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LEAST SQUARE METHODS AND COVARIANCE MATRIX APPLIED TO THE RELATIVE

EFFICIENCY CALIBRATION OF A Ge(Li) DETECTOR

Luiz Paulo Geraldo and Donald L. Smith *

ABSTRACT

The methodology of covarlance matrix and least square methods
have been applied in the relative efficiency calibration for a Ge(Li)
detector. Procedures employed to generate, manipulate and test cova
rlance matrices which serve to properly represent uncertainties of ex
peri mental data are discussed. Calibration data fitting using leasT
square methods has been performed for a particular experimental data
set.

MÉTODOS DE MÍNIMOS QUADRADOS E MATRIZ DE COVARlANCIA APLICADOS NA

CALIBRAÇAO DE EFICIÊNCIA RELATIVA PARA UM DETECTOR DE Ge(Li)

RESUMO

A metodologia de matriz de covariância e métodos de mínimos qua
drados foram aplicados na calibração de eficiência relativa para um dê*
tector de Ge(Li). 0» procedimentos empregados para gerar, manipular ê"
testar matrizes de jovariâncias, que servem para representar apropriada^
mente incertezas de dados experimentais, são discutidos. 0 ajuste do7
dados de calibração foi efetuado, para um particular conjunto de
tados experimentais, utilizando métodos de mínimos quadrados.

INTRODUCTION

The analysis of experimental nuclear data and the evaluation of

the data base for applications are matter which have been receiving a

lot of attention recently. The incresingly severe data accuracy re_

quirements have led researchers to examine carefully the methods used

In processing nuclear data. The main objectives are the elimination of

(*) Argonne National Laboratory - Engineering Physics Division
Building, }\k - Argonne, Illinois 601*39, U.S.A.
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bias in evaluation, and realistic assessment of uncertainties in the dj>

ta base. The mathematical procedures to handle this problem have been

available since the time of Gauss (1809)' However, only recently that a

more rigorous treatment of experimental data Involving covariance

matrix and least square methods has been introduced by Perey (l)-(2).

More detailed studies on this subject addressing to neutron nuclear

data have been presented in the literature (3)-(6). These studies have

shown a tendency to be extended for other nuclear data fields as well

as for other experimental researches (7).

The main purDose of this paper is to acquaint readers of any area

with a few basic ideas and to offer some references which provide the

opportunity to learn more about this important subject. These goals

will be pursued by presenting the methodology for a real and simple

example of relative efficiency calibration for a Ge(Li) detector, a pro

cedure which has shown to be important for example, in cross section

measurements using the activation technique. The methodology description

is presented in a sufficiently self contained form to enable the reader

to fellow, in a logical sequence, the essential steps for the applj_

cation of this methodology, without having to refer constantly to the

related papers.

FORMALISM

One important step to be concerned in any experiment today is the

development of a «variance matrix for the set of experimental

parameters which are deduced from measurements in the laboratory. The

covariance matrix is a more complete form of uncertainty representation

than the older statistic methods because besides the total error it

gives information about the existing level of correlation among the

parameter errors. Due to the latter fact, very often the covariance

matrix is presented in the literature in the following equivalent form:

the total errors and the correlation matrix, separetely.

The method of deriving a covariance matrix for any experimental

data has been discussed in some detail by SMITH (3), so it will not be

pursued here in any depth. Summarizing briefly, we assume that there
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are L distinct sources of error determining the overall uncertainties

for a collection of n quantities X » (x. , x-,..., x ). Let E.. represent

the particular error in x. corresponding to the attribute 1, and let

C. be the correlation matrix corresponding to these partial errors,

where C... is a typiczl element, as they apply to all componentes of X.

The coefficient C... determines the correlation degree between the

errors E . and E , due to effect 1 and it is usually defined as microxi xj —

correlation. The possible values for the elements C... must fall within

the closed interval (-1,1) with the following significance, according

to the value assumed by C...: - 0, no correlation; - +1 , complete

correlation; • -I, complete anticorrelation and, for the intermediary

cases partial correlations or partial anticorreiations depending if

0 < C... < +1 or -1 < C. . < 0 respectively. The total correlation

matrix representing this set of quantities is formed of elements V..

calculated using the expression:

L
1) V .. - I E.. E,. C...

The f inal information for the error vector E and for the total corr£

lat ion matrix C can be obtained by the following relationships:

2) E . - (V ..)]/1 and C . . - V . , / (E . E .)
XI XÜ x i j x i j XI XJ

Another point to be remembered is that V and C are both symmetric,

i . e . , V . . - V , . and C . . - C . . .x i j xj i x i j xj i

The first step in deriving a covariance matrix is to catalogue

all the sources of error existing in the variables x. and decide what

type of correlation exist. These errors should be expressed in units of

the corresponding variables so that the result of this exercise would

be a reference table as presented in Table 1.



Table 1

variables error componentes (1) total error

( I ) 1 2 3 L (E x | )

1 E11 E12 E13 E IL Exl

2 E21 E22 E23 *< E2L Ex2

• I II II II M II

• I II II II II II

n E , E _ E , E . E
ni n2 n3 nL nx

It is evident that some E.. may be zero. The partial correlation

coefficients C... in general are either -I (rarely), 0 or •!. Inter

mediary correlations or anticorre I at ions at this stage are relatively

unusual and they represent the most difficult task for the experimenter

to decide about them because, it is often necessary to use some sub

jectivity. After this study is completed it is straightforward to use

Eq. 1 to generate the correspondent covariance matrix. However, if we

are working with a large number of attributes and/or experimental data

points, it is evident that covariance analysis represents a lot of work.

In realistic applications, ft is often impractical to perform the

analysis by hand and on must resort to the use of computers. A FORTRAN

computer program CALCOV has been developed to generate a covariance

matrix and to produce in addition the correlation matrix and the total

errors. It has been implemented on a IBM personal computer (or compati.

ble) and details on the computational procedures can be seen in the

Append)x A.

Suppose now that it is intended to know the uncertainty in a

quantity F which is a scalar function of the n random variables x.,

denoted collectively es previously by X. There are several entirely

equivalent ways we can express the uncertainty in the quantity F. They

are quadratic forms or error propanation formulas expressed by:
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The matrix multiplication is assumed in this paper for all expressions

involving matrices. The symbol "t" denotes matrix transposition and, the

other parameters not defined previously are:

I « is a vector with all n elements equal to 1.

T * is a vector with typical elements equal to 3F/3x., and

S • is a n x n diacionai matrix where the elements are equal to 3F/3x..

The information content of matrices S and T is identical and they are

commonly referred to as sensitivity matrices. It is intructive to verify

by Eq. 3 that if there is no correlation for all the errors of the va-

riables x., then the usual error propagation expression is obtained. For

instance, suppose that the function F is given, for a particular case,as

ax + bx 2 then according to Eq. 3

fl V Tx X1

0

2

E^ 2
2

~ ~
3F/3x1

3F/3x2

simple matrix algebra leads to the explicit algebraic expression

a 2 E
xi x2 as predicted by the usual error propa-

gation.

Eq. 3 is a particular case of a broad category of problems con-

cerning covariance matrix in the transformation of variables, which me-

rits some additional discussion. Assume now that one wishes to transform

the set of variables x. to another set of variables fj and to obtain the

appropriate covariance matrix V, for this new set. The transformation

is obtained using the matrix t, also named transformation matrix, in a

similar form as discussed above for a scalar function, through the fol-

lowing expression:
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I f the dimension of V, and V are (n,n) and (m,m) respectively, the

matrix T has dimension (n,m). The elements of T are part ial der ivat i -

ves and given according to the expression:

5) T k. = (9Fk/3x.) (k « 1,m and j - 1,n)

2

If F is a scalar function of the variables x. then V, - E, as pre-

dicted by Eq. 3.

Another approach concerning the previous discussion has been per-

formed using the vector model for error propagation and it is presented

elsewhere (8). It yields the same results as the matrix formalism, ho-

wever it offers a convenient interpretation of the nature of error prop£

gation as well as the significance of the correlation coefficients.

It is essential to comment at this point some physical conside-

rations about the covariance or correlation matrix. The methodology of

covariance matrix was introduced when a mathematical model based on sta-

tistic methods was employed in the area of experimental data uncertainty.

For this reason it is important to ensure that this mathematical model

is in conformity with the physical reality (9). It is intuitively clear

that all sort of experimental information which one deals in practical

situations involve at least some random error and very likely sources

of systematic errors as well. Realistic covariance matrices should re-

flect this situation and therefore they must be positive definite in

order to represent uncertainties which are positive and not negative,

zero or imaginary. This subject has been treated with some detail in a

recent report (10). In summary, the quadratic form represented by Eq. 3

must be positive in order to satisfy the physical reality. On the other

hand, it is stated on most text books on matrices that Eq. 3 is positi-

ve, for every non-trivial (non-zero) vector f if and only if the matrix

V x is positive definite. Furthermore, according to these text books, a

real symmetric matrix of order n is positive definite if and only if:



0 it has rank equal to the dimension n and all its eigen-values are

positive. Eigen-values (X) of a matrix represent all the solutions

to the equation det (Vx - X 0) » 0, where 0 Is the identity or unit

matrix of dimension n; or

li) it has rank equal to dimension n and all its leading principal minors

are positive. A leading principal minor of a matrix is the deter-

minant of the sub matrix formed by deletin^/Certain rows and the

numbered columns.

Using the definitions cited above, two codes MATXTST and MATXTST1 have

been developed (10) in order to test a covariance or correlation matrix

for positive definiteness property. If the matrix is classified as non

positive definite, the programs still provide useful informations con-

cerning the origin of the inconsistency. Covariance matrices generated

according to the previous discussion tend to be positive defin_i_

te so long as the partial errors and their assumed correlations are phy-

sically consistent. However, it is a good practice always to test the

covariance matrix for this important property in order to avoid possible

mistakes or inconsistencies.

It is usual in any experiment that the final experimental infor-

mation be obtained after the data fitting with some appropriate techni-

que. The most common of these techniques is the least-squares method

which will be next discussed, with the formalism of covariance matrices

^or solving overdetermined systems of linear equations. It will be seen

that the covariance methodology can also be very useful in routine data

analysis applications. Suppose the following system of n linear equations

with n unknown variables:

6)

z i •
1
1

Zn "

A 1 1 X 1

A M X 1

A n 1 X 1

+ A12

• A , 2

+ An2

x2 •

x2 •

x2 •

. . . + A , n

• • • A . n

- + A nn

Xn

Xn

Xn

It may be written in vector notation as:

7) Z - Ã X
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Assuming that Ã is non singular then Eq. 7 has a unique solution which

is given by:

-1
8) X - Ã Z

In practical situations one is often involved in obtaining the set of

best values, which satisfies Eq. 8, from available experimental infor-

mation Z. In other words, we are looking for the best solution XÍx.,...,

*n)> <
n the least squares sense, to the following approximate equation:

9) Z = Ã X

The symbol "=" takes into account the approximate relation existing bet-

ween the experimental information Z and the solution X. Assume that there

is a covariance matrix V which provides the errors and their corre-

lations for Z. According to the least-squares method, the best possib'c

solution 5( is the one which minimizes the chi-square x • The x value

for this generalized problem is given by:

, -1 . . .
10) / - ( Z - A X ) 1 Vz ( Z - A X ) * 0

I t is possible to show through caulculus involving matrices (3) that ,
2

the condition for obtaining a minimum x leads to the solution for X.The

desired least-squares solution for X is given by:

. -1 -1 .
11) X - C Ã z V I where C - ( Ã V Ã ) is the

convariance matrix for the solution X.

Another important point to be considered is that x should be dis-

tributed in conformity with the chi-square tables, taking into consid£

ration the actual number of freedom degrees f for the problem. This num-

ber f is given, in the present case, by the difference (n-m) where n is
2

the number of data input and m is the number of fitted parameters. If x
2

normal ized, i . e . , x / f ' * lower or equal to one then one might assure»



that the scatter of the input values is consistent with the assigned

errors. On the other hand, a x /f > 1 would represent an inconsistency

between the actual scatter of input values and the errors assumed for

them. In this case, according to PEELE (11) , one possible approach is to

perform an adjustment to the solution covariance matrix C,by multiplying
2

i t by x / f or equivaiently, by multiplying t' irrespondent errors by

the square-root of this value. This is a crude adjustment and it is justj^

f ied i f the evaluator feels that the input errors were underestimated.

EXPERIMENTAL PROCEDURES

We turn next to an example which w i l l demonstrate (see next

section) in the simple terms a l l of the concepts developed above. This

example represents an experiment to obtain the relat ive efficiency for

a Ge(Li) detector, using standard sources produced by different labora-

tor ies.

The geometry of the experimental apparatus is shown in Fig. 1 and

Table 2 presents the standard sources and respective gamma-rays used for

this cal ibrat ion. For Eu-152 only the gamma-ray of higher energies were

considered because, i t was of interest to determine the relat ive e f f ic ie£

cies for oamma-rays of - 1 MeV, emmited from some nuclei produced by nu-

clear reactions such as: (n,p) and (n,ct) reactions. To provide an ad-

ditional check on the systematic uncertainty two dif ferent cobalt sources

have been used. The absolute act iv i ty for each aamma-ray together

with the evaluated random and systematic uncertainty were reported by

the laboratories. The ac t i t i v ty correction for decay was performed usino

half l i f e data either presented in the source cer t i f icate or from more

recent 1i terature.
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Table 2

Source

Eu-152

Bi-207

Co-60

(1)

Co-60

(2)

E (KeV)

1408.03

1112.00

1086.40

96*4.00

867.40

778.90

569.60

1332.50

1173.20

1332.50

1173.20

1332.50

Effi ciency

2.683E-04

3.284E-04

3-320E-04

3.681E-04

4.031E-04

4.315E-04

5-784E-04

3.383E-04

3.084E-04

2.771E-04

3.089E-04

2.783E-04

Random Error
<*)

1 - 1

0.4472

0.4872

0.7229

0.5161

0.5954

0.5562

0.3424

0.3843

0.3567

0.3609

0.3561

0.3593

Systematic
Error (%)

1 - 2

1.4908

1.4908

1.5060

1.4941

1.4884

1.5064

1.0027

1.0050

1.0052

1.0)04

0.8740

0.8624

The calibration method employed here is the usual in routine a c t i -

vation analysis. Four standard sources, - 3 mm in diameter, were used to

stabiish the bare-point source gamma-ray efficiency curve for fu l l energy

peaks versus gamma-ray energy, at the position shown in Fig.1.A distance

of ~ 20 cm between source and detector was chosen in order to avoid the

problem of sum-coincidences. Activity measurements for the standard

sources were achieved by counting the well known emmited gamma-rays with

a òe(Li) detector having an active voiume of - 100 cm .Counting dead time

corrections were small and they were deduced for each standard source

count, using information recorded during these runs. In order to verify

the reproducibi1ity several independents runs were performed for each

source. The final counting for each gamma-ray was obtained through

weighted average of the equivalent quantit ies. The x normalized for a l l

measurements were lower than 1, showing a consistency between the scatter
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of the data and the assigned errors. Relative eff iciencies determined

as described above are presented in Table 2 and the evaluated error com-

ponents appear there as wel l . The random uncertainty includes both sta-

t i s t i c and reproducibiIity error of the calibration experiment plus, the

random component in the quoted errors for intensity of a particular

gamma-line in the standard sources. The systematic uncertainty includes

only the systematic component quoted by the laboratories.

DATA ANALYSIS

As was commented previously, the goals of this data analysis are

to obtain the best f i t t i n g to the calibration data using least squares

method and the covariance matrix for the f i t t i n g parameter errors.We now

turn our attention to determining f i r s t the covariance matrix for the set

of data (ef f ic iencies) . As can be seen in Table 2, for lhe present case

there are only two attr ibutes which determine the overall uncertainties

for the experimental data. The f i r s t one is the random error or s ta t i s t i c

error (1-1) and the second one is the systematic error (1«2). One can

assume the correlation level for the error components in the following

form: no correlation for a l l random errors ( C . . . * 0 , i i* j ) ; com-lete

correlation (C . . . -1 ) for the systematic errors among gamma-rays emmited

from the same source and no correlation ( C . , . , 2 « 0 , i ' t j 1 ) for the sys-

tematic errors among gamma-rays emmited from different sources. I t is

fa i r to assume in this example (and in most of the practical situations)

that there is no correlation between the standard errors for sources

from two distinct laboratories. The correlation matrix for each attribute

can now be easily generate and the results are presented in Tabie 3*
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Correlation Matrices

1 « 1 (Random Error) 1 - 2 (Systematic Error)

1 1

0 1 1 1

0 0 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

The covariance matrix for the data point could be read Iy obtained (see

Appendix A) making use of Eq. 1. However one could be interested to con-

sider only one data set for the cobalt sources. Despite not to be rele-

vant for the present analysis, this is a very usual procedure employed

in experimental research which merits some discussion. I t is common In

any experiment that a particular parameter (for example cross sect ion)be

measured several times at the same energy, in order to provide an oppor-

tunity for identifying sources of systematic uncertainties. However, for

reporting purposes or data analysis, i t may be desirable to average a l l

equivalent quantities. In this case, i t becomes necessary to generate

the corresponding covariance matrix for the resulting data set. In the

present analysis i t is desirable do convert k eff iciency data, obtained

with the cobalt sources, in only 2 data and to obtain the respective

covariance matrix. According to SMITH (12) the procedure consists in coj_

lapsing the h data points on 2 by a proper weighted averaging technique

based on the least-squares method. Furthermore, i t was also pointed out

that the elements of the covariance matrix for the collapsed set are

linear combinations of elements from the covariance matrix of the or lg l -
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nal data. These procedures when applied to the present analysis produce

the results which are shown in Table *». As can be seen the small x ^or

each case shows once more that there is a consistency in the assumed

errors.

Table

Weighted average and respective correlation matrix for the

emmited from the cobalt sources.
gamma-rays

Gamma-Line Eff ic ien- Error Average Error Chi- Correlation
(KeV) cy (%) Value (%) Square Matrix

1) 1173.2 3.084E-C» 1.066

3) 1173.2 3.089E-04 0.962 1) 3.O87E-0Í»

2) 1332.5 2.771E-0J» 1.052

k) 1332.5 2.783E-0Í» 0.931* 2) 2.778E-0A

0.71 0.013

0.70 0.091»

1.0

0.868 1.0

Now one wishes to obtain the covariance matrix for the remaining

10 data points. The procedure is the same as discussed above and Table 5

shows the results produced by CALCOV. The covariance matrix presented

in this table was tested for positive definiteness property using the

program MATXTST. The matrix was classif ied as positive def in i te and so

i t is consisten with the physical rea l i ty . This covariance matrix has

been used in the f i t t i n g to the experimental data which w i l l be next d i±

cussed.



Table 5

The Covariance Matrix (%)

2.A22

2.222 2.460

2.2*15 2.245 2.791

2.227 2.227 2.250 2.i»99
2.219 2.219 2.242 2.22Í» 2.570

2.246 2.246 2.269 2.251 2.242 2.579

0.0 0.0 0.0 0.0 0.0 0.0 1.123

0.0 0.0 0.0 0.0 0.0 0.0 1.008 1.158

0.0 0.0 0.0 0.0 0.0 0.0 0 .0 0.0 0.504

0.0 0.0 0.0 0.0 0 .0 0.0 0.0 0.0 0.432 0.490

The Parameter Total Errors {%)

1.556 1.568 1.671 1-581 1.603 1-606 1.060 1.076 0.710 0.700

The Cor re la t ion Matr ix ( M u l t i p l i e d by 1000)

1000
910

863

905
889
896
0

0

0

0

1000

856

898

882

891
0

0

0

0

1000

852

837
845
0

0

0

0

1000

877
886

0

0

0

0

1000

870

0

0

0

0

1000

0

0

0

0

1000

883
0

• o

1000

0 1000

0 868 1000

It has been found (13) that the relationship between efficiency

ef and gamma-ray energy É can be approximated by the expression:

12) In (e f ) - E P i (In £ ) ' '
i 1
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In order to determine the c o e f f i c i e n t s p j , the expression above was

f i t t e d to c a l i b r a t i o n data using least squares method, discussed in the

section Formalism. A computer program has been developed to perform t h i s

f i t t i n g , using the subroutine LLSF presented in r e f . 13- The best curve

obtained was for n=2 and the resul t is shown in F i g . 2. Higher order f i t s

lead to a poorer ( l a rger normalized x ) or to an u n s t a b i l i t y due to com-

puter precis ion l i m i t a t i o n s . The equation representing the best f i t t i n g

is given by:

13) In ( e f ) = ( -2 .111 + 0 . 0 7 D - (0.8M» ± 0 .010) In (E)

and the covariance (V_) and correlation (Cp) matrices for the fitting

parameters are:

Vp = 5.O35E-O3 Cp - 1

-7-104E-01» 1.018E-0J» -0.992

2
The x normalized obtained for o=2 was near unity and thus the solution
represented by Fig.2 or Eq. 13 may be considered as satisfactory.

The next step now is how to obtain the error (Ae,) in the relative

efficiency determination for a gamma-ray with a particular energy, using

the results of Eqs. 13 and 14. This particular case was also discussed

in the section Formalism and the following expression represents the so-

lution,

15) (A£f)
2 - (3Z/3Pi 3Z/3p2) (Vp)

(3Z/3p2)

where Z * In (e^) at a particular energy E. For instance, i f one wishes

to know the relative efficiency for the gamma-ray emmited from Na-2<» (E

- 1368.6 KeV), the following result is obtained:
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16) e, (1368.6) - O.27E-03 t 0.25E-05

For the experimental example discussed in this paper a polynomial

of degree two was obtained as the best fitting to the calibration data

and thus, the solution of Eq. 15 is very simple. For higher order poly-

nomials this solution is not so trivial and a small FORTRAN program named

EFFIC has been developed to handle this problem. Details on the compu-

tational procedure of this program is presented in the Appendix B.

CONCLUSION

With the high development level of the Nuclear Physics and its

technological application there is, at present moment, a greater need to

become concerned with accuracy and proper estimation and representation

of errors. In this paper we have tried to show the covariance matrix and

least-squares methodology applied to a simple example of Nuclear Physics

experiments. It is our concern that the statistical methods discussed

here seem to provide a reasonably adequate approach for meeting this

need. It is worthwhile for scientists working on Nuclear Physics or other

areas to be knowledgeable regarding these methods.
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APPENDIX A

CALCOV PROGRAM (FOR PC OR COMPATIBLE)

A FORTRAN program named CALCOV has been written to construct co-

variance matrix for a data set x. (i=1,n), according to the following

relationship:

V.. - I C... E., E., where
•J 1*1 'Jl (1 J1

C... - are the microcorrelations

E.., E.. - is the error introduced by each attribute 1.

Before running CALCOV it is necessary to create the input and out-

put files. In the input fii the following sequence of data and format

must appear:

1st line: N, LL format 215 where,

N « n, is the number of data points and

LL* L, is the number of attributes,

next lines: I « 1,N

(E(I,L), L *1,LL) format 7E10.4 where,

E{I,L) • Ejj, are the partial errors.

The output file is used by CALCOV to store the results of the calculus,

i.e., the covariance matrix, the correlation matrix and the total errors

for the data set.

Running CALCOV

All the prompts announced by the program are self explanatory as

is evident from the example provided in this appendix. The f i r s t proce-

dure of CALCOV is to help the user to input a l l the correlation matrices

for the attr ibutes. For this endeavour i t is announced the at t r 'bute

number being processed and, the user is prompted for the majority corre-



lation on which a i l the matrix elements w i l l be setted. Next the user

can perform any change on the matrix according to the following options:

S - SINGLE, T « TRIANGLE, B = BLOCK, E « EXIT, P « PRKJT where,

S • enter single element (C . . . ) - to change or over-reading only

one element of the matrix

T = enter triangular block - to change or over-reading any triangu-

lar block of elements in the matrix.

B = enter rectangular block - to change or over-reading any rectangu-

lar block of elements in the matrix.

P = prints the current correlation matrix.

E * exi ts and proceeds to the next attr ibute 1.

After the construction of a l l correlation matrices, the covariance

matrix is generated together with the f inal correlation matrix (with

elements multiplied by 1000) and the total errors. All these informations

are stored in the output f i l e created by the user. After the l is t ing of

the code i t is presented the results of running CALCOV, for the example

discussed in this paper.
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CALCOV.OUT
Number o+ Data

10
The Covariancs
.2422E+01
.2222E+01
.2245E+01
.2227E+01
.2219E+01
.2246E+01
. 0000E+00
.0000E+00
. U58E+01
.0000E+00
.0000E+00
.0000E+00
.0000E+00

Poi ntsl

Matrix is:

.2460E+01

.2245E+01

.2227E+01

.2219E+01

.2246E+01

.0000E+00

.0000E+00

.0000E+00

.5041E+00

.0000E+00

.4317E+00
The Parameter Errors

.2791E+01

.2250E+01

.2242E+01

.2269E+01

.0000E+00

.0000E+00

.0000E+00

.0000E+00

.4900E+00
are:

.2499E+01

.2224E+01

.2251E+01

.0000E+00

.0000E+00

.0000E+00

.0000E+00

,2570E+01
2242E+01
,0000E+00
0000E+00

0000E+00

0000E+00

,2579E+01
.0000E+00
,0000E+00

. 0000E+00

,0000E+00

1123E+01
1008E+01

0000E+00

.1556E+01 .1568E+01 .1671E+01 .1581E+01

.107Í.E+-01 .7100E+00 .7000E+00
The Correlation Matrix is:
1000
9101000
Sé»3 8561000
905 898 8521000
889 882 837 8771000
898 8^1 845 886 8701000
0 0 0 0 <? 01000
0 0 0 0 0 0 8831000
0 0 0 0 0 0 li) 01000
0 0 0 0 0 0 0 0 8681000

1603E+01 .1606E+01 .1060E+01



APPENDIX j>

EFFIC PROGRAM (FOR PC OR COMPATIBLE)

In the relative efficiency calibration for a Ge(li) detector the

following expression has been used to fit the experimental data:

n ._,
In (ef) I p. (In E) where,

Ef - are the relat ive eff iciency data

E - are the gamma-ray energies

The coefficients Pj together with the respective covariance matrix Vp

are determined through least-squares f i t t i n g , discussed with some detai l

in this paper. In this way, the relat ive efficiency for a gamma-ray with

a particular energy can be readly obtained with the results of the

f i t t i n g . A simple FORTRAN program named EFFIC has been developed to de-

termine the error (Ac*) for this relative ef f ic iency, according to the

expression:

(Ae f )
2 - T* V T where,

the symbol "t" denotes matrix transposition and f, the transformation

matrix, is given by:

* / 9 p2 ) where Z - In (e^) at the particular energy E

The program besides the error EFF - Aef also calculates the relat ive

efficiency EF • ef at the requireJ energy. All the prompts of EFFIC are

self explanatory as can be seen in the sample problem provided after

the l is t ing of the code. This sample problem represents the example, for

the gamma-ray emmited from Na-24, discussed at the end of the section

Pata Analysis.
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PUNNING EFFIC
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