£(oV)	077(mb)	Comments	Ref
30	Zn		Pb	7 38			9 - 15	33 ± 4 5		7
30	Zn	64	РЪ	7 38	058 ±012	}		33 ± 4.5		6
30	Zn		Pb	7 368		0 78				59
30	Zn		Pb	7 368	0 22 ± 0.02	071	85± 07			58
30	Zn	66	РЬ	7.368	058 ± 0.12	0.069 ± 0 040	05	33 ± 4 5		5
31	Ga		Co	5 976					1	62
31	Ge	69	Cu	7.306	0.048 ± 0.027	0.46 ±0.06	62± 05	80±5		35
31	Ge	71	V	7.310					P	35
31	Ga	69	V	6.874	•					35
32	Ge	74	Fe	6.018	0.923 ± 0.003	0.19	45±05	61		33
32	Ge	74	F•	6.018	0 023	019	4 5	61		43
32	Ge	74	Fe	6.018						38
33	As		Co	6.948					· ·	63
33	As	75	Fe	7 646	0.040 ± 0.011	0.11	7.4± 03	4.4		33
33	As	75	Fe	7.646	0041 ± 0.011	0.11	74± 03	44		46
33	As	75	Fe	7.646	0 041 ± 0 011	011 ±005	· ·			54
34	Se	-	к	7.76			•	90		8
- 34	Se	-	Fe	7.277				•	1	present
										work
- 34	Se	78	Ni	7.820					1	52
- 34	Se	80	Ni	7.820		0.425 ± 0.070	-		· ·	56
- 34	Se	80	Ni	7.820	0.030 ± 0.007	0.33 ± 0.09		-		54
34	Se	-	Ni	7.819				•		61
34	Se	•	Ni	7.817	•	•	-	50	· ·	8

.

z	Scatterer	•	Gamma Source	E _γ (MeV)	Γ _o (eV)	Γ_{o}/Γ	<i>€</i> (●V)	ayy(mb)	Comments	Ref
38	Sr	86	N	7.820	0.030 ± 0.015	0.3 ±0.2		4		54
38	Sr		Ni I	7.820		0 292 ± 0.033			1	56
40	Zr	! .	Se	8.496	1.68 ± 0.02	0.8 ± 0.2	5.60 ± 0 15	Í		52
40	Zr	1	Se	3.496				(30
40	Zr		Se	8 4 96				3050		8 37
42	Mo		Co	5.976						63
42	No	. 1	Co	5.660						63
42	Mo	100	Cu	7.637	0.040 ± 0.005	0.28 ± 0.ú9	45 ±05	96±15		48
42	Mo	Į į	Cu	7.634				11	ļ	8
42	No	100	Cu	5.451						48
42	Mo	100	Cu	5,187						48
42	Mo	100	Cu	5.045					•	48
42	Mo	100	Cu	4.902					1 · · ·	48
42	No	100	Cu	4.732	•					48
42	No		Fe	7.632						33
42	Mo	1 • 1	Hg	6.44			*	25	ĸ	8
42	Mo	96	Hg	6.44	0.12 ± 0.04	0.15 ±0.10		201 ± 37	j .	5,6
42	Mo	100	Ti	7.168	•	-		1		48
42	Mo	100	Ti	6.760			•			48
42	No	94	Ti	6.558			•		· ·	48
42	Mo	100	Ti	6.418	0.025 ± 0.008	0.50 ± 0.38	4.3 ±0.3	150 ± 15		48
42	Mo	100	Ti	6.418	•		•	-	· ·	38
42	No	•	Tì	6.413				10		8
42	Mo	96	Ti	6.413	0.11 ± 0.02	0.162 ± 0.097	•	11.2 ± 1,4		5,6
42	Mo	96	Ti	6.41			•		•	4

.

Z	Scatterer		Gemme Source	E _γ (Me∨)	Γ _o (e∨)	Γ _ο /Γ	€leV)	ayy(mb)	Comments	Rei
42	No	100	v	7,162			-	-	-	48
42	Mo	100	V	6.517	0.072 ± 0.068	0.40 ± 0.44	12.8 ± 1.2	110 ± 30	-	48
42	No	100	V	6,465	- 0.046	- 0.36	-	-	-	48
47	Ag	109	Fa	7,632	0.0014 ± 0.0008	0.7	9 ± 1	35	-	33
47	Ag	-	Fe	6.018	-	-	-	-		33
48	Cd	- 1	Co	6.990	-	-	_	- 1	-	30
48	Cd	-	Co	6.985	-	-	-	-	-	63
48	Cd	- 1	Co	6.490	-	-	_	-		30
48	Cd	110	Co	6.486	-	-	-	-	-	63
48	Cd	_	Co	6.485	-	_	-	-	-	52
48	Cd	-	Co	6.474	-	-	-	110	_	8.37
4	Cd		Co	6.279	_	_	_]	63
48	Cd	-	Co	5.860	_		_		-	63
48	Cd	114	Fa	7.64	0.20 ± 0.05	0.36 ± 0.12	_	-	GN	60
4	Cd	_	Fe	7.64	_	-			N	16
	Cd		Fe	7.64	-	_	-	40	N	8.37
48	Cd]	Fe	7.64	0.6 ± 9.2	0 46 ± 0.06	16 ± 3	170 ± 30		31
48	Cd		Fe	7 64	0.22 ± 0.02	011 ± 0.06	, ≤1	287 + 6	_	19
a l	Cal	_	Fe	7.64	0.22 ±0.05	0.14 ± 0.06	≤ 1	287 ± 6	_	20
48	Cd	114	Fe	7.64	0.20 ±0.05	0.36 ± 0.12	-	180± 10	G	5
Ā	Cd	114	Fe	7.64	0.37 ±0.11		≤2	300 ± 100	Ğ	5:
	Cd	112	Fe	7.632	-	_	-	~		38
	C d	112	Fa	7.632	0.06	ا ۵۵	-	-	_	40
	Ğ	112	Fe	7 632		-	_		_	12
		1 112	Fe]	7 632	0.047 +0.009	0.55		109	_	

•

2	Stationer		Gemme Source	E _y (MoV)	Γ _o (eV)	Γ _e /Γ	e(eV)	an (mb)	Comments	Ref
48	C-3	112	Fe	7.632	0.047 ± 0.001	0.55	48±04	198		33
48	Cd	112	Fe	7.602	0.06	0.45				23
48	Cd	112	Fe	7.632						13
48	Cd Cd	112	Fe	7.629		<0.574 ± 0.011	Į			30
49	In		Co	6.877	1		1			63
49	10		Co	6.275						63
49	in		Co	5.039			(63
50	Sn		Ag	6.27			· ·	75		8
50	5 Sn		Co	7.491			}	1		63
50	Sn		Co	7.214				[63
50	Şn	117	Cu	7.01	0.15 ± 0.04	0.20 ± 0.13		1150 ± 240		56
50	Sn	117	Cu	7.01				1000		2
50	Sn	117	Cu	7.01	0.3 ±0.3	0.6	36±07	1200 ± 400		21
50	Sn	117	Cu	7.01		<0.802 ± 0.042	{			30
GO	Sn		Cu	7.01				110		8,37
50	Sn		Cu	6.988			j .			52
50	Sn	118	Cu	6.988						12
50	Sn		Cu	6.322	1					12
50	Sn		Си	4.604	1		ł		· · ·	12
50	Sn		Fe	7.646				1		33
50	Sn	1	Fe	7.279			1			33
50	Sn	.	Ni	8.098		0.096 ± 0.020	1.		1	54
50	So		N.	7.82		0.045		5		9
					1					-

Table : Continuetion

z	Scetterer	•	Gemme Source	E ₇ /Me∨i	Γ _σ (∎V)	Γ _ο /Γ	eleV)	σ _{γγ} (mb)	Comments	Rei
50 50	Sn Sn		Ni Joa Ni	7.696 7.696	007 ±002	0 595 ± 0 043 0 58 ± 0 102 0 58 ± 0 22				56 54
50	Sn	120	Pb	6.730	0 03 ± 0 01	088 ± 0.08	10±03	480 ± 50		27,57
50	Sn S			6.508				14		4
51	30 50		Ea	3 357						23
51	50	1.		7 847						23
			}	1						work
51	Sb		Fe	7.632						33
51	Sb	1	F.	7.629	-					present
										work
51	Sb	-	Hg	6.31				6	0	8
51	Sb		T)	6.418				1		present
										work
51	Sb	-	Ti	6.761	•		•			present
									_	work.
51	Sb	•	V	7.67					۹.	8
52	T۹		Al	7.727	0.10 ± 0.01	0.35 ±001	17 12	5 ± 1	-	10
52	Te	·	Al	7.724	· ·	0.51 ±0.07	-			56
52	Te	-	CI	7.791		·			•	23
62	T€	126	CI	7.791		0.75 ±0.09	-			56
52	Te	•	Cu	7.637		041 ±007	•			56
52	T∎	130	Ni	8.539			•	-		53
52	T●		Ni	8.535			-		•	10
52	T●	130	Ni	8.535		•	•	12		10
52		•	Ni	8 532		1		3	A (8
52	Te	130	Ni	7,540						53
Li						1				

Table 1 Continue son

z	Scatterer	•	Gemme Source	E ₇ (MeV)	Γ _o teV)	Γ _ο /Γ	e(eV)	⁰ γγ ^(mb)	Comments	Ref
52	Te		N	7.539	0.31 ±0.06	028 ±002	65±13	602 ± 90		10
52	Te	130	Ni	7.538					1	23
52	Te	130	N,	7.538				190		55
52	T∎	130	Ni	7.538	0.05 ±0.01	0.20 ± 0.06				54
52	T∎		N	7.528				66	н	8
52	Te	130	N.	6.838						10
52	Τŧ	130	Ni	6.838				10		56
52	Τ∎		Ni	6.7					1	8
52	} T∎	1	N,	58					1	8
53	1	127	Co	6.985						63
57	La	139	Ag	6.540	4					23
57	i.a		Ag	6.54				12	1	8
57	La	139	Ci	8.583						23
57	La la	139	C	8.582		1		5	Į	62
57	La	139	Ci	6.12			-		1	53
57	La La	1	C)	6.12		1		35	1	8.24
57	La	139	Ci	6.116	0.022 ±0.011	0.044 ± 0.022	ļ			54
57	La	139	CI	6.115	0.009±0.003	±043 ±001	10 11	[62
57	La	139	CI	6.112						23
57	_ La	139	Co	7.214	-				1	63
57	la la	1 - 1	Cu	7.637	· · · · · · · · · · · · · · · · · · ·	· ·				23
67	Ls	139	<u>Cu</u>	7.637	0.047 ± 0.006	028 ±004	1	1		66
57	La	139	Cu	7.637	ł		{	1		62
57	La La	•	Cu	7.634			• • • • • • • • • • • • • • • • • • •	7	· ·	8
57	La	- I	<u>Cu</u>	7.170			1			23
								[1

Z	Scatterer	•	Gamma Source	E.y(MeV)	Γ _ο (•∨)	Γ ₀ /Γ	€(eV)	^σ γγ ^(mb)	Comments	feß
57		139	Fe	7.632						31 42 45
57	L.a	139	Fe	7.279	и					33 42 45
57	La	139	Fe	6.018	0.026 ± 0.007	0.50	82±06	39		2.45
57	La	139	Fe	6.018	0.025 ± 0.008	0.50 ± 0.06				56
57	La	139	Fe	6.018	0.04 ± 0.01	0.52 ± 0.05				42
57	La .	139	Mn	8.535						23
57	La	139	Mn	7.278	-		-	,	ľ	62
57	La	139	Mn	7.166						62
57	l.a		Mn	7.15				50		8
57	La	139	Mn	6.797	•					62
57	La	139	งสภ	6.429						62
57	La	139	Mn	6.112	•		•			62
57	La	139	Mn	6.020					i ·	62
57	La	139	Mn	5.951				-		62
57	Le	139	Mn	5.537						62
57	La	139	Mn	5.445	-	,			· ·	62
57	La	139	Ni	8.535		-		•		23
57	La	-	Ni	8.532	I	-		6	-	8
57	La	139	Ni	8.5?7			-	•		62
57	La	139	Ni	6.584	•	•	•	-	-	23
57	La	139	T1	6.760	•	-		•		45
57	لم	139	Ti	6.760	•		<8	7	•	62
57	ها	139	Ti	6.760	0.011 ± 0.006	0.16 ± 0.09	•		•	54
57	La	139	Ti	6.754	•	· · ·			-	23
										Ì

Z	Scatterer	•	Gamma Source	E _y (MeV)	Γ ₀ (•v)	Γ _o /Γ	€(∎V)	^(mb)	Comments	Ret
57	La	139	Ті	6.418	0.063 ± 0.010	0 78	95 ±0.5	142		45
57	La	139	T.	6.418			27 ±08	65		62
57	La	139	T;	6.418	0.063 ± 0.008	078 ±0.08				66
57	La	139	Т	6.413				72		8
57	La	139	Т.	6.413						25
57	La	139	Ti	6.413	0.28 ±0.05	0.08 ±0.04		16 04 ± 2 10		5.6
57	La	139	τ.	6.41						4
58	Ce	140	Co	5.660	0 011 ± 0 003	095 ±006				66
58	Ce	140	Co	5.660	0.012 ± 0.002	093 ±014	4.7 ±03	190 ± 50		63
58	Ce	[.]	Co	5.640			-	17		8
58	Ce	1	Fe	7.646					-	present
] [work
59	Pr	141	Ci	6.12			-	-		53
59	Pr	141	CI	6.12				103	ĸ	2
59	Pr	141	Ci	6.12		-				24
59	Pr	141	CI	6.12	•	≤0 600 ± 0 032			•	30
59	Pr	141	CI	6.12	•			230	•	9
59	Pr	141	C)	6.12	•			110		8,37
59	Pr	141	CI	6,115	0.028 ± 0.008	0.56 ± 0.18		· · ·		54
59	Pr	141	CI	6.115	0.029 ± 0.005	0 557 ± 0 010	4.5 ± 1.0	110		49
59	Pr	141	Co	6.877	0.018 ± 0.009	0.20 ± 0.009	0 20 ± 0.05	1		63.66
59	Pr	141	<u>Co</u>	6.817	-			3		8
59	Pr	141	Co	6.690	-			27	ĸ	2
59	Pr	141	Co	6.111			ł		J	49
59	Рт	141	Cr	8.883	•		•		-	49
						1	L			

.

Table 1 Continuetion

.

Z	Scatterer	•	Gamme Source	£ _γ (MeV)	Γ _o (e∨)	Γ _ο /Γ	€(●V)	^σ γγ ^(mb)	Comments	Ref
59	Pr	141	Çr	8.881				9.3	-	26
59	Pr	141	Cr	8.881				1		9
59	Pr	141	Cr	8.881				9		8
59	Pr	141	Cu	7.915	0.002 ± 0.001	0 28 ± 0.08			ļ	66
59	Pr	141	Cu	7.256	-			1		49
50	Pr	141	Cu	7.252	0 110 ± 0.010	038±004		1		66
59	Pr	141	Fe	7.64				12	N	8
59	Pı	141	Fe	7.64				40	N	9
59	Pr	141	Fe	7.639				10	с	2
59	Pr	141	Fe	7.632	0.035 ± 0.010	046±015				66
59	Pr	141	Fe	7.632	0.063 ± 0.011	0 48	10.3 ± 0.3			44
59	Pr	141	F.	7.632	0234 ± 0.006	0 46	11.4 ± 0.3	20		33
59	Pr	141	Fe	7 632	0.002		09			23
59	Pr	241	Fe	7.629						30
59	Pr	141	Ni	8.997				0.4		9
59	Pr	141	Se	7.188	•					49
59	Pr	141	Se	7.185				80	-	8
60	Nd	142	Co	6 877	0.275 ± 0.060	0 85 ± 0.10				66
60	Nd	142	Co	6.877	0.270 ± 0 020	0.84 ± 0.13	124±0,3	720 ± 130		63
60	Nd		Co	6.867				22		2
60	Nd		Co	6.867				30		8.37
60	Nd		Co)	4.944						63
60	Nd	144	Cu	7.915	0 008 ± 0.003	0 24 ± 0.06			-	66
60	Nd		Fe	7.632	J.				•	33
62 i	Sm		Co	6.706				}		63

Z	Scatterer	•	Gamma Source	E _γ (MeV)	Γ ₀ (●∀)	Γ _c /Γ	€(eV)	^σ γγ ^(mb)	Comments	Ret
62	Sm		Co	5.703						63
62	Sm	-	Co	5.660						63
62	Sm	144	Fe	7.646						33
62	Sm	144	Fe	7.632			-			33
62	Sm	150	N,	8.998	1.43 ± 0.30	0 22 ± 0.05				54
62	Sm		N,	8.997				28		2
62	Şm	144	N.	8.997				100		8
62	Sm	-	Ni	8.997				1		9
62	Dy	•	Co	7 214						63
62	Dy	160	Co	6.486				-		63
66	Dy		Co	5.660						63
66	Dy		Fe	7.646		-				33
66	Dy	-	Fe	7.632						33
68	Er		Co	6.706						63
68	Er		Co	6.110				· ·		63
68	Er		Fe	7.646						33
72	Hf	•	Co	7.066						63
72	Hf	·	Co	6.985	-		-	-		63
72	Hf		Co	5.850	-			< 0.2		65
73	Ta	1	Fe	7.64				07±04	· ·	65
73	Ta	-	Mn	7.26				<03	•	6 5
74	W	184	Ti	6.760		j .	-	· ·	•	39
74	w	184	Ti	6.556				•		39
74	W	-	Ti	6.418					· ·	38
74	W	186	Τι	6.418		-	•	•		39

Z	Scatterer	^	Gemme Source	E ₇ (MeV)	Γ _o (e∨)	Γ _o /Γ	€(eV)	σγγ(mb)	Comments	Ref
74	Pt		T.	~6.3			-		,	8
78	Pt	1 - 1	Hg	5.99				40	ĸ	8
79	Au	197	Co	5.926				-		63
79	Au	-	Fe	7.646						33
79	Au	-	Fe	7.632						33
80	Hg	-	Co	4.924						29
80	Hg	202	Co	4.922	0.260 ± 0.020	0.99 ± 0.15	4.2±0.5	5800 ± 1200		63
80	Hg	-	Co	4.906			-			52
80	Hg		Co	4.903				385		8,37
80	Hg	-	Cu	4.378	,				-	63
80	Hg	! . [Cu	7.91	•			20.4		65
80	Hg	-	Fe	7.646	-	· ·				33
80	Hg	-	Fe	7.64	•		-	24±1.3	N	65
80	Hg		Fe	7.632						33
80	Hg	-	Hg	5.44		· · · ·		55	•	9
80	Hg		Hg	5.44	-	· ·	•	128		2
80	Hg	-	Hg	5.44	•		•	75	ĸ	6
80	Hg	-	Mn	7.26	•	· · · ·		0.5±0.3	•	65
81	TI	205	Cu	7.252	0.025 ± 0.006	0.56 ± 0.06	•			66
81	T)	-	Cu	7.16		•		120		8,37
81	TI	1 - 1	Co	7.214	•	· · · ·		-		63
81	TI	-	Co	6.985	•	•	•	-		63
81	TI	-	Co	5.743	•	· · ·			-	63
81	TI	-	Co	5.070	•		•	•		63
81	TI	-	Fe	7.647	1.0	0.85 ± 0.17	11.5 ± 0.2		•	52

Z	Scatter or	A	Gamma Source	EγIMeV)	Γ _o (eV)	ľ°\L	E(eV)	ayy(mb)	Comments	Ret
81	τ ι		Fe	7.646	0.57 ± 0.05	0 58	93±03	574		8
81	Ti Ti		Fe	7.646		0 617 ± 0.092				14
81	T	205	Fe	7.646	0.57 ± 0.06	0.581	9.3 ± 0 3			47
81	TI	205	Fe	7 646	0.56	0 59				23
81	TI		Fe	7.646						38
81	TI	205	Fe	7.646	0.57 ± 0.03	058 ±006		ł		66
81	TI TI	-	Fŧ	7.646	2.45	0.69	11.6			34
81	TI		Fe	7.646						13
81	TI		Fe	7.64				370	N	8.37
81	T)		Fe	5.62						52
18	Τι		Hg	5.99				5	ĸ	8
81	T!		Т	6.418	0.083 ± 0.015	0.26 ± 0.03				56
81	Т)	203	T.	6.418	0.083±0.015	0.26	0.5 ± 0.5	100		36
81	TI	203	Τ,	6.418						39
81	TI		Т	6.413				25		8
82	Pto		Aq	5.53				70		8
82	Pb	208	AI	6.96			10 ± 1	1300 ± 400		51
82	Pb	208	AI .	6.96	,			2900		2
82	Pb	208	A)	6.98	0.86 ± 0.10	0.30 ±0.07	11.5 ± 2.5	1290 ± 60		19
82	Pb	208	AI	6.98	0.95 ± 0.10	0.27 ± 0.03		1290 ± 60		20
82	Pb	-	CI	6.98	•	· ·		346		2
82	Po		Co	7.149				1000		2
82	Pb	-	Cu	7.91			•	<02		65
82	Pib	208	Fe	7.64	,	-	-	125 ± 20	N	66
[

Z	Scatterer	•	Gamma Source	E _γ (Ne∨)	Γ _o (e∨)	Γ _ο ΄Γ	E(aV)	077(mb)	Comments	Ref
82	Pb	208	Fe	7.285	0.77	1.0	7.3			34
82	Pb	208	Fe	7.285	0.80 ± 0.03	~ 1	8.5 ± 0.5	4100		2
82	Pb	208	F.	7.285	-	-	8.1 ± 1			1 1
82	РЬ	208	Fe	7.285	0.84 ± 0.03	-	3.9 ± 0.3	5200 ± 1600		51
82	Pb	- 1	Fe	7.285	-	-	-	4100		8.37
82	РЬ	-	Fe	7.28	-	-	-	800	-	9
82	РЬ	-	Fe	7.28	0.70 ± 0.20	-	-	1000	-	28
82	РЬ	208	Fe	7.28	0.73 ± 0.05	0.84 ± 0.08	4.8 ± 0.3	5620 ± 150		19
82	РЬ	208	Fe F	7.28	0.86 ± 0.06	0.72 ± 0.13	5.0 ± 0.5	5620 ± 150		20
82	Рь	208	Fe	7.28	0.78 ± 0.03	0.62 ± 0.03	-	4640 ± 180		5 60
82	Pb	208	Fe	7.279	-	-	-	_	-	11
82	Pb	208	Fe	7.279	0.78±0.06	1.0	- 1	-	_	66
82	Pb	208	Fe	7.277	-		- 1	-	-	30
82	Pb	208	Fe	7,277	0.68 ± 0.03	0.95 ± 0.06	8.00 ± 0.14	-	-	52
82	Pb	206	Gd	6.15		-	-	-	M	8
82	Pb	-	Hg	7.32	-	-	-	5500	-	2
82	Pb	-	Mn	7.261	-	-	-	25	-	9
82	РЬ	-	Mn	7.26	~	-	-	0.9±0.5	-	65
82	Pb	-	N	10.83	-		- 1	-	_	25
82	Pb	208	N	7.297	1,30 ± 0.25	~1	-	-	-	15
82	Pb	-	Ni	8.998	-		-	-	-	32
82	Pb	206	Sr	5.9		-	- 1		-	8
82	Pb	-	Ti	6.41	-	-	-	0.6 ± 0.4		65
82	Pb	208	V	7.305	-	-	-	12.5	-	2
83	B.	209	As	7,300	-	-	-	80	-	8

z	Scatterer	•	Gamma Source	Ey(Mev)	Γ _o (eV)	Γο/Γ	€(0V)	^o m ^(mb)	Comments	Raf
83	B	209	Co	5 646	- ·	-	_	55	-	8
83	B [.]	209	Co	5.609	-	-	-	348 ± 69	-	29
83	B	209	Co	5.603	0.95 ± 0.03	10	-	-	-	66
83	B	209	Co	5.603	0 95 ± 0.02	1.00 ± 0.15	13 ± 1	1050 ± 250	-	63
83	8	_	Cu	7.91	-	-	-	< 0.2	-	65
83	B .	_	Cu	7.637		_	- 1		-	12
83	8	209	Cu	7.634	-	-	_	4	-	8
83	Bi	_	Cu	7,172	-	-		-	-	12
83	Bi	-	Cu	6.392	-	-	-	-	-	12
83	в	-	Fe	7.64		-	-	20±11	-	65
83	B	-	Mn	7.26	-	-	-	08±04	-	66
83	В	_	N	10.83	-	-	-	≤1		26
83	8.	209	Se	7.416	-	-	-	100	-	8
83	B	209	Se	7.416	0.14 ± 0.09	06 ±02	3.4±16	-	-	52
83	B,	209	T 1	7.168	0.82 ± 0.04	1.0	-	-	-	66
83	8.	205	Ti	7,15	0.32 ± 0.07	-	-	1200 ± 230	un.	56
83	Bi	209	Ti	7,15	0.42 ± 0 14	>0.68	<2	2600 ± 800	-	21
83	8	.209	T,	7.15	-	-	-	-		4
83	8	209	Ti	7.149	-	-	-	2000	-	8,37
83	Bi	209	Ti	7.149	-	-	-	-	-	52
83	Bi	209	Tí	7.00	0.42 ± 0.14	-	<2	2600 ± 700	-	51
83	8	209	T:	6.996	-	-	-	1560	-	2
90	Th	232	Fe	9.298	-	-	-	-	-	22
90	Th	-	N	10.83	-	-	-	-	-	26
							1			1

Z	Scatterer	•	Gerne Source	Eγ(MeV)	Γ _ο (•∨)	Γο/Γ	€(●V)	⁰ کر(mp)	Comments	Ref
x x x x x x x x x x x x x x x x x x x	F F ∪ ∪ ∪ ∪ ∪	232 232 238 238 -	N	8.998 8.533 9.298 10.83 8.998 8.998 8.533						22 27 22 26 32 22 22 22 22

Table 1 - Continuezion

Comments

- A) High energy component of a complex spectrum
- B) The value of Γ_{α} is obtained by using the value of ϵ given in ref. 6
- C) In the present reference it was not decided which line of iron (7.639 or 7.646 MeV) is responsible for the resonance observed.
- D) The lines of 6 266 and 6 977 MeV were supposed to be elastic only in this reference
- E) The rough estimate of $\Gamma_{\rm o}$ and $\Gamma_{\rm o}/\Gamma$ were proposed without confirmation
- F) The correct resonance energy is 6 550 MeV
- G) The mass number given in this reference is 114 instead of 112 as proposed by others authors
- H) Is probably an independent level in the complex spectrum of Ni gemma rays on Te
- 1) May be an inelastic component from 7 528 MeV level in Te
- Probably a spurious resonance originated from a compound of chlorine in the vicinity of the gamma source. A Wolf et alli ref. 39.
- K) The value of the cross section may be in error due to discrepancies of the γ ray intensities reported by Bartholomew and Groshev ref. 63
- L) Unbound levels
- M) The relative line intensities in this case are due to Groshev and co workers.
- N) The cross section value was not corrected for the presence of two lines of 7 629 and 7 643 MeV of equal intensities in spectrum of iron (Groshev ref 63)
- O) Rough estimate
- P) Probably the 7 310 MeV line corresponds to a resonance in ^{7 1}Ga

Acknowledgments

The authors would like to thank V S A Segreto and B R S Pecequilo for their help in the preparation of table 1 and also R. Cunha for preparing the drawings

