BR2%3 80805

ISSN 0101-3084

_@3 CNENISP
ipen

Instituto de Pesquisas
Energéticas e Nucleares

LEAST SQUARE METHODS AND COVARIANCE MATRIX
APPLIED TO THE RELATIVE EFFICIENCY
CALIBRATION OF A Ge(Li) DETECTOR

Luiz Paulo Gersido and Lonald L. Smith

PUBLICACAO IPEN 243 JANEIRO/1989

SAO PAULO



PUBLICACAO IPEN 243 JANEIRO/ 1989

LEAST SQUARE METHODS AND COVARIANCE MATRIX APPLIED
TO THE RELATIVE EFFICIENCY CALIBRATION OF
A GofLi) DETECTOR

Luiz Paulo Geraldo and Donsid L. Smith

DEPARTAMENTO DE FISICA E QUIMICA NUCLEARES

CNEN/SP
INSTITUTO DE PESQUISAS ENERGETICAS € NUCLEARES
8A0 PAULO — BRASIL



Série PUBLICACAO IPEN

INIS Categories and Descriptors

Fb560.00
€41.40

CALIBRATION

LEAST SQUARE FIT
LI-DRIFTED GE DETECTORS
MATRICES

{PEN - Doc - 3121
Aprovedo para publicagSo em 26/12/88.
Nota: A redaco, ortogratia, concsitos e revisfo final sdo de responsabilidade do(s) autor(es).



LEAST SQUARE METHODS AND COVARIANCE MATRIX APPLIED TO THE RELATIVE
EFFICIENCY CALIBRATION OF A Ge(Li) DETECTOR

Lulz Paulo Geraldo and Donald L. Smith *

ABSTRALT

The methodology of covariance matrix and 1least square methods
have been applied in the relative efficiency calibration for a Ge(L})
detector. Procedures employed to generate, manipulate and test cova
riance matrices which serve to properly represent uncertainties of ex
perimental data are discussed. Calibration data fitting using least

square methods has been performed for a particular experimental data
set,

METODOS DE MINIMOS QUADRADOS € MATRIZ DE COVARIANCIA APLICADOS NA
CALIBRAGAO DE EFICIENCIA RELATIVA PARA UM DETECTOR DE Ge(Li)

RESUMO

A metodologia de matriz de covariancia e metodos de minimos qua
drados foram aplicados na calibragao de eficiencia relativa pars um de
tector de Ge(Li). Os procedimentos empregados para gerar, manipular ry
testar matrizes de .ovariancias, que servem para representar aproprlnda
mente incertezas de dasos experimentais, sao discutidos. 0 ajuste dos
dados de callbra;ao foi efetuado, para um particular conjunto de resul
tados experimentals, utilizando metodos de mnimos quadrados.

INTRODUCT I ON

The analysis of experimental nuclear dats and the evaluation of
the data base for applications are matter which have been receiving a
lot of attention recently. The incresingly severe data accuracy re
quirements have led researchers to examine carefully the methods used
in processing nuclear data. The main objectives are the elimination of
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bias in evaluation, and realistic assessment of uncertainties in the da
ta base. The mathematical procedures to handle this problem have been
avallable since the time of Gauss (1809). However, only recently that a
more rigorous treatment of experimental data Involving covariance
matrix and least square methods has been introduced by Perey (1)-(2).
More detailed studies on this subject addressing to neutron nuclear’
data have been presented in the literature (3)-(6). These studies have
shown a tendency to be extended for 6ther nuclear data fields as well

as for other experimental researches (7).

The main purpose of this paper is to acquaint readers of any area
with a few basic ideas and to offer some references which provide the
opportunity to learn more about this important subject. These goals
will be pursued by presenting the methodology for a real and simple
example of relative efficiency calibration for a Ge(Li) detector, a pro
cedure which has shown to be Iimportant for example, in cross section
measurements using the activation technique. The methodology description
is presented in a sufficiently self contained form to enable the reader
to fellow, in a logical sequence, the essential steps for the appli
cation of this methodology, without having to refer constantly to the

related papers.

FORMALISM

One important step to be concerned in any experiment today is the
deveiopment of a covariance matrix for the set of experimental
parameters which are deduced from measurements in the laboratory. The
covariance matrix is a more complete form of uncertainty representation
than the older statistic methods because besides the total error it
gives information about the existing level of correlation among the
parameter errors. Oue to the latter fact, very often the covariance
matrix is presented in the literature in the following equivalent form:

the total errors and the correlation matrix, separetely.

The method of deriving a covariance matrix for any experimental
data has been discussed in some detail by SMITH (3), so it will not be

pursued here in any depth. Summarizing briefly, we assume that there
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are L distinct sources of error determining the owverall uncertainties
for a collection of n quantities X = (xl. Xareens xn). Let Eil represent
the particular error in X, corresponding to the attribute 1, and let

EI be the correlation matrix corresponding to these partial errors,

where Cijl is a typicz) element, as they apply to all componentes of X.
The coefficient clij determines the correlation deqree between the
errors E’(i and Exj due to effect | and it is wusually defined as micro

correlation. The possible values for the elements C must fall within

ij

the closed interval (-1,1) with the following significance, according

ijre

correlation; = -1, complete anticorrelation and, for the intermediary

to the value assumed by C = 0, no correlation; = +1, complete

cases partial correlations or partial anticorrelations depending if
0 < Cljl < +] or -1 < Cijl < 0 respectively. The total correlation
matrix representing this set of quantities is formed of elements Vij
calculated using the expression:

L
D Ve - RIS TITT

The final information for the error vector Ex and for the total corre

lation matrix Ex can be obtained by the following relationships:

1/2
2) B )T and Gy Vg Egy)
Another point to be remembered is that qx and € are both symmetric,

x
j.e., V -\ and C
X

xji ij " S

The first step in deriving a covariance matrix 1Is to catalogue

xij

all the sources of error existing in the variables X, and decide what
type of correlation exist. These errors should be expressed in units of
the corresponding variables so that the result of this exercise would

be a reference table as presented in Table 1.
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It is evident that some Eil may be zero. The partial correlation
coefficients Cijl in general are either -1 (rarely), 0 or +I, inter
mediary correlations or anticorrelations at this stage are relatively
unusual and they represent the most difficult task for the experimenter
to decide about them because, it is often necessary to use some sub
jectivity. After this study is completed it is straightforward to use
Eq. 1 to generate the correspondent covariance matrix. However, if we
are working with a large number of attributes and/or experimental data
points, it is evident that covariance analysis represents a lot of work.
in realistic applications, it is often impractical to perform the
analysis by hand and on must resort to the use of computers. A FORTRAN
computer program CALCOV has been developed to gererate a covariance
matrix and to produce in addition the correlation matrix and the total
errors. It has been implemented on a IBM personal computer (or compat|
ble) and details on the computational procedures can be seen in the

Appendix A.

Suppose now that it is intended to know the wuncertainty in a
quantity F which is a scalar function of the n random variables JL
denoted collectively &s previously by X. There are several entirely
equivalent ways we can express the uncertainty in the quantity F. They

are quadratic forms or error propanation formulas expressed by:



The matrix multiplication is assumed in this paper for all expressions
involving matrices. The symbol ''t'' denotes matrix transposition and, the

other parameters not defined previously are:

= is a vector with all n elements equal to 1.

-

= is a vector with typical elements equal to 3F/3xi, and

wn

= is an x n diagonal matrix where the elements are equal to BF/axi.

The information content of matrices S and T is identical and they are

commonly referred to as sensitivity matrices. It is intructive to verify
by Eq. 3 that if there is no correlation for all the errors of the va-
riables X then the usual error propagation expression is obtained. For

instance, suppose that the function F is given, for a particular case,as

F = axl + bx2 then according to Eq. 3

2 =t = 2
Ef = T Vx T = [:(aF/ax1 aF/axzi] Exl -] aF/axl

2
0 Exz_} aF/axz

simple matrix algebra leads to the explicit algebraic expression
Ef2 = a2 2, b2 E

gation,

Ex] x22 as predicted by the usual error propa-

Eq. 3 is a particular case of a broad category of problems con-
cerning covariance matrix in the transformation of variables, which me-
rits some additiona) discussion. Assume now that one wishes to transform
the set of variables x; to another set of variables f; and to obtain the
appropriate covariance matrix Vf for this new set. The transformation
is obtained using the matrix T, also named transformation matrix, in a
similar form as discussed above for a scalar function, through the fol-

lowing expression:



- -t - -
4) Vf = T Vx T
If the dimension of Vf and Dx are (n,n) and (m,m) respectively, the
matrix T has dimension (n,m). The elements of T are partial derivati-

ves and given according to the expression:

5) T.. = (8F /ox ) (k = 1,m and j = 1,n)

kj J

If F is a scalar function of the variables X, then V, = E 2 as pre-

f f
dicted by Eq. 3.

Another approach concerning the previous discussion has been per-
formed using the vector model for error propagation and it is presented
elsewhere (8). It yields the same results as the matrix formalism, ho-
wever it offers a convenient interpretation of the nature of error propa

gation as well as the significance of the correlation coefficients.

It is essential to comment at this point some physical conside-
rations about the covariance or correlation matrix. The methodology of
covariance matrix was introduced when a mathematical model based on sta-
tistic methods was employed in the area of experimental data uncertainty.
For this reason it is important to ensure that this mathematical model
is in conformity with the physical reality (9). It is intuitively clear
that all sort of experimental information which one deals in practical
situations involve at least some random error and very likely sources

of systematic errors as well. Realistic covariance matrices should re-

flect this situation and therefore they must be positive definite in
order to represent uncertainties which are positive and not negative,
zero or imaginary. This subject has been treated with some detail in a

recent report (10). In summary, the quadratic form represented by Eq. 3
must be positive in order to satisfy the physical reality. On the other
hand, it is stated on most text books on matrices that Eq. 3 is positi-
ve, for every non-trivial (non-zero) vector T if and only if the matrix
\./X

real symmetric matrix of order n is positive definite if and only if:

is positive definite. Furthermore, according to these text books, a
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i) it has rank equal to the dimension n and all its eigen-values are
positive. Eigen-values (1) of a matrix represent all the solutions
to the equation det (Vx - U) = 0, where U is the identity or wunit

matrix of dimension n; or

ii) it has rank equal to dimension n and all its leading principal minors
are positive. A leading principal minor of a matrix is the deter-
minant of the sub matrix formed by deletin}§ certain rows and the

numbered columns.

Using the definitions cited above, two codes MATXTST and MATXTST1  have
been developed (10) in order to test a covariance or correlation matrix
for positive definiteness property. If the matrix is classified as non
positive definite, the programs still provide useful informations con-
cerning the origin of the inconsistency. Covariance matrices generated
according to the previous discussion tend to be positive defini
te so long as the partial errors and their assumed correlations are phy-
sically consistent. However, It is a good practice always to test the
covariance matrix for this important property in order to avoid possible

mistakes or inconsistencies.

tt is usual in any experiment that the final experimental infor-
mation be obtained after the data fitting with some appropriate techni-
que. The most common of these techniques is the least-squares me thod
which will be next discussed, with the formalism of covariance matrices
for solving overdetermined systems of lin2ar equations. It will be seen
that the covariance methodology can also be very useful in routine data
analysis applications. Suppose the following system of n linear equations

with n unknown variables:

6) 2'1 = A Xy A Xy v ALK
z'l = A Xy A Xy r e AL X
[)
zn = Anl X‘ + An2 x2 + -t Ann xn

It may be written in vector notation as:
7 I = AX



Assuming that A is non singular then £q. 7 has a unique solution which
is given by:

In practical situations one is often involved in obtaining the set of
best values, which satisfies Eq. & from available experimental infor-
mation Z. In other words, we are looking for the best solution X(xl,...,

xn), in the least squares sense, to the following approximate equation:

9) Z=AX

The symbol ''='' takes into account the approximate relation existing bet-
ween the experimental information Z and the solution X. Assume that there
is a covariance matrix Vz which provides ;he errors and their corre~
lations for Z. According to the least-squares method, the best possib'ec
solution X is the one which minimizes the chi-square xz. The xz value

for this generalized problem is given by:

-1

0) P o= (Z-AX)T U (Z-AX)ao0
it is possible to show through caulculus involving matrices (3) that,

the condition for obtaining a minimum X2 leads to the solution for X.The

desired least-squares solution for X is given by:
~t & = y=1
v Zwhere C = (A V A) is the

convariance matrix for the solution X.

Another important point to be considered is that xz should be dis-
“ributed in conformity with the chi-square tables, taking into conside
ration the actual number of freedom degrees f for the problem. This num-
ber f is given, in the present case, by the difference (n-m) where n |s
the number of data input and m is the number of fitted parameters. If X2

normalized, i.e., xz/f is lower or equal to one then one might assume



9

that the scatter of the input values Is consistent with the assigned
errors. On the other hand, a lef > 1 would represent an inconsistency
between the actual scatter of input values and the errors assumed for
them. In this case, accerding to PEELE (11), one possible approach is to
perform an adjustment to the solution covariance matrix C,by multiplying
it by xZ/f or equivalently, by multiplying t' arrespondent errors by
the square-root of this value. This is a crude adjustment and it is justi

fied if the evaluator feels that the input errors were underestimated.

EXPERIMENTAL PROCEDURES

We turn next to an example which will demonstrate (see next
section) in the simple terms all of the concepts developed above. This
example represents an experiment to obtain the relative efficiency for
a Ge(Li) detector, using standard sources produced by different labora-

tories.

The geometry of the experimental apparatus is shown in Fig. 1 and
Table 2 presents the standard sources and respective gamma-rays used for
this calibration. For Eu-152 only the gamma-ray of higher energies were
considered because, it was of interest to determine the relative efficien
cies for gamma-rays of -~ 1 MeV, emmited from some nuclei produced by nu-
clear reactions such as: (n,p) and (n,a) reactions. To provide an ad-
ditional check on the systematic uncertainty two different cobalt sources
have been used. The absolute activity for each gamma-ray together
with the evaluated random and systematic uncertainty were reported by
the laboratories. The actitivty correction for decay was performed using
half life data either presented in the source certificate or from more

recent literature.
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Table 2
Source E (KeV) Efficiency Random Error Systematic
(%) Error (%)
1 =1 1 =2

1408.03 2.683E-04 0.4472 1.4908
1112.00 3.28LE-04 0.4872 1.4908
1086.40 3.320E-04 0.7229 1.5060
Eu-152 964.00 3.681E-04 0.5161 1. 4941
867.40 4.031E-04 0.5954 1.4884
778.90 L.315€-04 0.5562 1.5064
Bi-207 £69.60 5.78LE-0L 0.3424 1.0027
1332.50 3.383E-04 0.3843 1.0050
Co-60 1173.20 3.0845-04 0.3567 1.0052
(1) 1332.50 2.771E-04 0.3609 1.0104
Co-60 1173.20 3.089E-04 0.3561 0.8740
(2) 1332.50 2.783E-04 0.3593 0.8624

The calibration method employed here is the usual in routine acti-
vation analysis. Four standard sources, ~ 3 mm in diameter, were used to
stablish the bare-point source gamma-ray efficiency curve for full energy
peaks versus gamma-ray energy, at the position shown in Fig.1.A distance
of - 20 cm between source and detector was chosen in order to avoid the
problem of sum-coincidences. Activity measurements for the standard
sources were achieved by counting the well known emmited gamma-rays with

3

a je(Li) detector having an active voiume of ~ 100 cm”.Counting dead time
corrections were small and they were deduced for each standard source
count, using information recorded during these runs. In order to verify
the reproducibility several independents runs were performed for each
source. The final counting for each gamma-ray was obtained through
weighted average of the equivalent quantities. The xz normaiized for all

measurements were lower than 1, showing a consistency between the scatter
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of the data and the assigned errors. Relative efficiencies determined
as described above are presente& in Table 2 and the evaluated error com-
ponents appear there as well. Thé random uncertainty includes both sta-
tistic and reproducibility error of the calibration experiment plus, the
random componént in the quoted errors for intensity ‘ of a particular
gamma-line in the standard sources. The systematic uncertainty includes

only the systematic component gquoted by the laboratories.

DATA ANALYSIS

As was commented previously, the goals of this data analysis are
to obtain the best fitting to the calibration data using least squares
method and the covariance matrix for the fitting parameter errors.wWe now
turn our attention to determining first the covariance matrix for the set
of data (efficiencies). As can be seen in Table 2, for ihe present case
there are only two attributes which determine the overall uncertainties
for the experimental data. The first one is the random error or statistic
error (1=1) and the second one is the systematic error (1=2). One can
assume the correlation level for the error components in the following
form: no correlation for all random errors (Cij1-0, i #kj); com.lete

correlation (Ci =1) for the systematic errors among gamma-rays emmited

from the same sizrce and no correlation (Ci,J,z-O,i' # j') for the sys-
tematic errors among gamma-rays emmited from different sources. It is
fair to assume in this example (and in most of the practical situations)
that there is no correlation between the standard errors for  sources
from two distinct laboratories. The correlation matrix for each attribute

can now be easily generate and the results are presented in Tabie 3.
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Table 3
Correlation Matrices

1 = 1 (Random Error) | =2 (Systematic Error)

-—
-t

01 11

001 111

0001 1111

00001 11111

000001 111111
0000001 0000001
00000001 000000 11
0000000C 1 000000001
000000000 1 00000000 11
0oo0o000NnNO00O0" 00000000001
000000000CGOGOC 1 000000000011

The covariance matrix for the data point could be readly obtained (see
Appendix A) making use of Eq. 1. However one could be interested to con-
sider only one data set for the cobalt sources. Despite not to be rele-
vant for the present analysis, this is a very usual procedure employed
in experimental research which merits some discussion. It is common |n
any experiment that a particular parameter (for example cross section)be
measured several times at the same energy, in order to provide an oppor-
tunity for identifying sources of systematic uncertainties. However, for
reporting purposes or data analysis, it may be desirable to average all
equivalent quantities. In this case, it becomes necessary to generate
the corresponding covariance matrix for the resulting data set. in the
present analysis it is desirable do convert 4 efficiency data, obtained
with the cobalt sources, in only 2 data and to obtain the respective
covariance matrix. According to SMITH (12) the procedure consists in col
lapsing the 4 data points on 2 by a proper weighted averaging technique
based on the least-squares method. Furthermore, it was also pointed out
that the elements of the covariance matrix for the collapsed set are

linear combinations of elements from the covariance matrix of the origi-
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nal data. These procedures when applied to the present analysis produce

the results which are shown in Table 4. As can be seen the small xz for

each case shows once more that there is a consistency in the assumed
errors.

Table 4
Weighted average and respective correlation matrix for the gamma-rays

emmi ted from the cobalt sources.

Gamma-Line Efficien- Error Average Error Chi- Correlation
(KeV) cy (%) Value (%) Square Matrix

1) 1173.2 3.084E-Ch 1.066

3) 1173.2 3.089E-04 0.962 1) 3.0876-04 0.71 0.013 1.0

2) 1332.5 2.771E-04 1.052

b) 1332.5 2.783t-04 0.93:k 2) 2.778e-04 0.70 0.094 0.868 1.0

Now one wishes to obtain the covariance matrix for the remaining
10 data points. The procedure is the same as discussed above and Table 5
shows the results produced by CALCOV. The covariance matrix presented
in this table was tested for positive definiteness property using the
program MATXTST. The matrix was classified as positive definite and so
it is consisten with the physical reality. This covariance matrix has
been used in the fitting to the experimental data which will be next dis

cussed.



14

422
.222
.245
.227
.219
.26

O O ©O O NN NN N NN NN

- 0O O o

1.556

1000
910
863
905
889
898

o O o o

460
. 245
.227
.219
. 246

O O O O N N N NN

. .
o O o o

1.568

The Correlation Matrix

1000
856
898
882

.791

.2

2
2
2
2.2
0
0
0
0

. . . .
o O O O

1.6

100
85
83
84

50

242

69

n

0
2
7
5

o O o o

Table §
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The Parameter Total Errors

1.060
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883
0
"0

1.158
0.0
0.0

(%)

0.504
0.432

0.490

1.076 0.710 0.700

1000
0
0

(Multiplied by 1000)

1000
868

it has been found (13) that the relationship between

1000

efficiency

ef and gamma-ray energy E can be approximated by the expression:

12)

In (ef)

is

n
L

1

Pi

(in )/
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In order to determine the coefficients p;, the expression above was
fitted to calibration data using least squares method, discussed in the
section Formalism. A conputer proyram has been developed to perform this
fitting, using the subroutine LLSF presented in ref. 13. The best curve
obtained was for n=2 and the result is shown in Fig. 2. Higher order fits
lead to a poorer (larger normalized XZ) or to an unstability due to com-
puter precision limitations. The equation representing the best fitting
is given by:

13) In (eg) = (-2.111 + 0.071) - (0.844 ¢+ 0.010) In (E)

-

and the covariance (Vp) and correlation (Ep) matrices for the fitting

parameters are:

14) Vp = 5.035E-03 €. = 1
-7.104E-04  1.018E-04 -0.992 |

The X2 nornalized obtained for n=2 was near unity and thus the solution

represented by Fig.2 or Eq. 13 may be considered as satisfactory.

The next step now is how to obtain the error (Aef) in the relative
efficiency determination for a gamma-ray with a particular energy, using
the results of Eqs. 13 and 14. This particular case was also discussed
in the section Formalism and the following expression represents the so-

lution,

2 -
15) (Be.)” = (aZ/apl 32/3p,) (vp) (3z/3p,)
(32/3p,)

where Z = 1n (e¢) at a particular energy E. For instance, if one wishes
to krow the relative efficiency for the gamma-ray emmited from Na-24 (E
= 1368.6 KeV), the following result is obtained:
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16) €¢ (1368.6) = 0.27e-03 ¢+ 0.25E-05

For the experimental example discussed in this paper a polynomial
of degree two was obtained as the best fitting to the calibration data
and thus, the solution of Eq. 15 is very simple. For higher order poly-
nomials this solution is not so trivial and a small FORTRAN program named
EFFIC has been developed to handle this problem. Details on the compu-

tational procedure of this program is presented in the Appendix B.

CONCLUS 10N

With the high development level of the Nuclear Physics and its
technological application there is, at present moment, a greater need to
become concerned with accuracy and proper estimation and representation
of errors. in this paper we have tried to show the covariance matrix and
least-squares methodology applied to a simple example of Nuclear Physics
experiments. It is our concern that the statistical methods discussed
here seem to provide a reasonably adequate approach for meeting this
need. It is worthwhile for scientists working on Nuclear Physics or other

areas to be knowledgeable regarding these methods.
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APPENDIX A
CALCOV PROGRAM (FOR PC OR COMPATIBLE)
A FORTRAN program named CALCOV has been written to construct co-

variance matrix for a data set x; (i=1,n), according to the following

relationship:

L
v.. = © C,.. E. E, where
ij 1=1 ijl it )
i are the microcorrelations
Eil’ Ejl - is the error introduced by each attribute 1.
Before running CALCOV it is necessary to create the input and out-
put files. In the input fii the following sequence of data and format

must appear:
st line: N, LL format 2i5 where,

N =n, Iis the number of data points and
LL= L, is the number of attributes.
next lines: I = 1,N

(E(1,L), L =1,LL) format 7E10.4 where,

E(1,L) = E,y, are the partial errors.

The output file is used by CALCOV to store the results of the calculus,
i.e., the covariance matrix, the correlation matrix and the total errors

for the data set.
Running CALCOV

A1) the prompts announced by the program are self explanatory as
is evident from the example provided in this appendix. The first proce-
dure of CALCOV is to help the user to input all the correlation matrices
for the attributes. For this endeavour it is announced the attr ‘bute

number beinj processed and, the user is prompted for the majority corre-



lation on which all the matrix elements will be setted. Next the user

can perform any change on the matrix according to the following options:

S = SINGLE, T = TRIANGLE, B = BLOCK, E = EXIT, P = PRINT where,
S = enter single element (cijl) - to change or over-reading only
one element of the matrix
T = enter triangular block - to change or over-reading any triangu-
lar block of elements in the matrix.
B = enter rectangular block - to change or over-reading any rectangu-

lar block of elements in the matrix.
P = prints the current correlation matrix.

€ = exits and proceeds to the next attribute |.

After the construction of all correlation matrices, the covariance
matrix is generated together with the final correlation matrix (with
elements multiplied by 1000) and the total errors. All these informations
are stored in the output file created by the user. After the listing of
the code it is presented the results of running CALCOV, for the example

discussed in this paper.
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~cA

21 QL D)t
GO TO U

ALTER SELECIED CORREILATIONS B IRIFRT RN NI 8t Fed 10 10 EX1

Qe WHITE (= 4#])

4L FORMAT (IX,"OFTION S=SINGLE, T=fkI/MIGHE B 1 i) [ F §F 211 F=PRINY )

4. KEAD(®, 4P [OF

AT FORMAT (ALY
IFCIOF.EQ, I8) GO 10 5ue
IF (1O0FP.EU.IT) GO 10 ad
IFCIOP.ER. IR GO 10 /730
IF (JOF.ER.IF) BO 10 759
IFCIOF EQ.1EY GO TO 53
GU 70 e

Ut WEELE (#, 51

Sl FOKMAT(1X, 1,3 (21%) )
REND (e, 2 ERR==Ti) 1,0
1IFdI.LE. @) 6O YO %Sed
It (.61, GO T S8
1IF{3.61.1) GO I %ed

bt WKLIE (=, 5812)

2 TFURMRTOLX, "G (E1d.4) "
HEAD(», 4 ERR=5411) DV
01,3 =OVAL
GO 10 988

ot WRITE (»,6W1)

H&HL FORMAT (12X, " IMIN, IMAX (215)°)
REND (», 2 ERR=601) IMIN, IMAX
LF (IMINLLE. @) GO TO 490
IFCIMIN.GT.N) GO 10 690
TF(IMAK.1LE.@) BO TO &9
IF (IMAXLLT. IMINY GO TU A
IF(IMAX.GYT.N) GD TO &4

6vill WRITE (a0, 522)
READ(»,4 ERR=6€1]1) GQVAL
D0 642 i~ IMIN, IMAX
DU 682 J=1MIN, L

el QL d)=0val
LU TO B

g WITTFE (%, 681)

READ s, 2 ERH=TE)  THIN, TMAL
JEAIMINGLE.®) 6O 10 7éw
IFCIMIN.GT.N) GO 1) 7w
IFCIMOX .1 E.B) bu 10 7da
IFCIMAX. LT, IMIN) GO 1O 7
IF(IMAX.GT.NY 60D TN 790

TAL WRITE (s, 7882}

T2 HAIMAT CAX, " dMIN, IMBX (2F%) 7))
READ(#, 2 ERR=781) JMIN, JMOK
IF cdHIn. LE. @) 6O 10 7¢)
IFIMIN.GT.N) GO TD 781
IF(IMNALLE. @) OGN TN 749
TF(IHAX. LY .JIMINY GO 10 761
IF(IMNAL.GT1.N) 6D 10 783

7.1 WRITE (»,502)

RENAD (8, 4,ERk=7A21) O'/nL
D 74Z 1=IMIN, 1MAX
DO 783 J=JMIN, IMAX

JEL GOT, ) VAL
6O 70 Bag

79 WRITE(»,755) L

755 FURMART (1X,"@(1,J) FOR L = °,1%)
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DO TEB 1 -1,N
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B T 8y

(WER-RIDE 10 SET ATIRIBUIE SELE CORREE by 1oy by

LONGE EMUE
D@ I=1.N
WIS 0 B U]
50 10 ava

VIEDATE COVARIANEE MWTRIX
[ARIEA I AN 1DI 3

WITE (»,"1)
PO C1X L. *DE you went tO sadar Fhe v babion by i few

KEAD Uk, 12, BRR=52) TOF

I o LED, 1R GO 1D ST

D SY IeL,N

WRITE (A, 4) ((T,0), J=1,1)

DO 54 151N

DU B4 J-1,)

ML) VLT, 3 a0 (T, D #E (T L) RE G L

EnD AT ITRIDUTE ©our
LT THDR

UHITHUD COVARTEANCE MO RTY, FREOED nblD c bbb 1ol bl DN
NITFUL FLLEF

WRTTE " %,99)

FORMAT (1X, "FLEASE Ty E THE DU 0 0ve a7
OFEHS,FTLE=" " ,S1ANNIS="(1L.C ")

WL FE 2% 'PED

FORMAT (1X, "Numbizr o Data frovnd e '
WHETIE(5,2) N

WiLIE(S,97)

FORMA) (IX, " The Covariance Matrisz 161 ")
po 1aet (=1 N

WIRTTE (S, 1)) VT, 0=, D)
FORMAT(TELL.8)

WIHTTE (5, 9¢6)

FORMAT (1X, " The FPar ameter Frrores a0 ")
DO 119 1=1,N

FRODI=SOURTIVOTL, DY)

WETTE (35,100) (FRO1) ,I=1,N)

WRITE (S, 95)

FORMAT(IX, "The Corrnlation Maty s a2 7
DO 126 1=1,N

DO 124 J=i,1

TCT ¢ =13y i1, 1) SEROEY ZEFG))

TFOL LB, J) 10T, 00 =190

UONT DL

DO oL T=4,N

WIRTIE IS, 1.°5) (0G0 =1, 1)

FORMAT (20 14)

S10UF
END

thois



RUNNING CALCOV
CALLYY HROGEAM

Faivpe,
Flasce press return; to continue.
DATA INFUT: File name missing or blanl - Fieace enbter name

UNLY 7 CALCIV. INP
Do you intend to save the corre.ation matsyi= fre any att) -bute?v/H
N

Do you want to arput, from a file, the rcar oot mabr i dor any atheibaty ]
N
The HMttribute Number 1e3 1

Do you want to input the correlation matr i den This L0ty ahute (verat, ,ou i
t +91lm)7T Y/N

N

Tivw Migew 2ty Lorrelation for Attribat b 10,

Vi,

OF 110N S=SINGLE, T TRIANGLE, B=BLOCH (00110 1h b))
r

Do yent want to save the correlation mate i bw thig attribnte? ¥Y/N
N
e fittribute Wumber is? 2

Do yorr want to input the correlation motriz tra this atbyibute C(verat, yon npo
b Fyie)? Y/M
N
Thee Ma ority Correlation for Attribultr/Flo.
V.
OFEIIIN =S INGLE, TeTRIANGLE, Fi=BEOUCE (b ~F Y0 0,0 1 1131
!
IMIM, THAX (2 18)
1 b
U «Fi#, 4q)
[
UL 10N S=SINGI B, TeTRIANGE B, B=H_00 (8 -EXHE 8 NI
s
1.J (21%)
f 7
ot )
Jeu
OFPFI0ON G=8INGLE, TRTRIANGLE , B~BLOCE € “EX V1 110110
<]
', 1w
$iA 9
& (F1d,.4)
4. R4RE
DT HON S=SINGLE, TeTRIANAGLE , B=BLIOCK (E~FXT 0 110111
E
Do your want to ose.e the correlat.on matrr e fow Yhis otiriboate™ Y/N
]
FLEASE TYPE THE DUVFUT FILLE NAME
UNIT %2 CALrOV, ouT
Stop - Progr am tera_ nated,



CAalLCov. oUuT
Number of Data Foints:
1@
The Covariancz Matrix 158
. SA22E+BI
« D222E+S1) « 2RAGVE+B]
. 2245E+41 < 224CE+31 « 2791E+31
«2227E+31 «2227E+01 « 2250E+31 « 2499E+181
L2219E+uE] < 2219E+31 . 2242E+31 «2224E+81 - 2S7BE+B1
«2246E+01 « 2246E+031 « 226FE+@1 »Z2251E+@31 « 22A2E+B1 . 297FE+@1)
.BBEPRE+S3P | JOGEE+AP | GOGOE+BE [ GBOPRE+@E | OOGOE+BGE  (BAGBOE+EHE . 1123E+S1
CAOAFE+BE (POBOE+B@ | @OOBE+BE | BOGCEYBD | IOOOE+EHG | FOUDE+3E | 1 AMBE+@1
. 11538E+i31
HABEBE+@GG | DSOCE+DE L BEGGE+BE | SOVAE+d@ L IOBAE+EG | BAGEE +3% | GOOGE + 3D
. DAEPE +id8 | SE41E+O0
. DHADE +0@ | IAOE+BE | GEBBE+@Ee | DOOCEE+AG | BABEE+AE | BOGGE+GHE | FOOOE +30
COAAEE+@E 4T 1T7E+OE APABE+AG
The Farameter Errors are:
< 15956E+i1 . 1948E+31 < 1671E+31 . 1581E+¥1 . 16G3IE+H1 . loBEE+H] . 1 B6BE+BL
< 1B7SHE+G1 Z1GSE+@E | 7HSBE+ DA
The Correlation Matrix 1s:
1 G330
1D 1 BB
867 8561003
9@S 898 357 1E0¢
3887 882 }RTI7 8771534
898 8391 ga45 88& 873180
1] @ @ o] @ 31330
@ 7] ] i3 7] W 88313
(L] 0] 0] V3 7] B 13 31093
7] 7] %) 3 7] i W i 8481 @



APPENDIX B

EFFIC PROGRAM (FOR PC OR COMPATIBLE)

in the relative efficiency calibration for a Ge(Li) detector the
following expression has been used to fit the experimental data:

In (ef) = f p. (lIn E)'-1 where,

=1 !

€g - are the relative efficiency data

E - are the gamma-ray energies
The coefficients p; together with the respective covariance matrix Vp
are determined through least-squares fitting, discussed with some detail
in this paper. In this way, the relative efficiency for a gamma-ray with
a particular energy can be readly obtained with the results of the

fitting. A simple FORTRAN program named EFFIC has been developed to de-

termine the error (Aef) for this relative efficiency, according to the

expression:
2 =t = =
(Aef) = T Vp T where,
the symbol ''t'' denotes matrix transposition and T, the transformation
matrix, is given by:
3Z/3p)
T = ( ?2/392 ) whereZ = 1In (eg) at the particular energy E.
32/39[
The program besides the error EFF = Ae ¢ also calculates the relative

efficiency EF = €g at the require) energy. All the prompts of EFFIC are
self explanatory as can be seen in the sample problem provided after
the listing of the code. This sample problem represents the example, for
the gamma-ray emmited from Na-24, discussed at the end of the section

bata Analysis.
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