

E

ANGULAR DISTR!BUTION OF PHOTOFISSION FRAGMENTS IN \cdot U AT 5.43 MeV

PUBLICAÇAO IEA N.O 300

Dezembro - 1974

ANGULAR DISTRIBUTION OF PHOTOFISSION FRAGMENTS IN: UAT 543 MeV

S Kuniyoshi. O Y Mafra, C Renner and J Goldemberg

Coordenadoria de Fisica Nuclear
Instututo de Enargis Atómica
Sio Paulo Brasil

Puidicaino IEA NO 366
Dezambro 1974

Instituto de Energie Atbmica

Consetho Superior

Enqo Rober to N. Dafer - Presidente
ProíDr.Emilio Mottar - Vice-Presidente
Prof.Dr.José Aupusto Martins
Prof.Dr. Mition Campos
Eng? Helcio Modesto da Costa

Superintendent

Römulo Ribero Pieroni

AMGULAR DISTRIBUTION OF PHOTOFISENON FRAGMENTS IN 2:3 U AT 5.43 MeV

S Kunnyomi, O Y Mofra, C Renner and 」 Coldomberg

ABSTRACT

The anguier distribulion of photot esion fragments of ${ }^{272} \mathrm{U}$ produced by 5.43 MeV monochromatic

1. Introdretion

Strong evidence for the existence of an intermediate structure in the $(\gamma) \boldsymbol{f})$ cross section near the fissuon threshold ham been accumulated recently

Rebouncv at al'. using the continuous bremsstrahlung spactra of a microton of about 10\% resolution, Knowtes ${ }^{2}$ using Compton scettered gemmeroys from the reaction " $\mathrm{N},(\mathrm{n}, \mathrm{y})^{\prime 7} \mathrm{Ni}$ a a continuoudy verimble source of gamma rays which presents an overall resolution of £ 3\% Manfredini et al ${ }^{3}$ and Mafre et al. ${ }^{4}$ using the 10 eV resolution gamma lines from neution cepture in seworal elements, tive found this structure in ${ }^{232} \mathrm{U}$ and ${ }^{232} \mathrm{Th}$.

The emal discrepericies between the dete have been attributad to the differant resolutions emoloyed This structure in the crows section can be mecistad with resonances in the lovels of the d formed transition statie; therefore, a lot of dets on the engular distributions of the fission frogments has been masuind and cen be found in the litterature' 2.35 In perticular, the peak in the " U U cross amction oberved by Knowles around 5 MoV cm be ascciated to the oxistence of a $(Z, 0)$ chennel (quadrupole photosbsorption) It was acumed for this hypothesis that the dicgram lovels are the ones from Albertion and Forkmen ${ }^{6}$ As the experimentel errors involved were too hifh this explanation wes not conclusive

The experiment dencribed in this paper is the measurement of the angular distribution of the fission freqments eround $5 \mathrm{MeV}(543 \mathrm{MeV}$) in order to investigete if there is any channel at this eneryy Monochromatic gamme rediation from (n, y) reaction in sulphur and olass detectors were used in this experiment

An enalyais of all dete available in the literature on the engular distribution of fission fragmentu in : ${ }^{13} \mathrm{U}$ from 5 to 7 MaV is also prosentad

2 Theory

The energy leval diegrem is strangly dependent on the shape of the nucleus it the seddie point initidly, the nuclews wam aumed ${ }^{7}$ as heving a quadrupole doformation at the seddie point but iever en Jotvermend hes shown thet a more convenient shape is the octupoler one.

This diseram of levels for heevy aven even nuclei is given by Albertion and Forkemen ${ }^{6}$ and: shown in Fig 1

According to this scheme, the fizsion threathold level is $\left(J^{\prime \prime}, K\right)=(\sigma, 0)$. This lowel is not acsasible by the photomberption because tie photons proctuce only levels $M= \pm 1,50$ the $J^{*}=0^{+}$is forbidden

The dominant modes of photon abcorption in heevy stements (a urmium and thorkum) se dipole end quadrupole since the megnetic componeit is very small. The tevels thet cen be excited with photons ere merked out with strong lines in Fig. 1. Each one of theen levels at the seddie point is cherecterized by the quantum numbers:

J the total enpuler mornentum,
M the J profection over the spatial axis
K the J proiection ower the symmetry axis,
π the wove function perity

Fig. 1

As the frssion frapments emerge in the nucleer symmetry axis, the K volue as well as J and M define the fistion frapment anguter distribution. This enquiar distribution is g ven by'

$$
\begin{align*}
& P_{M K} K^{J}(\theta)=(J+K)^{\prime}(J-K)^{\prime}(J+M)^{\prime}(J-M)^{\prime} \times \left\lvert\, \frac{1-1)^{n}(\cos \theta)(2)^{2 J} \cdot K-M-2 n}{\left(J^{-}-M-n\right)^{\prime}} \times\right. \\
& x\left[\frac{(\sin \theta i 2)^{2 n}+M-K}{(j+K-n)^{\prime} n^{\prime}(n+M-K)^{\prime}}\right]^{i} \tag{1}
\end{align*}
$$

where the summation is extensive to all n for which the denominator is positive and θ is the mole of the outgoing fission tragmerit relative to the incident beam direction

Aseuming that it is possible to observe only the dipole and quadrupole transitions, one can write the engular distribution for casin trensition a

$$
\begin{align*}
& P \pm:, ~(\theta)=(15 / 8) \sin ^{2} 2 \theta\left[\text { quadrupole }\left(2^{\circ} .0\right)\right] \\
& \left.P \pm{ }_{1}^{1}, 0(6)=(3 / 2) \sin ^{2} \theta\{\text { dipolel } 1 \quad .0\}\right] . \tag{2}\\
& P \pm 1,1(\theta)=(3 / 2)\left(1 \quad 1 / 2 \sin ^{2} \theta\right)[\text { dipole(} 1.11]
\end{align*}
$$

The angular distrubution is connected with the differential cross section by the expresaion.

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\sigma_{1} P \pm 1_{1,1}+\sigma_{2} P \pm 1_{1,0}+\sigma_{1} P \pm 1,1 \tag{3}
\end{equation*}
$$

where σ_{1}, σ_{2} and σ_{3} ore the cross sections for the iovels $\left(\mathrm{K}, \mathrm{j}^{\prime \prime}\right)=\left(0,2^{+}\right),(0,1)$ and (1.1) rempectively.

Equation (3) can be written as a function of the total cross section for fission as:

$$
\begin{equation*}
\frac{d \sigma_{F}}{d \bar{\Omega}}=\sigma_{F}\left[\frac{\sigma_{2}}{\sigma_{F}} P_{ \pm 1,0}^{1}+\frac{\sigma_{3}}{\sigma_{F}} P_{ \pm 1,1}+\frac{\sigma_{1}}{\sigma_{F}} P_{ \pm 1,1}^{2}\right]=\sigma_{F} \omega(\theta) . \tag{4}
\end{equation*}
$$

where the σ_{1} / σ_{F} confficients are the contributions of each probabitity $P_{M K}{ }^{J}$, and $\omega(\theta)$ is the anguler distribution observed experimentally. $\omega(\theta)$ has to be normalized by:

$$
\begin{equation*}
\int_{0}^{\pi / 2} \omega(\theta) \sin \theta d \theta=1 \tag{5}
\end{equation*}
$$

Subatituting (2) in (4) we get:

$$
\begin{equation*}
\frac{1}{\sigma_{F}} \frac{d \sigma_{F}}{d \Omega}=\omega(\theta)=D \sin ^{2} \theta+F\left(1-\frac{\sin ^{2} \theta}{2}\right)+G \sin ^{2} 2 \theta \tag{6}
\end{equation*}
$$

Simplitying this exprosion, we obtain

$$
\begin{equation*}
\omega(\theta)=a+b \sin ^{2} \theta+c \sin ^{2} 2 \theta \tag{7}
\end{equation*}
$$

where

$$
=(3 / 2) \frac{\sigma_{3}}{\sigma_{F}} . \quad \sigma_{1}=(8 / 15) \omega_{F}
$$

4

$$
\begin{array}{ll}
b=(3 / 2) \frac{\sigma_{1}}{\sigma_{F}}\left(\sigma_{2}-\sigma_{3 / 2}\right) . & \sigma_{3}=(2 / 3)\left(b+\frac{a}{2}\right) \sigma_{f}, \tag{b}\\
c=(15 / 8) \frac{\sigma_{1}}{\sigma_{F}}, & \sigma_{3}=(2 / 3) s \sigma_{f} .
\end{array}
$$

The number of fissions observed experimentally per unit solid engle is proportiond to the angula distribution

$$
N(\theta)=K \omega(\theta)=K a+K b \sin ^{2} \theta+K c \sin ^{2} 2 \theta
$$

Fitting the experimental points to this expression by the least squerse method, one give $\mathbf{K a}, \mathbf{K b}, \mathrm{Kc}$.

The value of K is obrained by

$$
\int_{0}^{\pi / 2} N(\theta) \sin \theta d \theta=K \int_{0}^{\pi / 2} \omega(\theta) \sin \theta d \theta=K .
$$

where

$$
\int_{0}^{\pi / 2} \omega(\theta) \sin \theta d \theta=+(2 / 3) b+(8 / 15) c=1 .
$$

which is the nurmalization condition ' 6).

3. Description of the Experiment

The gamme radiation employed (E.43 MPV) is produced in asulphur target placed neer the IEAR 1 reactor core operating at 2 Mw (Fig. 2).

DIMENSIONS IN GENTIMETER

8380	, PLABTIC + ${ }^{\text {P }}$
$\triangle / 7 / A$ PD	Sff PARAFFIN

5\% WOOD
Fig. 2
Experimantel arrangement for y-radiation produstion.

The enguler distribution is meseured in a vecuum chember covered internally with cedmum Inside the chamber there is cylindricel sluminum tube 76 cm in diemeter end 90 cm in height In the median plene of the cylinder there we 16 holes, 1 cm in diemeter; the engle between two redial coneecutive holes is 225°

The detectors more mounted in the outer pert of this cylinder as cen be seen in Fig. 3. The uranium target wha metalic cylinder 4 mm in diameter and 1 cm in height. As the averede reng of the fistion fragments is eround $12 \mathrm{mg} / \mathrm{cm}^{2}$ and the effective terget mats is around $\mathbf{1 2 0} \mathrm{me}$ of ure :um, tre escepe probebility for the fistion fragments is the surne in all directions.

The detectors employed were feirly requiter gites pletes of $15 \times 2.0 \mathrm{~cm}^{2}$

In order do distinguigh the naturel glass defects which can simulate fission tracks, all the slass plates ere etched in a 6\% HF solution for 60 minutes before irradiation. This atching sondition hes been determined experimentally ${ }^{10}$

Fig. 3

Viww of the enguler diatribution experimentel arranyment.

During the irrediation the fibsion fregmente produce holes of a few mierons in dopth end $\sim 10 \mathrm{~A}$ in dianeter The gless is agsin etched in the fluorldric acid for 30 min and this procees Incrouses the megnturde of the hole thus permiting thair identification in an optical
 is no denger in confusing them with retl fiasion tracke.

4 Exporimental Remults

The results obterned ere the following

θ°	n^{0} of tracks (everap)
0 ± 75	20 ± 05
225 ± 75	25 ± 1.0
45.0 ± 75	47 ± 12
675 ± 75	60 ± 08
900 ± 75	5.5 ± 1.5

Fitting a second degrot polynominul expression to the experimental points, the engular distribution corfficients obtained are the following:

$$
\begin{aligned}
& \mathrm{a}=0.3 \pm 0.2, \\
& \mathrm{~b}=08 \pm 02, \\
& \mathrm{c}=02 \pm 01
\end{aligned}
$$

These coefficients include the contribution of the 7.78 MoV and 8.64 MoV secondary gamma lines from the sulphur terpet. Although these lines hove a small intensity, the crows sections at these energies are sufficiently high (9.8 ± 0.3 and 25.7 ± 0.4 mbern respectively) to make their contribution non negligible.

Taking the angular distribution coefficients at 7.78 MeV and 8.64 MoV from Rebothor' and correcting for the normalization used in this peper, we obtained the following anguler distribution coefficients for 5.43 MoV :

$$
\begin{aligned}
& a=003 \pm 059 . \\
& b=1.2 \pm 07 . \\
& c=0.6 \pm 0.3 .
\end{aligned}
$$

In Fig 4, curve $\mathrm{n}^{0} \mathrm{i}$ is the second degree polynomial fitted to the experimental poinis, curve $n^{\circ} 2$ is the normalized angular distribution for 5.43 MeV and curve n 93 is the normelized angular distribution ottained experimentally (without corrections).

5. Analysis and Discusaions

The rewults obtained in this peper are compered with rewults of other authors in term of b / a and c / b ratios. The ratios are independent of the normalization factor used and cer be given in terms of the cross rections for the different fiseion chennets as

$$
\begin{aligned}
& \frac{b}{2} \sim \frac{\sigma\left(1^{-}, 0\right)}{0\left(1^{-}, 1\right)}-1 / 2 \\
& \frac{c}{6} \sim \frac{5}{4} \frac{\sigma\left(2^{+}, 0\right)}{\sigma\left(1^{-}, 0\right)-0.50\left(1^{-}, 1\right)} .
\end{aligned}
$$

This kind of analysis indicates directly the fission chennols.

Fig. 4
Experimental raults before and after normelyation
The peaks in the b/a curve corresponde to the $\left(1^{-}, 0\right)$ levels Comparing the mesults from seversl euthors in the $\mathbf{8 . 0}$ to 8.0 MOV initerva: (Fig 5). one cm see that the experimentul pornts obtanned by Knowles ${ }^{2}$ heve two definite peaks at 60 and 8.9 MmV Date from Manfredini ${ }^{3}$ and Dowdy show a displecement in megnitude relative to the Knowies' data but agree generally with his reuils. The Rcbotnoy' date do not agree with the sthers above 6 MeV Nevertheless, below this energy all the curves prosent the seme sundency of showing a very wall defined maximum eround 6 MoV . The dete obteined in the present paper using monochromatic photons egree with the deta of Rebotnov in mapnitude. Consequemily, in addition to the twe $\left(1^{\circ}, 0\right)$ lovola in 8.0 and 6.9 MoV we can maciotre a lovel $\left(1^{\circ}, 0\right)$ to the peak in 5.43 MoV

To verify the prevence of the $\left(2^{+}, 0\right)$ chennel, the beheviour of the c / b curve hes to be anslysed. Fig. 8 shows the e/b date from several euthors. The experimental points do not agree owri when the experimentel errors ere taken into eccount, but the beheviour is more or les the same. So there in apok cround 7 MoV and a tendence to ameximum near 5.5 MoV Novertheiese, only the curve obtained by Rebotnov is extended to 5 MoV and prosents a peak at this energy. Our date agree with a high value of c / b nem 5 MaV , so it is posible to meciate a (2', 0) ohennol to this peok.

The peak wround 7 MOV could be procuced by a monence of the $\left(1^{\prime}, 0\right)$ lovil giving a

Fig. 6
The ratio b / s, normalized, obteined from the $\sigma_{i}(E)$ eurves es a function of the γ energy (E, MoV).
minimum around 3 MoV but the fact that Rabotnov's results also present a peek at this energy could indicate the provence of $-\left(2^{+}, 0\right)$ leval because Rebotnov's curve for b/a shows no structure in this energy interval

With the levels found, the energy lovel diagram for uranium in the 5 to 7 MoV energy intervat can be orgenized and is shown in Fig. 7 In this figure we cm also see the levals distribution proposed by Albertwoon and Forkmen ${ }^{6}$ for quadrupole and octupole deformation an the saddle point.

Althocigh the first level $\left(2^{+}, 0\right)$, expected for the octupole deformation, is not clearly obeerved experimentally, we can we in Fig. 6 a posible indication of this level oven though the reaults are not in good agreement

The fact that the b / c and c / b maxima coincide with the peaks of the obverved crome section dom not permit to conclude that the deformation potentiel in double humped. Noverthaless, if we admit the existence of a double humped berrier it cen be said that the helght of the second berrier (higter deformation) is preater or has the same height of the first one. If the opposite occurs, the nucleus going through the first berrier during the deformation would

Fig 6
The ratio e/b, normalized, obtwined from the σ, (E) curves as functions of the anorgy (E, Mov).

Fing 7
Energy lowal diecrem for ${ }^{238} \mathrm{U}$ in the 5 to 7 MoV onergy Interval.
arrive at the second barier with a greater excitation energy This implies in several outgoing channels each one with a characteristic angular distribution Consequentiy one would expeci an anisotropic angular distribjtion which definieiy is not in agraement with the experimental results shown by this paper

Aiknoweledpements

The authors woul like to thank Prof A F R oe Toledo Pize and Di F A B Coutinho for valuable discussions

Resumo

 am nas de vap Na ani a dos esu 'ados to am rons deradas somante as con"bu cobs dos ermor

 -ambern so exprizda

References

1 N S Rabornovet al Yad Fiz 11508 (1970) [English vers'on Sov J Nucl Phys 11285 (1970))

2 JW Knowles Photofission in U and Th University of Taronto Physics Seminar Ocrober 1969 and Saclay Phys'cs Seminar. February 1970
3 Manfredincet at Nuclear Phys A123 664 (1969)
4 O Y Mafra S Kunyosh and J Goldemberg Nuclear Phys A186. 110(1972)
5 E J Dowdy and T L Krysinski Nuclear Phys A175. 501 (1971)
6 E Alberisson and B Forkman Nuclear Phys 70209 (1965)
7 J A Wheeler in Fast Noutron Physics (pt 2) J B Marion and J L Fowler eds Interscience 1963
8 S A E Johansson Nuclear Phys 22 529(1961)
9 C S Shapro and G T Emery Phys Rev Lett 23. 244 (1969)
10 V P Perelygin et al. Pribory Tekh Eksp 781964 |English Version. Instrums Esp Tech $4786(1964)]$

