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Multiple Scattering of X-Rays and Neutrons 
I A Recurrence Formula for the Taylor Series 

Expansion in the Calculation of Intensities* 

CARLOS B R P A R h N r t and S CATICHA ELLIS^ 

Instituto de Energia Atómica Sao Paulo SP Brasil 
^Instituto de Física Universidade Estadual de Campinas 

CP 1170 13100 Campinas SP Brasil 

(Received Apnl 27 1974) 

This IS the hrst article of a series dealing with experimental and theoretical work on the 
multiple scattering of X rays and neutrons with emphasis on their application to the study of 
crystal defects which is a rather new use ' ' of a known phenomenon 

The exact intensity solution for a crystal pla te" is too complicated when more than 3 beams 
are simultaneously diffracted by the crystal Taylor senes expansion limited to the first three 
orders' ^' have been calculated but the errors due to the approximation were not assessed and 
the use of higher order terms irivolves exceedingly complicated expressions 

In this paper a general recurrence formula for the succesive terms of the Taylor senes is 
presented Thus a rapid calculation of any number of terms is now possible 

§1 Introduction 

The change in power of an X ray or neutron 
beam traversing a mosaic crystal plate and 
experiencing absorption and simiiltaneous re 
flections I e, interchanging energy with the 
primary and other diffracted bealms is given 
by" 

(1) 

where P, is the power of beam i y, and yj are 
direction cosines of beam i and j relative to the 
normal plate surface is the effective re
flectivity of plane (i—j) n is the ab orption 
coefficient and x a coordinate taken along the 
normal to the plate Using eq (1) for the dif 
ferent beams direct and diffracted, involved in 
the process we obtain a set of simultaneous 
differential equations' '̂ 

dPo 
dx - ^ 0 ^ + 5 o i + I 5 o y ) + ^ S , o 

10 J 7i 

*The contents of this paper form part of the Thesis 
submitted by C B R Parente to the University of Sao 
Paulo to obtain the degree of Doctor of Science 

: ^ = $ Õ o . - y f ( M + 5io + I Õ u ) 
70 

(2) 

dP, 
• djc' 7o 7i 

- J O t + 2io + e n + I Qij) 
7i y=2 

The plus sign on the left of eqs (1) and (2) 
applies to transmitted beams and the minus 
sign to reflected beams The interaction coeffi 
cients Qtj are given by 

Q^j=Q,j M<A), (3) 

where Q,j is the reflectivity per unit volume of a 
small (perfect) crystallite for neutrons and an 
arbitrary direction of rotation 

O _- . \L£ 
^'^ v¡ sin 20 A,j 

(4) 

(in the X ray case two more factors are in
cluded (e^/mc^y and the polarization factor), 

IS the volume of the unit cell, F,j the struc 
ture factor of the plane U—j) that is the plane 

Publicated in Japanese Journal of Applied Physics vol 13 n" 10 October 1B74 
Aproved for publication in l E A series in March 1979 



with Milltr indicts//,-yj k,-kj 1,-1, A,,\s i 
geomelnc Idclor first introduced by Zdch iriasen 
(1945)"** and further discussed by Imakumd 
and Cdticha Elhs (1974) * relating to the angle 
of rotation t, about an aibitrary axis and the 
corresponding angle AO around an axis normal 
to the plane of incidence I 

Ád = A^E, (5) 

»v(A) is the mosaic angular distribution func 
tion generally assumed to be gaussian and 
isotropic 

M'(A) = exp(-A^/2,;^) (6) 

where A is an angular variable measuring the 
departure of a given crystalline direction(/iofco/o) 
in each mosaic block with respect to the 
mean of the direction (AQ^O^) taken for all the 
crystalline blocks in the crystal The standard 
deviation tj of the distribution] is the mosaic 
spread of the crystal 

It IS to be noted that the mosaic distribution 
(6) IS such as to assure that the different 
contnbutions that build up a ^iven beam m 
tensity do not have definite phase relationships 
so that eqs (1) and (2) are obtained by adding 
intensities and not amplitudes It is then foresee 
able that if the crystal tteatedi turn out to be 
perfect or nearly so eqs (1) and (2) will cease 
to be valid and so will the conclusions obtained 
from their application 

The simultaneous eqs (2) can be solved 
approximately or exactly provided one can 
establish adequate boundary conditions This is 
not easy in general except for geometrically 
simple cases such as the case of a crvstal plate 

Zachariasen (1945)*' found a solution for the 
two beam case i e mcideht and one diffracted 
beam when the latter is either reflected (Bragg 
case) or transmitted (Laue case) Bacon and 
Lowde (1948)'* extended Zachariasen s result 
to the neutron two beam case their results 
being subsequently used by several authors 
Wajima et al 1960 Jones 1963 Moon and 
Shull 1964^' An exact solution for the in 
tensities when the system contains three or more 
beams becomes increasingly difficult 

The problem was solved in general for any 
numbers of beams in the case of the crystal 

plate by C itich i Ellis (1969)" who also dis 
cussed the experimental conditions required to 
meet the assumptions made in the calculations 
The n beam case gives rise to n simultaneous 
differential equations whose treatment leads 
to a set of simultaneous linear equations in 
the constants of integration Then a prac 
tical solution for a number of 3 or more 
beams must involve the use of a computer 
K Imakuma (Thesis 1973)*' has programmed 
the numerical calculation in the four beam 
case 

Approximate solutions in the form of 
Taylor s series expansion introduced by Moon 
and Shull (1964) *̂ are easier to handle pro 
vided a small number of terms gives sufficient 
approximation This is actually not so except 
m cases of very small absorption and negligible 
secondary extinction In fact the convergence of 
the series has not been studied in general 

Caticha Ellis (1969)" has given the 2nd 
order expansion in the case of a reflected 
primary beam with n simultaneous secondary 
diffracted beams of both types as well as a 
3rd order expansion for a reflected primary and 
transmitted secondary beam (see his eqs (16) 
(21) and (21 ) Expansions using higher order 
terms providing more accurate results are ob
viously possible but the process of successive 
derivations is very lengthy and becomes m 
creasingly difficult A new approach to the 
calculation was then necessary This is given 
in §3 

§2 About the Convergence of the Series 

The convergence of this series has not so 
far been studied m general neither we intend 
to perform such a study here However Moon 
and Shull (1964)^' state that the conditions 

and 

(7) 

*K Imakuma and S Caticha Ellis to be published 

are enough to produce a rapid convergence of 
the series thus providing a reasonable approxi 
mation even when the expansion is limited to 
only the second or the third order terms 
Conditions (7) imply that the crystal has a 
very low secondary extinction and a very low 
absorption 

However conditions (7) are not gener^illy 



fulfilled in the neutron case and not very often 
in the X ray case In fact Caticha Ellis (1969)" 
has shown that the total effective path length 
<A-> of the incoming plus that of the outgoing 
beam in a crystal plate of thickness T is given 
by 

^lr¡y) 

where 

_]__T exp(-/ir/y) 
'fi y l - e x p ( 

1-1 1 

(8) 

yo y, are directions cosines of incident and 
diffracted beams 

<x>/yo = lo IS the incident beam path length 
and 
<x>/y, = /, IS the diffracted beam path length 

It IS clear from eq (8) that for a highly 
absorbing or a thick crystal <^x)/y^\/fi 
then for symmetric reflections 

' • 4 

That IS for crystals where the path length 
IS limited by absorption / i / ,~0 5 and the 
convergence of the series should be slow 

In practice values of /, for most samples in 
neutron diffraction experiments are defined by 
the dimensions of the crystal For a plate one 
would have li = T/y, except when the other 
dimensions of the plate have to be taken into 
account 

In neutron diffraction values of Qijl, close 
to and even larger than unity are not uncom 
mon and we have come across values of about 
4 (Parente C B Thesis 1973)'' 

One can limit the values of /, by using thin 
plates in the experiment to lower the secondary 
extinction (Bacon 1948) In the experiments 
described in part II this procedure was not 
feasible since the intensity was already quite 
low due to the high collimation used Thus the 
conditions (7) for rapid convergence were far 
from being fulfilled and a second or third order 
approximation in the Taylor expansion solu 
tion was entirely inadequate 

Attempts to use higher order approxima 
tions were quite discouraging since the sue 
cessive order of derivations increased the 
complexity of the expressions to impractical 
limits 

A new approach was then attempted which 
resulted in the obtention of a general term of 
the Taylor expansion 

§3 General Term of the Taylor Series Ex
pansion 

Let us rewrite eq (I) in thi f rm 

/""W = 5 . X ^ ^ Q:-s,PM^ ( 1 ) 
J*' yj yt 

where 

and 

A.=fi+ I Q,j (10) 

j=o j # 

+ 1 for transmitted beams 

- 1 for reflected beams 

/>l"(x) = dx 

In what follows derivatives will be represented 
(9) by 

P P ( . ) = ^ 

the symbol P\"\0) representing the value of the 
derivative at x=0 Using this notation the 
McLaurin series can be written 

P,(x) = P,{0)+x /'J"(0) + ^ PP'(O) 

+ +-,P\''\0)+ ( I I ) 

Let us define the coefficients 

Yj.^'^iQjilyj (J^i) 

Yi=-SiA,/y, = 

Then eq (1) or (1 ) can be simply expressed as 

(12) 

P?\x)= I Y^,Pj{x) (13) 
j = o 

where the term j=t is also included in the 
summation The second derivative is given by 

and successive derivatives arc obviously j,iven 
by 



(15) 

x'"/'l""(0) = XX T^Yj r){Y,jX) 
J k 

(Y x)P(0) 

Equation (16) can be further simplified by de 
fining 

^j, = xYji=s,QjX/y^ 

X„==xY ,= -s A,x/y, 

(l'>2) 

(17) 

Then 

xPy\0)=lXj,P,iO) 
J 

x'P''\0) = l^l^X,X,^P,iO) 
J k (18) 

y"P<"'>(0) = I I lx„x,j 

Equations (18) show that the successive 
terms of the series can be expressed as linear 
combinations of the powers of the different 
beams at the origin the coefficients of the term 
m being obtained from the products of order 
m of the coefficients X,j defined by eqs (17) 
Thus the coefficients for the m th term can be 
obtained from those of the ( w - l ) t h term 
recurrently In order to obtain such a recurrence 
formula let us define 

<'>y - y 

so that 

and 
jr/'S'>(0) = X"'^./'.(0) 

(19 I) 

(20 I) 

jr̂ /'P>(0) = Xn(0)SA'./">V„ 
Then defining 

the second order term becomes simply 

v2/'<2)(0) = ^/'^(0)<^% (20 2) 
k 

which on turn allows the third order term to 
be written 

x'P''\0) = l,P,(Q)'£X„'"Y, 
k I 

= Y.Pk{0)'"X, (20 3) 

where 

" % . = I A H " A ' , ( 1 9 3) 

Equations (19 1) (19 2) and (19 3) can ob 
viously be generalized 

""'A',. = I^„""-"A',i (19) 
s 

and the m th order term takes on the form 

V'"PS""(0) = X/'*(0)<""A'*, (20) 

Equation (19) is the recurrence formula sought 
after it will obviously permit a rapid calcula 
tion of the terms in succession starting with 
the coeflicients X„ and X,j defined by eqs (17) 

Equation (19) can also be applied to the case 
w = l 

provided the ""A'j, are defined as the coeffi 
cients for the zero order term 

/'(0) = I / ' . (0) '^'A-, 
k 

where 

„ J o f o r A ^ , 
•̂ '•"ll f o r / l = , 

It IS to be noted that in the absence of 
anom ilous dispersion the reciprocity relations 
Kj,= Yi, ind Xj, = X,j hold since m such case 

Qji = Q,> 

t)4 Conclusion 

In conclusion m itcritive method has been 
obtained to cilculitc the successive terms of 
the Tiylor series expinsion of the intensity of 
multiply dillricted X riy or neutron beim 

The use of the recurrence formula (19) 
illows the c ilcul ition of the cocflicients of the 

nih order term is soon is those of the (n— l)th 

Apart from numer cal factors the terms of 
the Taylor senes expansion will be obtained by 
multiplying the expressions (13) (14) and (15) 
by the appropriate powers of x and taking the 
values of the derivatives at v = 0 

r/';"(0)=vX^',/'/0) = I 

x'P['KO) = x'l^'ZYj Y.^PM 

= ZI(V„.) (K,v) / ' , (0) 



term are obtamed The method is thus well 
suited for computer use There is now no need 
to limit oneself to the approximations of the 
2nd or at the most 3rd order as Were used in 
the past Approximations with 100 and 200 
terms can be calculated in a mattir of seconds 
of computer time ' i 

In a subsequent paper we analyse using 
this method the neutron intensities multiply 
scattered by an aluminum single crystal 
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