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MATHEMATICAL FOUNDATIONS OF TRANSPORT THEORY

Ernest E. Burniston

ABSTRACT

Among various methods of solution of the linear transport equation, Case’s method of singular
eigenfunction expansion is conside-ed the most elegant exact analytical solution. Although the technique has
been applied by many researchers to various problems and the solution is amenable to numerical evaluation
1o a high degree of accuracy, it requires rather unfamiliar mathematics.

In this report fundamental concepts and thearems of the required mathematics are presented.

A short review of the theory of functions of a complex variable is followed by the definition of the
Cauchy principal-value integral The theory of singuiar integral equations of Cauchy-type kernel and related
Riemann boundary-value ~roblems for a function are summarized. As an application of the developed theory,
anatytical solutions of a class of transcendental equations are found. Further, systems of singular integral
equations and tho matrix Riemann problems, as required in the multi-oroup model of trunsport theory, ore
discussed

Preambulo

Este relatorio contém as notas de aula sobre as Bases Matemétices do Teoria de
Transporte que o Professor Ernest E. Burniston da Universidade Estadual da Carolina do Norte,
EUA, compilou durante a sua estadia na Coordenadoria de Engenharia Nuclear do Instituto de

Energia Atdmica no imés de maio de 1975.

As aulas foram ministradas em forma de Semindrio de Teoria de Transporte aos
Pesquisadores da Area de Fisica e Projetos de Reatores da CEN.

CHAPTER |
Review of Complex Variable Theory
In this chapter we give a brief summary of the complex variable theory required for the
methods described in the following chapters. Proofs of the results which we will guote may be
found in any standard text, such as L.V. Ahifors'?), and E.T. Copson{2}. To establish our

terminology we first give some definitions relating to the complex plane.
A neighborhood of a point z,, is the set of points z vatisfying the relation
jz -2, 1<,

where € is a positive constant.

Let S denote a set of points in the complex plane. A point z, of S is an interior point of S
if there exists a neighbarhood of z, containing only points of S, If a set contains only interior
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points, then the set is said to be open.

We adopt the simple minded approach to connectivity in that we say aset S is connected
it each pair of points of S can be joined by a polygonal arc which consists only of points of S.

A domain will be an open, connected set.

If to each point z of a set S, we are given a rule, which we denote by f, which associates
with that point a unique complex number f(z) say, then we say f determines a function® of a
complex variable on S. In some texts, this is defined as 2 single-velued function. If we may
associate two or more complex numbers with the point z we say that f determinesa multivalued
function on S. A function is differentiable at a point z, if

f(z+h) - £
Fle) = lim —2 2R M)
-0 b
exists independently of the path along which th | = 0. f is said to be analytic at the point z if it
is differentiable in a neighborhood:f = A function is analytic on a set S if it is analytic at each

point of S.

Consequently, we should think of analytic functions being defined on domains. A point
at which f is not analytic is said to be a singular-point or a singularity of f.

An arc or contour is said to be smooth ifl?) it is simple, i.e., does not intersect itself,
and‘2) it possessas a continuously turning tangent, Thus if it is given parametrically by

x=x(t)y=y(t), f, St<y,

then x(t) and y(t) are continuously differentiabie functions satisfying
dx 2
('F')'i» (%tL’ >0,
We may now state, without proofs,some theorems which we will need. CAUCRHY'S
THEOREM: Let C denote a smooth contour and D its interior. If f is analytic in D and

continuous on D + C, then

Ic fiz)dz=0

CAUCHY'S INTEGRAL FORMULAE: Let D* denote the interier of smooth counter-C, and
D" the exterior. If f is analytic in D* and continuous on D* + C, then

L
fc &t nif(z),z e O,

* At this stage we are making the distinction betwesn s function f end its value f(2). Later, however.we shall
speak of "the function f(z)"’.



f(t)

c t—2

dt=0, zeD~

If f is analytic in D “and continuous in D™+ C, then

1 f(t)
— [ —— dt=1{=), ze D,
2m ¢ t-2

1 f{t)
— [ —— dt=f{~)—f(z), ze D"
2m ¢ t— 2z

A function that is analytic in every finite domain is called an integral function, eg
polynomials are integral functions. An important theorem concerning integral functions is
Lioville's Theorem: If #{2) is an integral functson satisfying the inequality that

f(z) <M, for al! 2,

where M is a constant, then f(z) is a constant, i ¢, the only bounded integral function is a
constant An extension of this result is that if f(z) is an integral function satisfying

Hf(z) 1< Mz forallz

where a is a real, positive constant, then f{z) is a polynomial of degree [a], where [a] denotes
the largest integer, which does not exceed a

TAYLOR'S THEOREM: If f(z) is analytic in a domain D containing the point z,, then the
infinite series representation

(z~2,) (z-2,)

f(z) =f(z°) + T— f'(Zo) + fr (zo) + .,

is valid in the largest neighborhood of 2, contained in D

LARUENT'S THEOREM: If f(z) is analytic in the annulus R, <lz -z, | <R, then f{z) has
the representation

flz) = aglz—2,)" + E’ bylz-z,)" " .
n:

n

a8
o

in that annulus. The second series is usually referred to as the principal part of f(z) at z,

If at least one of b,’s is not zero, then we say that f has an isolated singularity at z, If
the principal part terminates, ie, b, =0, n=N+1, N+2, _ thenf hasa pole of order N at
z,,. with residue b,. If the principal part does not terminate the f has an isolated essential
singularity at z, If all the b,,’s are zero then either f is analytic at z, or has a removable
singularity, i.e., a singularity which may be removed by suitably defining f(z}

IDENTITY THEOREM: Let f, and f, be two functions, analytic in a domain D I f,(z) =f,({z)
for all z on some arc within D, then f, (z) = f, (2) for all zin D {There arc more general versions



4

ot this theorem but the one given here s sufficient for our purposes).

MORERA’'S THEOREM: This is the converse of Cauchy’s Theorem. If f is continuous in 2
domain D and 1s such that

Jo f(2)dz=0,
for any contour in D, then f is analytic in D

These last two results may be used to establish two important analytic continuation
results

ANALYTIC CONTINUATION THEOREM: Let D, and D, be two disjoint domains, whose
boundaries intersect in an arc C If f, s analytic in D, and continuous in D, + C, f, isanalytic
in D; and continuous in D, +C, while f, (z) =f, (z) for allz on C then f, and f; are analytic
continuations of each other, and define a umique analytic functioninD, +D, +C.

SCHWARZ REFLECTION PRINCIPLE: Let C denote a part of the real axis, and f a function
analytic for y > 0 {S*) continuous onto C such that f (x) is real for all x on C Then f can be
analytically continued into y < 0 {(S”) by defining for y <0,

f(z) = £(z),

and so

gl(z) :flz),y >0,

=f(2),y <0,

defines a unique analytic function inS* +S +C

ARGUMENT PRINCIPLE: Let f be analytic within and on a smooth contour C, except for at
most a finite number of poles within C, (f 1s meromorphic within C) In addition let f have
only a finite number of zeros within C and no zeros on C Then if N is the number of zeros and
P the number of poles within C, we have that

| (A @] [ D dz=N P

- r Y4 = = e z= - F,

20 € 21" € 12
where multiple zeros and poles are counted as to their multiplicity The notation [Arg flz)]e
denotes the change in the argument of f as the contour C is traversed one time in the positive
sense.

We now iurn our attention to the question of muitivalued functions The multivalued
function which is basic to the stucly of this class, 1s the argument function The argument of a
complex number has infinitely many values which differ by multipies of 2r, e, if we set
z=re 0 thenarg z=0 + 2nm, a <0 < a + 27 where o is a constancandn =06 1,:2,. . . Thus



the logarithm function
logz=1Inlzl+iargz,

is clearly multivalued, with its values differing by multiples of 27i. Let C be any contour
enclosing the origin and z,, a point on C. If we let z traverse C starting at z, and returning to z,,
then clearly it we compute logz continuously, starting with any particular initial value, as z
traverses C, then the initial and final values of log z, will differ by 2mi. Consequently, to
construct analytic functions from the log function we must restrict the domain so as not to

include contours enclosing the origin. This may be done by remaving all the points on the ray
rei®, where 0 <r and a is an arbitrary constant, from the complex plane. 1t is now a straight

forward matter to show that, for each given n, the functions

fnlz) =lnr+i(0+2n7w),n=0,%1,£2 ..,
are analytic in the domain r > 0, a < <« + 2n. These analytic fuqctions are called branches
of the log function in the domain r > 0, a <8 < a+ 27, The ray re'®, r = 0 is the branchk cut
for these branches with the origin and the point at infinity being branch points. The particular
case of a =-m and n = 0 defines the principa) branch of the log function which we will. denote
bylog z, ie

-

Logz=1In|z| +iargz,|1z|>0,~n<argz “m.

We shall determine branches of other muitivalued functions by means of the log function.
For instance, for the square root function we can write

272 = exp(1/2 log z)

= exp (_l_n_g_l’ + -'2- [arg z + 2nmi]},

wherea<argz<a+ 2r,andn=0, £1, £2,. ., thus,

2 = (Vg i(0/24nT),
= thei 0/2, neven,
=-r"%¢l0/2 nodd.
Therefore, for any given a, there are two branches of the square root function.
Th-. principal branch of 2”2, however, is determined by using the principle branch of the

log function, i.e,,
2h=febi2 ro0 -n<o<n
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More complicated functions may be handled by reducing them to simple functions by means of
transformations, compositions, etc. For example, consider (22 = 1)4. In terms of logarithms we
have

(22 -1)%2=exp (% log(z* - 1)}

=exp {%loglz—1)+%log(z+1) }
=exp {%In|z~1|+%In|z+1|+iarglz— ) +iarg(z+ 1)}

On taking the principal branch of each of these log functions we find that the principal branch
of (z? = 1)*2 can be expressed as

i
22 -1h=/1z22- 1| exp [5 (¢ +@1)], ~n<¢;, 9, <,

where ¢, =arg (2—1) and ¢, = arg(z + 1). It appears that the branch cut here is the union of
the two branch cuts corresponding to the two log functions, i.e., the half line x < 1, y =0.
However, this is not the case. Let us consider the limiting values or (x? — 1)% on the real axis to
theleftofz=~1,ie, forx<-1,y=0.

i
lim (22 = D% =/x? - 1 exp [z m+m),
>0
Sy Sy

— i
fim (2% - 1)'/‘=\/;’ —1exp[5{-7-n)],
y~0~
—_—
= —yx? -1,

and <o by the analyt - r.ontinuation theorem (z; — 1)’/3 is analytic for x <- 1, and so the branch
cutis-1<x<1,y=0,

Another interesting example is the arcsin function. We pose the problem of determining
all analytic functions (for some suitable domain) such that

sinw = z.
Replacing sinw by its exponential form gives

e2iw - 2jzelw — 1= 0,



which yields

oW =ilzs /2 - 1).

To make this equation meaningful we assign the branch cut (—oc - 1] and [+ 1, + =), and
so e/’ may be either of the two analytical functions;

iz +/2% - N orilz—/2* -1)

where /2> —1 represents that branch of the square root function determined by
assigningy/— 1 the value i. In other words

\/z’-1=exp{‘/zlog(z—1)+‘/zLog(z+1)},
where

0<arg{z—-1)<2rand -w<arglz+ 1) <.

if we yow make the observation neither z +\{’ ~1norz —\/z’ =1 can vanish in the
specified domain, then it makes sense to take logarithms and so we may writo

w = % ~ilog(z +\/i’ -1,

w=-1ér- -iloglz —\/ZT— 1).

Before specifying a branch of the log function we make use of the fact
(z+\[2 -1) (z—‘,/z_z -1=1,

and so w may be represented by

m
—tiloglz +4/2% - 1).

w=2



Now noting that the function 2+ \/ z_+m1 Can never assume a negative real value tor
any z in our domain, we may specify the principal branch of the log funct:on and tinally
deduce that all the analytic functions satistying sinw = z, may be represented by

w, @) =km+ - 1)k {-;" - !Log(z+\/z‘ ~1}k=0,21,1:2,

CHAPTER 1|
Cauchy Integrals and Riemann Problems

Cur purpose in this chapter will be to present the basic properties of Cauchy integrals and
to give an introduction to the so called Riemann boundary value problem. We will make no
attempt to be exhaustive and in a simpler vein we will not give a theorem-proof type of
development. There are several excellent texts on these topics, N. | Muskhe:.shvil'3! and F. D
Gakhov (4, for instance, which we recommend for those who require a more detailed study.
We will include only those proofs which we feel useful in themselves in understanding the basic
concepts. We begin by defining a Cauchy integral:

DEFINITION (2.1): Let C be a smoth arc or contour and ¢(t) a given function, integrable on
C, then the integral

1 oft)dt
(l) = e—— e —aay 2 1)
(2 2m fc 1-2 (

is called a Cauchy-integral (sometimes referred to as a Cauchy-type integral) The function ¢ (t)
is called the density function and (t- 2)* the kernel. A general theorem concerning integrals
which define analytic functions is the following.

THEOREM (2.1): Let C be a smooth arc or contour Let f{t,z) be a continuous function of t on
C, and also be analytic in some domain D for ali ton C Then the function

Flz) = fc f(t,2)dt

15 analytic in D. The theorem is easily proved by showing that F'(2) exists in D The points at
whick: f(t,z) ceases to be analytic are singular points of F(z), and so Caucny integrals are
singular at each point of C. Thus if C is an arc, 4{z) given by equation {2 1) will be anaiytic in
the plane cut along C. If C is a contour, the integral of equation {2.1) will define i general, two
functions, one analytic in the interior of C and one analytic in the exterior of C

Example: pir=1,C={t:-1<t<1}

U P | S R
cb(z)—zm =7 T {tog(t - 2)],
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To compute this for a given 2 we must specify a branch of log(t — z) in the t-plane with a cut
from the point t=z to the point at infinity, not passing through [-1,1). Thus we can now
write

1
2ni

d(z) = {loglz - 1) - iog(z + 1) }.

If we take a branch of log(t — z) with the branch always to the left (right) then © (z) will
be analytic in the plane cut from —1to 1.

Example:

o) = LC={tltl=1}.

3
t(t—3)

Let D* denote the interior of the unit circle and D ~the exterior of the unit circle. Rewrite the
integral as

1 3 dt 1 1 1 dt
- =3 1-z - 2nm J =3 1) =2
Itl=4 ith=1
Now, by the Cauchy integral theorem
1 1 dt 1 .
Zr gl e watrous 3 2€b
t]=
=0,zeD"
]
while "
1 1 dt
—_—f =0, D,
2mi J t t—2 1 ‘
It]= =——z«zeD'
Thus we have that
1
q>(z)=-z___3.,zel§',
=J_,zeD’
z

The largest class of functions for the density function ¢ (t) in equation (2.1}, which
admits a fairly simple treatment is the class of Holder functions.

DEFINITION {2.2): Let C be a smooth.:ic or contour and ¢ (t) a given function defined on -~
Then ¢ (1) is said to satisfy a Holder condition on C if for every pair of points t; and t; on C

plt;) = dlt )| < Alt; ~ t, N, (2.2)



10

where A and A are positive constants. The constant A is called the Holder index. For brevity, we
say ¢{t) ¢ H(\) on C. If A =1, the condition {2.2) becomes the Lipschitz condition. Clearly if
A > 1, then ¢(t) is a constant on C. We thus will assume that 0 <A < 1.

Example: Show that if ¢, (t) € H(A,) and ¢, (t) € H(\;) then

(@) ¢,(t) + ¢,(t)
{b) ¢,(t). ¢,(t)

i @y (t)
— #0
{c) 20 fe(t) ]
are H(A) where A= min(\;, A\;).
Example: Show that
1
Pit) -'1——;'0<t< 2
=0 t=20

is continuous but not Holder in [0, %)

Example: Show that ¢{t) = | t | is Lipschitz but not differentiable in [~1, 1).

DEFINITION (2.3): The Cauchy-principal value of

b d
] x, a<c<b,
ax-—c;
is defined as
tim | - fc-e dx . dx ,
0 a C—X i X™C
its value is, of course, given by
d b-c¢
P fP—LX = qn ) (2.3)
8 x—¢ c-a

where we have introduced the symbol P to denote the Cauchy principal velue. We now consider
the Cauchy principal value of

fbe—-va<c<b.
8 x-c



n
THEOREM (2.2): If ¢(x) satisfies a Holder condition on (a,b), then

(b {x)dx
===

+a<c <U, exists as a Cauchy principal value.
x—c

PROOF: Formally we may write

b b -
gadx b ot-gle) o Pax
a x-c a X-C ax—c

Now the first integral exists in the ordinary sense, since

Ip(x) — ¢lc)l < Alx —cih, 0 <A<,

and so

lo0 -0t | A

X-c I Ix -¢|"\

Consequently if we take the Cauchy principal value for the second integral we have

poxldx  , élx)~¢lc)

a X —¢ a b

b -
dx+ 9 (elin(==>)-a<c<b, 2.4)

We now generalize this to a smooth arc C and so consider

P olr)dr

+ tnot an end point,
c T —t

where 7 and t are points on C. We draw a circle of radius €, center at t such that the circle
intersects C at two points t; and t, only (this can always be done if € is sufficiently small).
Denote that part of C within the circle by C .

DEFINITION (2.4): The Cauchy: principal value of the integral

&( 7)dr
c Tt
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15 detined as
¢l7)d7

T-1t

lim f

€+0c-c,

provided that this limit exists. In order to state a general theorem concerning such integrals we
first consider the case of ¢ (T) =10n C, i.e.

P —
c Tt

Now the primitive here is log{ 7 —t). So we must first give a rule for computing this function
for 7 on C. This can be done in a variety of ways, but a convenient one is to let log{ 7 — t) be
the value of a branch of log(z —t) on C, with a branch cut from z=1t to the point at infinity.

For definiteness we will adopt the convention that the cut is to the right of t, not intersecting
C, of course, see Figure 1.

Figure 1



13

Thus having chosen a definite branch we can write

dr b
~~~~~ =[toglr - titi + [loglr - 1)}, ,
t a 2

LI ¢
LY

a-t
=-log (-~-—--) +log (
b-t tz't

a-t
where a and b are the end points of C where by log (l__) we mean logla— 1) log(b -t} The
-t
t, -t
term log { --L-—} 1s interpreted in the same way We shali always use the notation that as C s
tz -t
traversed in the positive direction, the first or initial end point will be denoted by a and the
secona or final point by b Now

1 " b Hh -t
log{-—--~ y=ini-——1+i(8, - 0,),
tz—t tz—t

where 0, =arg{t, - 1) and 8,= arg{t; —t} The first term here is zero as t; and t are
equidistant from t As the curve at t is smooth it is also clear that

|lm(0| _02) =7n
€ -0

50 that

dr
Pf — =-logl-—-—=) +im (25
c7—t b t

" ais result enables us to establish the following theorem:

THEOREM (2.3): if ¢ ) satisfies a Hulder condition on a smooth arc C then the
following principal value integral

¢(r)dr ) .
-~—-—-— gxists, (t not an end point) and
c r-t
15 given by
{r)dr (7) — o(t) a—-t
aner ) o7 s Al ur+ (8] = log(-~——) +im] (26)
t 7T-t ¢c 17—t b-t
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a—t
where again Iog(-g—_--t-) 1s interpreted as log{a — t) ~ logl{p — t).

Example: Indicate the simplifications in formulas (2 5) and (2.6) if C is a contour,

We now turn our attention to the iimiting values of Cauchy integrals as z approaches
points on the contour We will need the foliowing Lemma

LEMMA (2.4): If the agensity function ¢{7) of a Cauchy integral satisfies a Holder condition on
a smooth arc C, and if the point t is not an end point, then tne functicn

olT) — ¢lt)

¥ (2) = [ ————dr
t c T-Z

15 continuous at t from the left and from the right of C in other words

() — o(t)
lim ¥, (2) =f ¢ ¢ dr =¥, ()
z~t c Tt

as z - t along any path, where [, {t) is continuous on C.

\Ve omit the proof of this Lemma and refer the readers to N. | Mushkelishvili'3), or F. D
Gakhov'4! for the details. The importance of this lemma is in establishing the following basic
theorem

THEOREM (2.5): Let Cbe 1 smoott  closed contour and ¢{r) a H(A) function on C, then the
Cauchy integral

1 olr)dr

P z) = 2mi {: T2

is continuous on C from the feft and also f »m the right.

PROOF: As usual we denote the interior of C by D* and the exterior of C by D™ We also
denote the limit process as z approaches t along a path in D* by z - t". Likewise if the path is
in D%, we write z ~ t*, Similarly we define

B () =lim & (2),
z~f

47 {t) =lim O (z).
22—t



We shall also use the following results, which we derived earlier,

1 dt

—_ = [ ] Ul
2mi fc t—2z Lze
=0,z¢ D,
while
P
—= g = %.te C.
2Zni ¢ Tt
Consider now the function
! ol7)—olr)
Y (2= 2 "; ™z o
On writing
1 Plr)dr olt) dr
Vo(z) = - .
t 2ni fc T~z 27 fc T—2z
we have
\ll: (t) =limy ¥, (2) = o (t)— ¢lt),
z-"
and
Yot = lim ¥, (z) = ¥ (2) =6~ (1),
tod &
and in addition

P _plrldr ¢l

V(1) = i)
c

27i Tt 2

15
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However by Lemma (2 .4)

W (1) =W, (1) =W, (1),

and so we have

P
TM=%ely+— [ (2.7a)
2mi c T—1

P
W =-%o(t)+—— f (2.7b)
27i c T~ t

Formulas (2.7} are generally referred to as the Plemelj formulas, aithough the name
Sokhotski is aiso used.

THEOREM (2.6): If C is a smooth arc and ¢(7) is Holder on C, such that ¢(a) = ¢(b) =0, the
formulas (2 7) stiil apply.

COROLLARY (2.7): if ¢la) and ¢(b)} are both nonzero, then the formulas {2.7) stili hold with
exception of these ends.

Notice that an equivalent form of these formulas, which we will be using is

&7 (1) - () =¢(1) (2 8a)

1
P+ ()= — [ olridr {2.8b)
m c T7-1

Consider now the behavior of a Cauchy integral near an end point. As before we suppose

Cisa smooth arc, ¢(t) a Holder function on C, including the end points. Now if ¢{a) #0 we
have

t-z



_ ola) [ ot ' 1 ¢lt) - ola) gt
i € t—z | 2m & t-2 '
2 o) v )
i i ~a at2h

-b ,
where by log (-f—_—a—) we mean log(z — b) — log(: — a} and

1 ¢(t) —¢la)
¥ (z) = dt.
a2 2mi fC t-2z '

Now, the density function of this last Cauchy integral vanishes at t = a and so by Theorem (2 6)
the Cauchy integral is continuous at a and hence b-unded. For the multi-valued log function we
mean a branch analytic in the plane cut along C. Thus near z = a we have

Mz) = L

log{z — a) + 4" (2) (2.9a}
27i

where D*(2) is analytic near a in the cut plane and continuous on C at a. We can effect L
splitting off of the term log(z — b) taking a branch of log(z - a) analytic in the plane cut aiong
C + C’, where C' is a line joining z = b and the point at infinity, not intersecting C, and a branch
of togl{z — b) analytic in the plane cut along C’

Note that while the branch 8f log(z —a) may be chosen arbitrarily the branch of log(z - )
must be chosen so that log (-iz-;-r)is the original iog function. The corresponding formuiafcr

z=h;

¢(b)
¢ (z) = ~—-—-log(z — b) + D "**(z) {(2.9b)
2mi

where 4" ") is analytic near b in the cut plane,

Example: Determine the end point behavior when
C={t:0€t<1)} nearz =0, if

(i) olt) = 1, {ii) it} = ¢, {iii) () = Int and () p(t) = 1%, -1 < 0 < 0.
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Now, we come to our development of the Riemann prablem for arcs We begin by
establ:shing some definitions and terminology (We wili generally adhere 10 that used in N. |.
Muskhetishvili's book!3') As before we will let C denote a smooth arc and S will denote  the
plane cut along C.

DEFINITION (2.5): A function 4(2) is said to be sectionally analytic in S if (1) it s analytic in
S. except possibly at the point at infinity, (ii) it is continuous on C from the left and from the
right, with the possible exception of ‘he end points and (iii) if near the end points it satisfies
the inequality

I(HZH<T «0€sa<,

z—-c|®

where M is a constant, and c denotes either end.
Now let ¢(t) be defined on C, then we have the for.owing definitions:

DEFINITION (2.6) :We say ¢(t) is Holder on C only if it is Holder at each point of C, including
the end points.

DEFINITION {2.7):¢(t) 1s Holder at each point of C except possibly at the and points where it
is such that we can write

(t-c%(t=9¢"1),0<a<,

where ¢1t) is Hbider on C, then ¢(t) is found to be of the class H"on C.

DEFINITION (2.8): If p(t) 1s H on C for arbitrarily sm*  x=¢ >0, ie.

(t-cl€ p(n),

1s Holder on C for every positive ¢, then ¢(t) is said to be of the class HE' onC.
Example :{t - c)'3, § real.and log(t - c) are H¢ functions,

DEFINITION (2.9): The Riemann problem for a smooth arc C will be to determine a
sectionally analytic function $(z) in S; of finite degree at infinity whose boundary values satisfy

' (1) = G(t) D™ (1) + g(t), teC, (2.10)
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where G{t) and g{t) are H{\) functions on C, and G(t) is non-vanishing onC . In general we
exclude the end points in equation {2.10}). The function G(t) is referred to as the coefficient of
the Riemann problem.

We first consider the auxiliary problem

G () =d7 () +o (1), teC,

where ¢(t) is Hclder on C. By the Plemelj formula (2.8a) a solution to this which vanishes at
infinity is

1 ¢(r)dr
Ph(z) = - {

2m

T—2

Clearly, if we require a solution of degree k at infinity then

1 (7)d7
P)=—— f "9‘1——"*’ P, (z)
2mi c 71—z

where P (z) is a polynomial of degree k. In fact, we can easily show that this is the only
sofution. Consider ¥ {z) = - ®,(z) where ¢y (z) is some other solution. Now W (z) w.ll be
analytic in the plane except possibly at the end points, which are now isolated singularities.
However ¥(z) is sectionally analytic and hence satzfies annequality of the kind

M
V) | <K —— 0<ca< 1,
iz~ck

near each end point and so these singularities must be removable singularities. Thus by
Liouville's theorem W (2) is a polynomial of degree k.

Example: Show that if 6(t) is H"on C the above solution is still valid. This uses the result
that if ¢(t) is H on C then near the end points

1 $(t)dt
bl = 2ni fc t-z
syt 01D e,

2i sinamr (z—¢)®

where we take the upper signs for ¢ = a, and the lower signs for ¢ = b. In addition the function
P (2) satisfies

C
fp**2) < —————q,.<a
fz-clto €
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near z = ¢ (See N. I. Mushelishvili'3}).

We may now proceed to the homogeneous Riemann problem, namely

&t () =G() d (1), teC (2.11)

Now as G(t) does not vanish on C, we may choose a value of log G(t}, which is continuous on
C. Having chosen a particular value we set

() = ——  —0a Gl (2.12)
2n ¢ t-2

Now by the Plemelj formula
r*(t) = (t) + log G(t), te C,
and so
(1) =Gyel M), tec

which shows that exp I['(z) satisfies the homogeneous condition (2.10). However, it may not be
sectionally analytic, because it may not have the correct end point behavior. I'(z) certainly has
the correct end point behavior but exponentiating it may destroy it.

Now by equation (2.9), near an end point

|
z)=% ——QQ-EEL)— log(z —¢y) + 'z (z)

2ni
and so
el(2) =z - )%t By eI‘;(z)l k=12 {2.13a)
where
log Glc

2nmi
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with the upper signs for ¢; = a and the lower signs for ¢, = b. In addition ['{ (z) is analytis in S
and bounded at z = a, while I} (z) is analytic in S and bounded at z =b. Thus if ay < —1 some
modification of exp I'(z) is necessary. We select integers A so that

“1<a, +A <0, k=12,

and now examine

X{z) = (2~ )M (z - b)he eT12) 2.14)

Clearly X(z) is sectionally analytic in S, and the fact that the expression (z—a)"l (z—b)kz
multiplying exp I'(z) is a rational function means that X(z) satisfies the boundary condition
{2.11). Consequently, X(z) is a solution of the homogeneous Riemann problem, in addition
however, it has, because of the right hand side of the inequality for A, i.e., ay + A, < 0, some
further important properties. Taking limiting values on the cut gives

XE(t) = (t—a)M (t- b)M2 exp[ % log G(1) + ()],

where

P log G(7)
27i fc Tt

I(t) = dr:

and so if we set

X(t) = (t—a)M (- b)M2 exp T'(1),

then

X*(t) = X(t)/ G(1),

and

X
\/G(t)

Now from the manner in which the A, were chosen it is evident that X(t} does not vanish
on C, and so X£(t) do not vanish on C. As X(z) does not vanish for z¢é C (except perhaps at
infinity) it follows that the solution X(z) is nonvanishing in the finite plane. Such a solution is
referred to as a canonical solution (clearly cX(z) where c is a non-zero constant is also a
canonical solution), A further property of a canonical solution is that every other solution can

Xt) =
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be expressed in terms of it.
Let J: (z) be any ci~< - solution then we have

d* () = G(t) ¢ (1), teC,
and

X t)=Gl{t) X (1), teC,

dividing the first of these equations by the second, which is permissible since x¥(t) and G(t) do
not vanish, yields

ol L )

X' (t) X"(v)

teC.

This implies however, that the function d{z)/X(z) is analytic in the entire plane and so by
Liouville's theorem is a polynomial. We may now state the following important theorem:

THEOREM (2.8): If X{z) is a canonical solution of the homogeneous Riemann problem (2.11)
then any other solution $(z), of finite degree at infinity can be written as

¢ (2) = X{2)P(2), (2.15)
where P(z) is a polynomial
Example: Show that X(t) and X%(t) are H*on C.
The non-homogéneou; Riemann problem (2.10) is readily solved once a canunical

solution of the corresponding homogeneous problem is known. We have on replacing G(t) by
X*{t)/X"(t) that the equation (2.10} can be written as

(e _ gt
X" X X

teC.

Thus, on using a familiar argument the solution of finite degree at infinity is seen to be

1
D) =iz e ¢ WO At

BN 1 reme ok p,’-‘:,l
2ni ¢ X (1) t-z T
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where P(z) is a polynomial.

As an example of these results let us consider the problem

& (1) =—d (1) + gl1), te C,

where C is any smooth arc. As G(t)=—1, we take log G(t)= in (any other value is
permissible). Thus,

_ 1 log G(t)
e

where log (_zz_:?b) means log(z—~b)—log(z — a).

Consequently,

el'(2) =4/ (2=Db)/(z - a).

Now recall from equation (2.13b) that

‘ log Glc, )
%P
1

BE -

2
So frcm the inequality —~ 1 <a, +A, <0, it follows that
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Hence a canonical solution is given by

X(2) = 1 z—-b= 1 .
A Y =

Exercise: Complete the solution if C= {t:—a<t<a }.

CHAPTER I
THE TRANSCEDENTAL EQUATIONS tan § = (o and § tan f = w.!5),
Consider the following Sturm-Liouville problem:
y"+dy =0,

yi0)=0
wy(1)-y{1)=0

where w is a real constant, which can arise in a variety of ways, for example in solving partial
differer tial equations using a variable-separable technique. Generally we are required to find all
values of \ (eigen-values) which yield non-trivial real solutions (eigen-functions) satisfying both
the differential equations and the boundary conditions. We usually begin by determining
whether or not there are any negative eigen-values and for this we set A= —a?. For this
example it is a simple matter to show that non-trivial solutions exist only if a is a root of the
equation

tanh a=wa. {3.1)

We will show later that this equation has real roots other than a=0, only if 0<w < 1. The
reader may demonstrate this by sketching the graph of tanh a and wa. If we now examine the
case A= 0 we see that this is an eigen-value only if w = 1. Turning then to the determination of
the positive eigen-values we set A = (. In a straightforward manner we see that the positive
eigen-values are the roots of

tan f=wp. (3.2)

We will show that this equation has infinitely many roots for all w. Again we suggest that the
reader demonstrate this by sketchig the graphs of tan § and w).

Now equations (3.1) and (3.2) are transcendentsl equations as they involve
transcendental functions of the argument, Aiternatively we can say that they are transcendental
equations because they are not algebraic equations. This requires, of course, the definition of an
slgebraic function, which is a function f(x) say, for which there exists a finite number n of
polynomials «;(x), not all zero, i = 1,2,. . . n, such that
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n .
Z abx)itxi)i=0.
l:

An algebraic equation then is one which can be written as f(x) =0, where f(x) is an algebraic
function.

Returning to equations (3.1) and (3.2) we note that any real solutions of (3.1) give purely
imaginary roots of (3.2) and so need only consider the determiriation of all the roots of (3.2).
Our first step in solving equation (3 2} will be to change the problem from that of solving an
equation possessing infinitely many roots to that of solving a system of equations each
possessing a finite number of roots. One reason for this is that the use of the argument principle
in the former case can hardly be expected to yield any useful information. The technique we
use for equation (3.2) will be to “split” the inverse tangent function into its branches. We first
make the substitution

i
ﬁ = — (33)
and deduce that

tan(tnT + —)= —n=0,12 .. (3.4)
w2z Y4

{Note that (3.3) requires w ¥ O, however, the case w = 0 can be solved immediately). On using
the identity

' 1 1+
tanh™ "¢ = ry Iog(—1—_—§_)'

We can write equation (3.4) as

1 z-1
1+—§—wz{Log I

+ 2nmi }= 0, {3.5)

where the symbol Log denotes the principal branch of the log function. Consequently the cut is
the interval [ — 1,1]. Thus we consider the problem of determining the roots, in the cut p'ane,
of equation (3.5). For this purpose we introduce the functions

1 z-1
= —_— , 3.6
Aolz) =1+ —- wz Logl———) (



and

A, (2) = A (2) +amiwz, (3.7)

We note the following obvious properties of these functions

Aptz) = Ay l-2), (3.8
Ag-2)=A_ (@) or A lz) =A_ (-2), (39)

and
Agl>®) =1 -w. (3.10)

The first two equations mean tnat if { is a root of equation {35) then sois - §, i.e. the
roots of equation (3.2) occur in equal and opposite paiss.

We first consider the case when n = 0, and so we apply the argument principle to A, (z) in
a domain bounded internally by a contour encircling the cut[ = 1,1] and externally by a circie
of radius R > > 1. The boundary values of A (z) on the cut are

1 1-1 1
e = — Y ;
Ag =1+ 2 wt In( 1+t)12 wtmi (3.11)

and so Aj(t) and A/ (t) are complex conjugates. Consequently, if we shrink the inner tonteur
into the cut the change in the argument of A,{z) around this contour will be twice the change
of the arguments of A, (t) in the interval [~ 1,1} (The positive direction is assumed in each
case). Now

Y wtr
arg A} (1) = tan~" { 1.
-t
1+%wtin (-1-—)
14t

In order to compute the change in argument of A (t) we need to know the behavior of

1-t
A jon[~1,1].

1
Dit)=1+ ~2~wtln( 1
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Now for w >0

i 1- t
~apll =w['l' In{ ! ) - 7 ]
Ct 2 1+¢ 1-t

db(t) > 0when - 1< t
dt {< OwhenD <t<

<0
1

Thus for t <0 the slope of D(t) is positive and for t> 0, the slope is negative and 50 a
sketch of D(t) for w > 0 is as in Figure 2.

'

]
l
|
|
|
|

Figure 2 — D(t) for ¢y > 0
Thus the change in argument for Ag (t), w > 0, will be 2m as shown in Figure 3.

4\0-1!/2

oy ts-] t=] =0 =0

o=~y \

Figure 3
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thus there 1s a change of 47 in the argument of A (z) around the cut. From equation
(3.10) we see that A_(z) » 1~ w,as |z | -~ <0 and so the change in argument on theoutercircle
tends to zero as R ~o. Thus for w >0 A, (z) has two zeros in the cut plane. (For w = 1 these
zeros occur at the point at infinity) Now for w <0 we observe that D(t) =2 1 and so A, (z) has
no zeros in the cut plane for w < 0. We can further reason by examining A,(z), and showing

/\9(2) = A,lz) that for x> 1 the zeros are real for 0 < w < 1and imagirzry for w>1 We are
now In a position to determine these two zeros. Consider the Riemann problem whose
coefficient is given by

(t)
G (t)=——_—t——'0< t<1 (3.12)

Now from the methods given in Chapter 2 a canonical solution for this problem is

X,(2) = 1 ] exp [, (z), w20 (3.13a)
where
Tylz) = —117 fol arg A, tdi - (3.13)
and where we have chosen arg A;(O) =0.
Consider now the function
Yz} = Aplal (3.14)

X, (—2)

We first compute the limiting values of ‘¥(z) in the interval (— 1,1). For t <0 we have

Al At)
‘]f+(t) = 0 = [s)

XE0 G-

__AAY-Y
Ag-X(—1)

On using the fact that
ANl-9=A" (1),



We can write

NA I A

() = :
Ao ()X, (1) Xo(- 1)
However
At
vt =
T x; 0

Consequently by our analytic continuation theorem W(z) is analytic for Rz < 0.
Fort>0
ALl

% (—t)
from which it follows, on using equation (3.12), that

¥ () =

W' {t) = G, (t) L),

i.e., ¥(z) is a solution of the homogeneous Riemann problem with coefficient G, (t). Clearly it

is of finite degree at infinity, consequently from theorem (2.8) we can write

¥(z) = X, (2)P(z)

where P(z) is a polynomial. From equations (3.8) and (3.14) we deduce what we sha!! call a

factorization of A, (z) in terms of X, (z):

Al2) = X2 X (=222 — 22 )1 ~ w),

where 1z, are the zeros of A,(z), w #* 1. (Recall X, (z) is non-vanishing in the plane cut from 0
to 1 on the real axis, except at infinity). Now equation (3.15) is an identity in z, i.e.,

Aol2)
(1 = W)X, (2)X, (~2)

5 =2+

2
(]
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SO We ¢an assign any convanient vawe 10 2. An zspiciaiiy simpte result follows if wesetz =0

.y i . dt
ro =i 1) Rexp { == f Arg Ay (B~ bw>0.
0

q -

Finaily from ecuation {3.3) we t:ns

1 1 1 ! - 3 dt 3 )
B,=t——(w-1"2exp {—— [ Agi,lt) 5 },w>0. {216

m LA

S50 exgoneriliat ferm nere s real (tis ewdent trat for 0 <w <1, s imaginary, wn:e
for w - 1,4, i3 reai

We now tu. 1 to the case n = i, noting from equaticn (3.9) that tins will simuitaneousiy
cover the cases n< - 1. On appiy'ng the argument grinciple o A,{z) around the cut in 3
marine: sim:.ar 1o thatused for A, (z), we find that arg A}, {t) increases Sy 27 as t proceeds from
=110 F Ly uiat arg :\;(U decreases by 7w as t proceeds trom 1 10 — 1 (Note from equation
(3.7) that .\, i ana A,,\U are NOT complex conjugates of each otner).

Thus there is no net cnange i ary A (z) around the cut. Tneie 15 a change around the
large circie nowever, due to the term N7 ' 2uuation {3.7). As R —~ > this term yieids a net
increase of 27 in the argunient of ny12), ana so A, (z) has precisely one zero in the cut plane,
$3v z,,. i n.s fesuir aoids for all real values of w. From equation (3.9) it is clear that ~z,_ ‘sz
zero of A ._{z), whicn suggests tnat we conzider the even function

Q2= A @A (3.17)

We proceed as befc: 2 to soive the homogeneous Riemann problem whose coefficient is given Ly

G (:)-—g“—(ﬂ— 0< t< 1 (3.18)
" Q.1 ' '

The canonical solution fc: this problem

X (2)=expI,(2) (3.19a)

where

i

1 — .
Fn(z)-—ﬂ—j;argﬂn(t) T2 (3.19b)
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with arg Q;(O) = 0. Using the same techniques for ,(z) as we used for ¥(z} we show that
,(z)/X,, (- 2) is a solution of the Riemann problem with coefficient G, (t) given by equation
(3.18) and so the factorization of §2,(z) in terms of X, (z) takes the form

Q,(2) = X (2)X (—2)2? - 22 )n?nP e’ (3.20)

which we can immediately solve for z,,. If we again set z = 0 in equation (3.20) we deduce that

z, =i[nmw X, (007},

and so from equation (3.3)
| dt
B, =tnm exp{—ﬂ— fo arg (1) ry Fon=12,. . (ee<w <o), (3.21)
where from equatiors (3.7), (3.11) and (3.17)

) = [AYH]? +n?rlw?ed.

Clearly the f,, n > 1, are all real. Figure 4-a gives a graphical display of these zeros for
0<w < 1 and figure 4-b for w > 1

|
l
1
|
I
T
|
|
|
|
!

— ——— . e, i eyt et bt e i

Figure 4a — The §, for 0 <w {1
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Figure 4b — The 8 for w > 1.

Example: Are the Riemann coefficients given by equations (3.12) and (3.18) Holder on
[0,1]? If not, can our expressions for the canonical solutions be justified?

, Example: Carry out the details on the following method of determining the change in Arg .
A, {t), which is valid for complex w. Set w = 1/{ and consider

t. 7t
)2}

1 1-
A* t)=¢t- -—tin ‘.-.-_.
§AG =8~ { 5 1t

Let C derote the curve determined by

I 1<t
1+t)' 2' t !

1
x:y=-~é~ tin{
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see Figure {5) {The arrows denote t increasing).

Figure 5 — The At} = 0 curve

Consequentely for { € S* the change in arg A'o(t) is 2n, while for { € S ~the change is
zero.

We now turn our attention to the determination of the roots of the equation

Btan = w, w real. (3.22)

We leave the reader to pose a Sturm-Liouville problem for which (3.22) serves to determine the
eigen-values. In much the same manner as we derived equation {3.5) the substitution

B=iwz (323)
leads to

2~ = {LogtE =1yt 2inn =0, (3.24)
W z+ 1
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from which we can determine theroois. We introduce the functions

i 1 -1
Aole) =z {2z~ Logt s 1, (3.25)
i
zA,(2) = A (2) - — mmzs (3.26)
[ ]
and
Q,(2) = A, @A -pl2). (3.27)

The boundary values of these functions on the cut are given by

1 1—t._ in
+ = —_—— F——}

A=t {t Ly L } (3.28)

+ 1 . inm
Ai(y = S AZ(n- - (3.29)

and

. 2.2

Qi = (AXwp + 4 ”, L (3aidd)

We now wish to apply the argument principle in turn to f\o (z} and f\n(z), n >1. From
equation (3.28) '

Arg AL(t) = Argt+ Arg A%(1),

where

PURUUR BN bk SRS
A=t 2w|n(1+t) 2w

and so to determine the change in arg Ao(z) around the cut we need to examine

—_n
2w
arg X'(t) = tan™! {——1———1_:t_] '
t-5-In——



which in turn depends on the behavior of

] 1-t
Bly=t— ?‘:’ In("i—+—t'—‘)'
Now
dt w(l—1t?)

and so for w > 0, D(t) is an increasing function passing through the origin. For w < 0 howerer,
the situation is more complicated. Clearly D(t) I as stationary points at

1
t=t/1t—
w

so the behavior of D(t) will depend on whether — 1 <w <0, or w<- 1. Figure 8 gives
sketches of the various cases.

=1<w<o

Figure 8 — Behavior of D(t) for «y <0
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In either case the net change in arg A*(t) is 7, and as A% (t! are complex conjugates the
net change in arg A™(t) is aiso 7. However, the change in arg t around the cut is-2r so that
there is no net change in arg A (z) around the cut. The change around the large circle is clearly
4r as (A (z)/2%) = 1 when | 2 |> =, s0 that A (2) has two zeros * z,, say, in the cut plane.

The reasoning for A, (2) makes use of the behavior of D(t), and indicates that A, (2),
n =1 kas precisely one zero in the cut plane. We now are in a position to determine the
factorizations of A, (2) and 2, (). Now for A (2) the appropriate Riemann coefficient is

At
G, (0 ol <<, (3.31)
A

but to be consistent with our choice of taking the principal value of the argument it lS
convenient to consider the cases w <0 and w>0 separamly Now for w < 0, Arg A, (0) =

and arg Ay (1) =7, while for w>Ca¢ Ao(m—-; and arg A (1) = 0. Thusbvtheraultsof
chapter 2 we can write.

1 1 e dt
X (2) = e — foar ) —}w<o, 3.32
olt)=——ep {— fargh (0 =} w<0 (3.32a)

1 1 dr
Xol2)=——exp {— | larg Ait) — 0. {3.32b)

We can combine these results however, if we make use of the identity

z 11 dt
/2 = - — »
(o) =ewi- 5 S =7}
deriving
! T * ) 633
X,(z) = exp {— [I‘\m/\+ () r— sgniw)}]——3)., &
° Vi(z- ° 2 t-z
where it is understood that
l-1r/2, w <0,

arg A, 0)= L-nlz, w >0.
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The factorization for A (z) now takes the form
Al2) =222} - 22X (2) o (-2
If we set z = 0, after first dividing the equation by z we deduce

1-_ T _2 * K at
2 = 2wexp{ - J:[arg/\o(t)+ 2 sgn(w)] . },

and so from equation (3.23)

1 1 T dt
fo= 2 (Z-r--(":’-)'/z exp {-— f [arg A, (1) + 5 sgn(w)]—} (3.34)
2 m 0 t

This indicates that f, is real if w > 0, and purely imaginary if w <0, a resuit we could have
deduced by other means.

The factorization for £ (2), n > 1, is

Q.(2) = 2 - 22)X,, (21X, (-2),

where

1 1 - dt
X,(2)=exp {— [ argp(th—}
T 0 t—-2

On setring z = 0 here, we find

’ 2 ! dt
1= an? - il LR
2 ==7—{4n’ — 1) exp{~- fc arg 7, (t) =~ }

and so

1
Bo=t %— (4n? = 1)%2 exp {——1:- J arg{Tft) -c:-t- } (3.35)
0
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which is clearly real for all w. In figure 7 we give a graphical display of these zeros.

\

v

- 8s

: |
NN
)
/] ;
| e/ o

|

1/ |
|
'I
I

|

|
|

— —— —— T
— —— ——— —— o] —— — ——

Figure 7a — Zeros of L tan 8 = w, w > 0.

¥

Figure 7b — Zeros of  tan # = w, w < 0.
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Example: Apply the argument principle to /\o(z) for complex values of w, in the manner
used for A (2).

CHAPTER IV
The Matrix Riemann Problem
This chapter is essentially the same as in Muskhelishvili's book (3],

Notation. As usual C will denote a simple contour, D* the interior of C and O~ the exterior, as
depicted in the figure

A

y -

‘I{z) will now denote an n-vector i.e.

-
P(z2) = @, (2) 4.1)

d’z (z)

([wn (2)

When a vector or a matrix is said to be Holder on C we shall mean that each component is
Holder on C. Likewise d{z) will be called sectionally analytic if each component is sectionally
analytic, The principal part of ‘) at oo will be denoted hy

{4.2)

~

~
yiz)=| v, (2)
71 (2)

Yn M_j
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where each 7, is a polynomial.

The Cauchy Integral

Let ¢(t) be a vector, Holder on C and consider

1 olr)
b2)=— f
2ni ¢ 1T -2

dr,

1 )
b l2)=—v f L. LU
2ni

cC 72

1 {7}
oy =— 1 B4
2ric vz
etc.
It is obvious that the Plemelj formulas yield
t 1 )
¢*(t)=‘%) oy S -M_T dr,
m ¢ 7t (4.3)
-¢(t 1 )
=20, 1 o,
2mi ¢ 11t

By Cauchy’s integral formulas it is also obvious that if ®(z) is analytic in D" and continuous on
C, then

1 P*
b= Dy s oD, |
2m e 712 :

(4.4)

| & (r
0=~— f —(—-"drzeD‘.
27 ¢ T7-12

THEOREM (4.1). The last formula of (4.4) is a necessary and sufficient condition for a
continuous function to be the limiting value of a function analytic in D",
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PROOF. The necessity is simply the above. To prove the sufficiency let

Fla)= — f - D"
() 2ri J T— 2 ¢
Clearly F(z) is analytic in D'. By the Plemelj formula
F' (1) ~ F(t) = " (1).

But F~/t)=0. Q.E.D. An equivalent form is

1 1 a1

0=—— ") + — [ ——dr- (4.5)
y P LT

This may be seen as it is evident that (4.5) follows from (4.4). If (4.5) is true then

1 ¢
glz) = — f o)
2ni ¢

d‘rzeD‘

has zero limiting values on C, and hence must be zero in D™, i.e. g{z) = 0. Also by Cauchy’s
Theorem

pu—

LRI 4
y(z) - ®(2) 7 fc T_zd‘r zeD’
{4.6)
1 &= (7
Y(2)= szc - dT zeD',

for a function analytic in D except for a pole at oo,

THEOREM {4.2). The last equation of (4.8) is a necessary and sufficient condition for a
continuous function to be the limiting value of a function analytic in D™, It is equivalent to

1 ir)
s T

2ni ¢ 17—t

dr - (4.7)

1
=-—Q)' +
(t) 2 (t)

PROOF. Similar to the above

The Homogenous Riemann Problem

Let G(t) be a n x n matrix which is Htlder on a given smoath contour C, and also is such
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that

onC

IG(1) #0,

DEFINITION (4.1). The Riemann problem will be to determine a sectionally anaiytic function

< (z), such that

and so

() =Gt (Y onC,

=Gy Pi+ Gyy P+ .

Gy G2
= G21 Gaz
Gn1 Gn2
L
P
@
¢'

=Gy P71+ Gy P34 .

We shall refer to this as problem |, i.e.

Gin |

G,

n

i =61y ¢7+ Gy P2+

¢ (1) = G(t) @7 (v),

b3
P3|,

3

.+ Gqp P,
 + G ¥

+ Gy 07,

(4.8)

We first seek an equivalent statement of |, Oneis the foilowing. To determine a ® ~{t), i:0icar

on C such that
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(1) 4 (t) is the boundary value of d{z) analytic in D™, with a principal part ¥(z) at .
(2) 4* (%) determined from | is the boundary value of a function d{z) analytic in D™,

Now an equivalent form of (1), by Theorem (4.2), is

1 1 &7(7)
—d- = ' (4.9a)
. &) + o { — dr =7(1)

and an equivalent form of {2) is, by Theorem (4 .3),

0. (4.9b)

1 1 G{r) (1)
—_— g~ - d =
2 Gty 7 {t) + o fc — T

Thus problem | is equivalent to determining a vector ¢ (') wit. siinulianeously satisfies (4.9a)
and (4.9b). If we multiply (4.9b) by G™* (t) we derive

1 1 G H{1)G(7)
L, $~({r)dr = 0.
2 4 m+21ri fc T-1 (7} dr

On subiracting this from (4.9a) we have

1 [G“‘ {IG(7) 1]
2mi fc T—t

¢o{t) - & (7)dT="7(t). (4.10)
We note two things here about (4.10)

(1) It is not necessarily equivalent to (4.9),

{2) 1t is quasi-regular Fredholm equation, since

—l — —
G 7<t_)t-‘:t(ﬂ '=G-1(t,_[_c‘lfrl:(‘%‘_‘_’]., (4.11)

and as G is Holder this kernel is integrable. For this reason we will sometimes refer to (4.10) as
HF).

Now with regard to (1) we ask the following questions: (i) when is (4.10) soluble? ({ii)
when is a solution to (4.1 a solution to (4.9)?

We note that every continuous solution of (4.10) is Hdlder, by (4.11).
The Equivalence of |(F) and Problem |

Here we assume 17 (t) is a solution of I{F) and we wish to show it is a solution of I,
Consider the vector



b
\lf(z)=——1—. i) ) dr~7(z),z¢D" (4.12a)
2 c 12
L)
Ly SO en 14.12b)
2m ¢ T—-2

Now

(1)
T-t

D g —147- )+—1—— dr—7(t)
(th= 2 (t am j; T—7

-Gid(t) 1 Gind-(n
+ dr-

Yin=—, mi e Tt

Clearly ¥ (z) vanishes at <=, and so on writing {4.10) in the form

) =Gy ¥(1), I
which we term the accompanying problem of |, we have:
LEMMA 4.3

If probtem 1 has only trivial solutions which vanish at oo, then each solution of I(F) gives
a solution of |

PROOF. If ¥(z) =0 then (4.12) implies that $~ (t) satisfies I, as ¥*(t) = ¥~ (t) = 0 and so the
pair {4.9) is satisfied.

We now introduce the idea of a problem and a corresponding Fredholm equation. Clearly
I(F) is the corresponding Fredholm equation to problem |. For problem || we rewrite

¥t =G(t) V(1)

and so as we are seeking solutions which vanish at °«© we have from (4.6) and (4.7) that

¥ (t) 1 v (7)

+
0 2 27 ¢ T-t

d7

Git) ¥ (1) R 1 f G(T)¥'(7) dr
2 m ¢ Tt

0=
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and so

1 . GG -

Vit + — [ ¥*r)d7T- 0 (4.13)
2ni € Tt
Recapping then we have
9 (1) = Glt) b (v), l
1 -1 -
‘b’(t)""_‘f _@_Mq)‘(ﬂdfz7(t), I{F)
2ni ¢ -t
) =G (W (1), I
-1 _
1 (G ()G ”\IJ’(T)dT = 0. IHF)

Vi o S

The Solubility of |

Now introduce the following problems with their corresponding Fredholm equations
¢ = G e, i

1. (GG ) -1

)~ ——— 15 =0, ¥ F)
b= — ¢ (r)dr = O (
YY) = GV (1), "
e
\lr"(t)+»1-:f GG 1) =D v e 0. 11(F)
21 ¢ T—1

é is the transpose of G. Problem |’ is the associate problem to |. We also observe that |’ is the
accompanying problem to 11". Thus we have:

LEMMA (4.4). If problem I’ has only trivial solutions which vanish at o then every solution of
the Fredholm equation corresponding to problem 1)’ is a solution of 11’

PROOF. By Lemma (4.3)

THEOREM (4.5). If problem! is such that neither its accompanying nor its associate
problems [1 and I’ have non-trivial solutions vanishing at ¢o, then the Fredholm equation
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corresponding to problem | (4,10) is soluble for any y(t) and every solution of it is a solution of
problem 1.

PROOF. By the above lemmas there exists $’(t) which is the boundary value of an analytic

function. {G’(t) =0is one} Now a necessary and sufficient condition for the solubility of the
Fredholm equation corresponding to | is

Joyw¥ode= [ ¥ endie o erd
=0'

Thisisa generai :zation of a Fredholm theorem as I1'(F) is the adjoint of I(F) But, as we have
stated the \It* are boundary values of a function analytic in D*, the v, are polynomials and so

‘7,(t)‘1’ (t) are boundary values of a function analytic in D* and so Cauchy’s theorem assures us
that the condition holds Q.E D

The Solution of | when Theorem (4,5) Applies

We restrict attention to solutions which are bounded at oo, Now the theorem guarantees
that solutions of 1(F} exist no matter what values we attach to y. We thus write that

- — -

| 1
. _ 1
(0= | ¢ | isasoltion when y(t) = |
]
(s 1 0 0
2
1
$- 0
Similarly
2 -2 2 ]
¢ = | P (0] s asolution when y(t) = | O
r
b (1) !
0
2-
(Pn(t) L.o

n n
etc. up to & ~(t) and (1), Clearly then the general solution of I(F) is

n+1

3 m
¢7(t)=y, P(1) + «b W+y, 49 ® O+ . +y,P7(1) {4.14)
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n 4+ m
Where 4~ (t)...d7 (1) are all the linearly mdependent solutions to the homogeneou-

=quat|on corresponding to I(F) |e Y= 0 and the 'y are constants. We note that if d ; (1) and

t!’ (t) are solutions when y = 7 then ¢l y (0 —*Lz (t) satisfies the homogeneous equation antl
n+ 1 m

spis 7 (t) to A (1.

. Also by the theorem, if we denote the solution to the Riemann problem corresponding

1
to d 7(t) by d 'z!, t:ien the general solution to | is

1 n n+1

m
Uz) =y, )+ +y, P +y,,y & @D+ .4y, T2 (4.15)
It is clear that

(]vk (=) :5“(. {(4.16)

General Case.

LEMMA (4.6). Let's denote the number of linearly independet solutions of the homogeneous
equation |{F} and let k be the order of any solution at =, then k <s.

PROOF. Let 4 (z) have a zero of order k at = i.e., near =,

8 B 41
d(z) = — +
zk 2% + 1

Now zd (z), 2 d:(z) ... z% ~ 1 q (z) are thus solutions of | which vanish at = which will yield
solutions td = {t), t* &7t), ...tk ~1d"(t) to ){F) homogeneous. Now these are clearly
linearly independent, whence k < s.

LEMMA (4.7). An integer r > 0 exists such that the order of the zero of any solution to |l
and I'at -~ does not exceed r

PROOF. By Lemma (4 6), s's exists for ti and |’ separately and so we simply take the larger.

To determine the solution of | of degree at = not exceading r.
Consider the problem

* * .

d* (t) = (t-a)" G(t) 4.~ {t}, |
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where a is in D*. Thus G(t) = (t - a)'G(t) and we suppose we are seeking solutions bounded at
>. Now the accompanying problem is

. Gy s y
) = =Y G-, 1
Vi =

and the associate problem is

~

7, Gl t
gt ) = W E(1).

* *

Now if either 11 or I’ has a solution vanishing at = then

Viz) = ¥(2), z¢ D"
ALY . 2eD-
and (z~af

P (z) = ([)(z)" zeD’

e z) -
:(-z—*;?' zeD

are clearly solutions or 11 and I’ respectively, which vanish at = with an order larger than r,

which contradicts the original statement about r. Consequently, by Theorem (4.5) I posse
solutions which are bounded at . Then

&(z) = ¢(2), zeD",
= (z-a)" ¢(2), zeD’,
is clearly then a solution of degree r or less of |,

We thus have the following theorem.

THEOREM (4.7),
Every solution of | of degree at most r at o, where r is sufficiently large, is given by
1 nt T2 (4.17)
(['(Z) :71()(z)+'_'+7n(?v(z)+7n+1 q» (Z)+...+‘)‘m 21, .
1 n
where P (z}, ., @ (z) satisfy

_ _ B (4.18)
'z'r_'lmz rmﬂ(Z)*ﬁy__@
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n+l m

and ¢ (z)...®d(z) are solutions of degree less than r at 2, Clearly m depends on r.
The Homogeneous Riemann Problem and its General Solution

We will now assume that an integer r satisfying Lemma 4.7 has been assigned, and also
now it has been established in Theorem {4.7) that all solutions of degree of at most r at e, are
of the form (4.17).
LEMMA (4.8)

1 2
n
The solutions ¢ (z), @ (z). . . P (z) are not connected by any relations of the form

1 2 n
Q,(21P(2) + Qy(2) N2y + .. +Q,(2)™(2) = 0, (4.19)

where the Q, (z),. .. Q, (2} are polynomials, not all identically zero.
PROOF.

Now (4.19) is equivalent to the n equations

2
oﬁﬂ$dﬂ+oﬂa¢du+.“+oﬂu&au)=o,

Now if polynomials Q,{z)... Q,(z) could be found so that (4.19) were true then necessarily
the determinant

iB‘pa(z) |

would have to be identically zero which is clearly not so from (4.18)
The Construction of a Fundamental or Canonical Solution
Among the solutions in (4,17) there will be some with lowest degree at oo,
[This is so because the order of the zero at o= is finite, see lemma (4.6)]. Denote this degree by
~ Ky and a solution having this degree by ;((z). Note that if )z(z) vanighes at e x, .- 0, and if

X(z) has apoleat = x; <O0.

Now denote by —k, the lowest degree of those solutions which are not related to )'((z) by
any relation of the form

1
P, (2)x(2)
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where P;{z) is a polynomial. Let x(z) be one of these solutions Clearly &, = &,
1.e. K> < Ky

H
Denote by — k; the lowest degree of thase solutions which are not related to x{z) and
x{z) by any relation of the form

H 2
Py (2)x(z) + P;(z)xl{2)
3
where P,(z) and P,(z) are polynomials Let x(z) be one of these solutions. Ciearly
“K1Z " Ky Z K, ie
K3< Ky <K,

n
To demor}strate ttiat this can be done until some solution x(z} is obtained, suppose that k
solutions x(z),. . . X{z} have been constructed in this way and assume that all other solutions in
{4.17) are expressible in the form

k
P, {zxiz) + P, @ix(z) + . +A (2)x(2)

n
Consequently the solutions ‘i)(z) . $(z) could be written in this form, i.e. by successive
elimination 1t is clear thatnthls would imply a relation of the form (4 19} which is impossible
Thus n solutions )'((z),. . . X{z) can be constructed so that they are not related by polynomials
with degrees —k;, ~K3 ...~ K, such that

Ky 2K; 2Ky 2Ky ... 2K

We will prove later that the process cannot be continued fur ther
LEMMA (4.9)

Any solution of degree less than — V.k can be represented in the form

1
xiz) = Py(2ixiz) +.  +Pyy (2% N2,
PROOF. Assume the contrary. Thus a solution of degree less thankk would exist not of the
above form. This contradicts our method of selection however, as x(z) is supposed to be the
solution of jowest degree not representable in the above form.

THEOREM (4.10). The expression

1 2 n
x(2) = apxl2) + a;xlz) +. . +a,x(2), (4.20}
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where the a, are constants, not all zero, ic non-vanishing in the finite plane.

PROOF. We prove the result by contradiction and so assume that:

Case (i) x(z) vanishes at z =c not on C. As x{z) is analytic at ¢ it has an integer order zero so
clearly we can write

x{z) = (z—c)d(2),

where ¢ (2) is analytic at z = ¢. Now clearly ¥ (z) is a solution of | as

{t) = (t—c)d*(t),
x (1) = (t=c)d ).
However X (1) = Glt)x (1),

= ¢*(t) = G{td " (1).

X
Let a, be the last coefficient which is non-zero. Thus the degree of d(z) is less than x(z) and so
by Lemma (4.9) can be expressed as

k —1
D(2) = PyaIXiD) +... +P _1(2) x 12),
whilst from (4.20)

1 2 k
(z—c)d(z) = ayxl2) +asx(z) +...+a.xlz).
These two equations however imply a relation

1 1 .k
Piiz)x(z) + B (2)x(2) +... P, (2) x(2) =0,

which contradicts the properties of the )'c(z).

Case (ii). Aisume x(z) vanishes on C, i.e. there is a point ¢ on C such that x*(c) = x"(c) =0.
Note that if one of these vanishes the other does as G(t) is non-singular. Consider now

bz =22,
Z—C
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Clearly ¢4 (2) is a sectionally analytic function with continuous values on C except possibly at
z=c. Now as x}{t) are Hilder on C

o (1)
t
4+ (t
® Jt-cl®
osa<
bt = i
| t—c|®

o
where ®X(t) are continuous, and so equations (4.4), (4.6) will hold and so will equations (4 5)
and (4.7), except possibly at t=c. Consequently @ (t) will satisfy the I(F) for some 7(t)
except possibly at t=c. That is

1 G G —1

) - — [ ————y =
X o {: — x~{r)dr = (1),
and
1 G 1 GIr) -
() — [ ——————— I (r)d7 = 7, (1), t #c.
27 °C T =1

However both these equations have the same kerne), viz.,

G NGIr -1 K(ur)

, 0Ou<it,
T-t lr-tiu K

where K(t,7 ) is continuous, and thus they have the same resolvent R{t,7 ) which is also of the
form

J(t,
Rit, 1) = ‘_‘ft___.f;)_';l, o<u<t,

and so

1
d)‘ = —
(t = y(1) +21ri fc R{t, 7}y, (7)dr,
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except possibly at t=c. But the R.H.S. of this equation is bounded for all t € C, consequently
d~(c) is bounded. This implies that a = 0 and hence ¢ ~(t) is continuous at ¢ and hence Holder
at ¢ and hence on C. {This requires defining ¢~ {¢) = lim ® ™ (1)). Thus P (z) is a solution of | and
so the argument of case (i) now applies. e

1 2 n
We now have the following properties for the x(z), x{z},. . . x{z):

Property 1.

Alz) = det | ga |

does not vanish anywhere in the finite part of the plane. If it did vanish at z = ¢ then the system

1 2, n _
aixle) + a;xlc) ... +apxlc) = 0

would have a non-trivial solution for the a;, which contradicts (4.10).

Property 2.

Set

)€°(Z) = z"Bg (z), B=1,2,...n),

then

polz) = det! g;(z)'

is non-zero is non-zero and finite at =, It is clear that A’ (=) is finite. To show that it is
non-zero suppose it is. This implies that non-trivial a; can be found so that

ay %! )l((z)+a;z"‘2 X(z)+ ...+ a,2%n X(2)

1
=0(—),
z
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as z > oo, Let a, be the last non-zero a. Then

xlz) = a;z%1 ~Kyg )2(2) +...+ak§(z)
=0z, )

Consequently x{z) can be represented (Lemma (4.9)) by
1 k—1
x (z) = P,x(z)+....+Pk_1x(z),
By equating these two expressions for x(z) we have

k Kk
x(2)= Q, (@xlz) + Q,(Dx(2) +. . +Q(2)x(2),
which is not possible. (t follows from property 2 that any expression of the form

1 2
Py (2)x(2) +P3 (2)x(2) +. .. + P, (2)x(2)

has a degree at infinity equal to the degree of those terms which have the highest degree. i.e.
max.(m; ~Kk;, m; —Kz,..., m, —k,), thus the terms of higher degree cannot cancel.
Substituting for x(z) gives

xiz) = 7K1 Py )Xz} + ... +2Kn P_(2)x%{2),

and so near oo

)((z)'\azm’“l F)l(°(-) +..+zm"—“n ;‘l’(')

n
X0 (=) X2~
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Suppose that the highest order terms are z"' ! and 22 " %2 and that they cancel. This
implies however that column 1 and column 2 are linearly dependent which is not so as

det | xleo) | #0.

Any n solutions of problem | having properties 1 and 2 will be called a fundamental or
canonical system of solutions.

The matrix

1 2 n

Xiz)= [ x, x, --- X,
1t 2 n
X, X, - X,
1 2 n
Xn Xn - -+ Xn

will be called the fundamental or canonical matrix for |.

Also as

X(t) = G()X~(t),

it follows that

Git) = X[ XT0]™!, teC. (4.21)
THEOREM (4.11) All solutions of | can be expressed as

1 2
$(2) = Py (2)Xiz) + P, (2)X(z) +.. . P, (2)X(2),

iz) = X(z)P(z}),



where

P(z) = |P, (zﬂ
P; (Z)

Py(2)
L p.
is a vector of polynonmats

PROOF. If & (z) is a solution, then

1) = G(t)d (1), teC.

From (4.2i) this is

[X (O] @) = [X (] (1),

1.e. [ X(z)]~! dAz) is analytic in the entire plane and of finite degree at  and so

[X2)] '@ (2) = P(z), etc.

Conversely it is also clear that
®(2) = X(z)P(2)
is a solution of |

COROLLARY A solution matrix X(z) possessing only property 1 is sufficient for this theorem,
as the only fact used is that X(z) is non-singular in the finite part of the plane.

The integers k,, K3, k3 . - K, are called the component or partial indices of | and their
sum

K=K tKka+t. ..+tk,

the index or total index.
THEOREM (4.12). The component indices are the same for all fundamental systems.

PROOF. Let )'((z) and ¢(z) denote two different fundamental systems. Then by the above
theorem (4.11) we can write

' 1 2 n
xlz) = P”;'(z) + P,zg'(z) +. .+ Pinf(z), (a)
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and

1 2
tz) = Qqxiz) + Quxi) + . +Q, xl2), (b)

where the P, and Q!i are polynomials. Now assume that the component indices for

i
the )'((z) have been ordered so that x;, >k;=...2«k, and similarly for the {(2)
with A] ?Az 2. . >An.

Suppose that k; =k =. .. =K, 2 Kyeq and Ay = Ay = ... =g > Agyq

Now degree of the R.H.S. of (a) > — A,

ie - K -:”"Al,

and the degree of the R.H.S. of [b) = —A,,

—)‘l = —Ki,

A

K-

Now we need to show k = £ from (b)

i 1 2 k
§lz) = ayxlz) + axxlz) +... +a.x(z),

for i=1,2,...%, and the 3, are constants. Suppose £ > k we could successively eliminate the
x{z)i=1,.. .k toderive

biha) + b + .. +bgtn = 0,
which is clearly impossible. Similarly k > £ and so k = £. The argument proceeds in this manner.
THEOREM (4.13) The total index can be determined from G(t) directly.
PROOF. Consider the scalar problem

d*(t) = [detG(t) Jd~ (1), teC.
Clearly

dz) = Alz)
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is a solution to this and

[log &"(t)])e =[logdetG(t)]c + [log A™(t)]c-

Now Afz) is analytic and non-2ero in D* + C and so

[log &(t)]g = O.

Furthermore A(z) is analytic and non-zero in D~ except possibly at o where it has the form

AO
Alz) = (2)

and so

[log A" (1)) = —2mik.
Thus

1
: = —— I G .
' > [log det G(t})]o

THEOREM (4.14). It X(2) is a fundamental matrix for l.i.e,

P 1) = GOP{Y),

then [)'i(z)]'l is a canonical matrix for I’, the associate problem, i.e.

VY = [GI)]* T ().

PROOF. From

X*Ht) = G(tIX"(t)

we easily derive

[X*0]! = [G()] ™ (X (0]

(4 22)
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and so it is a solution. To establish it as a canonical solution we need:

Property 1. The determinant is non-vanishing in the finite plane. This is immediate, however,
from

det[X(2)]! = LI 0

A(2)
Property 2. Write
- B
[X(z2) ! = [§al2)]
and so B
by (2)
%’a(z)= —
A (2)

B
where gatz) is the co-factor of the element X, in the determinant Afz). Consequently

g B
a'Z A°(z) z

B
ar«i so the degree of {(z) at infinity is exactly Kg- Also

B

1
-K = e ———
det | z7K8 £, (2)] Aolz]
which is non-zero at «=. Q.E.D.
Corollary. If k,, 14 ... K, are the component indices of G(t) then —k,, - K3,...~ K, are the

component indices of [G(t)] "'

Examples. When the G(t} is a rational matrix, we can write

6.(1) = P, ()
T gl
where q;;(t) does not vanish on C.
Write
P(t
oo 2.

r(t)
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where P(t) is a matrix of polynomials and r(t) is a scalar polynomial. Further factor r{t) as

r{t) = ry(tr_{1)
where r (t) is a polynomial with no zeros inD "

r— (t) is a palynomial with no zeros inD~.

Thus the problem
(1) = Gt)d (1) (i)
becomes
¥ t) = Pt (1) (ii)
where
Vi(z) = ry(2)¥(2), zeD"-
1 (i)
=-—¢q(z),ze D"
r_(z)

Now we know that det G(t) # 0 on C and so det P(t) # 0 on C For the moment assume that
detP#0in D*, then

k k
Y (z) =P(z)y, ze D,

k k
Vi(z)=v, zeD,
where
K ~ -
7=|0
0
1
o| <k
D—l

is a fundamental solution to (ii}. Note as det P# 0 in D* (ii) has a zero total index



Consequently by (iii}

k 1 Kk
b (z) = e Plz)y, z€eD
k _
= r_(z)y, zeD
represents a fundamental solution of (i).
Ex. .1
Gn=1110
010
001

Here r(t) = ry{t) = r_(t) = 1, i.e. G(t} = P(1),

X{z}=1110 1,z € D,
010

001
and
X(zy= 1100 |,z e D",
J10
001
Note xk =0.
Ex. (2}
Git)=}t 00
0t-10
,0 0t-2

Again r4.(t) =r_(t) = 1 and P(t) = G(t). However C cannot contain 0,1,2.
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In this case

and

Ex 3.

and so

with

X(z) = -z 00 ‘,zeD’,
0z2-10

LO

X{z) = rl

[ -

t+2

]

Glt)

—————

il

(t+1)(t+2)

0
c

-

0 z-2

|
Y -
,2e€D

oo
1 0
01

tv+1
t+2

(t= 1+ 1) e+ Dit+ D (e + 1)

) e+ 1)(t+2) 0

0 (t— 1t 2 (t+ 1)t +2)

r(t) = (t+ 1){t+2)

detP=t2(t—1(t+ 1) {ts7

L i

-2 -1

For a contour not containing — 2, — 1, 0 and 1 we have

re = (t+1)(t+2),r-.=1
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Thus
X(z) = — 1 !—(2-1)(z+1) 20z +)(z+2) (z2+1)?
(z+ 1)z+2) 0 2+ 1)z+2) 0
0 (z—Nz+2) (z+N)z+2)
_ 21 . z+1 W,zeD’
2+2 z2+2
0 2 0
z2—1
1
z+1
and
X(z)=1100],z¢ D"
010
o1
Ex.4

Ci=,t 0 O

r
0 t-1 0
9 0 t-2

where C encloses origin bu not 1 or 2.

We can easily show that the total index is 1.
Note
d* (1) = G(t) d7(t)

gives the 3 scalar problems

1 1

$*(t) = td(t),

2 2

&% (1) = (1— 1) (t),

3 3
'Y = (t-2)9(1).
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Thus we can write
dlz) = 1, FeD’,
=1, zeD ",
2

Pz = 2-1, zeD,

3
P2) = 22, zeD”
=1, zeD",

giving us

Xizy=11 00 |.zeD’
0z2-10
0 0z-2
L. i

,2 €D

o °~!—n
QO = O
- o

with

=
1
—-—r
x
-
e
=
L
)
i)

Note if C includes 0 and 1 not 2

. 1
X(2= 11 00 |,ze D*, Xiz)= 37 0 0LzeD"

010 0-—- 0

0 0 z-2] Ry }
CHAPTER V
The Matrix Riemann Problem in Transport Theory

The method of singular-eigenfunction expansions, introduced by Case'®), has in recent
years been utilized'” '2), in the degenerate-kernel approximation of the energy-dependent
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transport equation, or the multi-group transport equationsm A crucial point in its use is the
proof of the basic completeness thearem, i e the demonstration of the expansion properties of
the elementary functions Generally this is based on the reduction of a system of
singular-integral equations to a matrix Riemann problem of the form,

47 () =Gl € (1 +xlt),te L, (51

were L is an interval on the real line, G(t) and k(t) are given n x n matrices, and gl;i(t) are
limiting values of the n x n sectionally analytic matrix 4:(z) to be determined, i.e.

) =lim ;. D(ttiy)
y=*0
The interesting cases are the half-ranges!7-9:11.12) or the two half-space applications'10), for
which we require a so-called solution of
97 =G(t) (1), te L, (5.2a)

where the matrix G(1) is of the form

Gt =AM [A ], (5.2b)

with
dt
Ay =1+z2] i) —— (5.3)
~ ~ [ - t,_ z

Here W(t) is a real function of t, and, without loss of generality, we take L to be the interval
(0,1) on the real line If G(t) is continuous and non-singular on L, with G(0) = G(1) = |, then as
explained in (12} the theory of Mandzavidze and Hvedelidze!'3) guarantees the existence of a
canonical solution {'(z) to the boundary-value problem. We use the term canonical to mean
that det ¢ (z) # 0 in the finite plane. In addition to this property a canonical solution may also
be of ordered normal form at infinity, i e it satisfies the equation

hm 4 (z)2k =q:(0), (5.4)

2K =diag {z¢1,2%2,. ,Z%n },

(0) ; : . . n .
where !0 is a non-singular constant matrix and where the integers {k, }; = ; are the partical
indices!13), of the problem. We will suppose that the partial indices are ordered so that
Ky 2K3 2... 2K, It is readily shown, see for example!7-12), that proving haAf-range
completeness is equivalent to showing that the k, are non-negative [ Note that k =, 51 K, is

1 1 i
calculable from the result x = — [a-g det G(t)],, where | .|, denotes the change ast proceeds
. X
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from O to 1] One purpose of the present note is to show, for the general n x n Riemann
problem (5 2) that a canonical solution of ordered normal form at infinity exists which satisfies

B(2) = P(z) = D(2) (5.5)
We begin by citing some straight forward lemmas:

Lemma 1. If ¢ (2} is a solution of the Riemann problem (5 2) thenso is @(z)

Lemma 2. If {(2) is a canonical solution of the Riemann problem (5 2) then so is ¢ (z) P(z),
where P(2) is an elementary matrix, i € a matrix of polynomials with det P(z) = const (+ 0).

Lemma 3 If &(z) is a canonical solution of ordered normal form at infinity of the Riemann
problem (5 2) then so is {(2) P(z) where P(z} is an elementary matrix whose elements satisfy
the following conditions:

{a) if + <j, degree of Pijlz) <Ky~ K,

(b) ifi=}, Pll (z) = const,
{c) if l>], PU‘Z’ =O, Ki >Kj’

=const, k; =K.

For convenience we shall call such elementary matrices allowable. We now proceed to
our main result:

Theorem (5.1). For the Riemann problem (5.2) there exists a canonical solution of ordered
normal form at infinity, such that

blz) = b(2)

PROOF. The proof is constructive. Now for large | z| we have

1 1
Blz) ~{ $1O) +—pM) 4+ — @2+ }Z7K, (6.6)

Z~ z A~ ~

where 27K =diag {z 7K1,27K2, ., Z7Kn }, and the $'1), i > 0 are constants matrices with det

®0) £ 0. Now as ${0) is non-singular there is at least one non-zero element in its first column,

We take the first such element. & ‘2‘” say and without loss of generality assume it is unity, (if
1

;I_)(gol’#1 we may divide the first column of P (z} by <I>‘gol)).'Now by multiplying $(z) by a

suitable allowable elementary matrix the remaining columns of & (z) may be modified so that

(1)
$g=0,0<i<K, ~k 2K, (6.7)
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{To avoid the introduction of further notation we will still call the modified solution @wiz}.}. We

(0)
now select the first non-zero element &, 5 (m # 2) in the second column of ¢'0} and assume it
is unity, The succeeding columns are now modified, again by multiplying by a suitable
allowable elementary matrix so that,

(i)
bmi=0,0€i<k; —k;, 3 <. (58)

m)

This processes is repeated for the remaining columns. If some of the k; are equal. say
Kp=Kp 41 =-..=Kq, then in addition to the above steps we modify > (z) so that if the first
unit element in the n-th column of Q‘o’, pEr<aq,is (b‘s?'then «I)‘,?,), =0, p<sm<r. Thus :(2z)
is now such that :I:“” is the sum of a permurtation matrixf and a singufar matrix S such that f
P;=1then S;;=0,1<p<iand §;;=0, j<q<n. Some of the remaining W0 = will
also have, in general, certain zero entries. Our claim is that the £ (z) so constructed satisties the
equation ¢ (2) = & (2).

Consider the following matrix,

¥(z) = dlz) - D). (59)

Clearly ¥(z) is a sectionally analytic solution of the Riemann problem (2) and so may be
written{13) as

¥(z) =4 (z) P(z) (510)

where P(z) is a matrix of polynumials. It is now a straightforward matter to argue that P(z) =0
Let ¥ (z) and ¢ (2) denote the rth columns of ¥(z) and ¢ (2) respectively, so that from (10)"

V(2= £ @.P (6 11)

We now examine ¥, (z), noting that only two cases may arise

{i)ky >x,- From (5 11) it is clear that P,; =0,2<j<nandso

Wylz) =2, Pyy,

where P, is a constant On recalling that ‘l);z(:’= 1 and w‘ﬁ’: 0 it follows that Py, =0, and so
Wiz =0

lilk; =k; = C Ky Here, we have that Pir=°'q +1<j<n, 1<r<q,andso

9
V. (z)= X v, ()P, 1<r<g,

p=1~
where again the P;, are constants. However, by reasoning similar to that used in (i), it is eviden-
that Pj,=0,1 Lj<q,1<rsq,s0that¥ (2)=0,1 <r<q

By proceeding in this manner for the remaining columns of W (z) we dodice  that
indeed P(7) =0, =
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Ve are now in a position to show that the partial indices are non-negative:

THEOREM (5.2). The partial indices for the Riemann problem (5.2) (5 3), where in addition
W (1) is symmetric. are non-negative.

PROOF. We first observe that as ¥ (t) is symmetric so is A(z). In addition it is also clear that
Az)=Al-z!- E/ making use of these properties it can be shown that if {(2) is a canonical

-~

solution of the Riemann problem (5.2) then the matrix A{z) E.]f-z) is also a solution, where
denotes the transpose of {'. Consequently we may write h

Al2) = $(2)P(2) T (-2) (5.12)

wherej(z) is a matrix of polynomiais. We now chooseg:(z) to be of ordered normal form at
infinity possessing the Schwarz reflection property.

Suppose now that k,, <0. By examining the Laurent series of both sides of equation
(5.12) near the point at infinity, it is clear that this assumption leads to a contradiction unless
P,n{z) = 0. However from equations (5.3) and (5.12).

PO =¢1{0) & (0),

s0 that as 4 (0) is real and non-singular P, (0) # 0. Thusk, < 0.

RESUMO

Ne 1tre 05 vérios processos de resoluco da equagdo de transporte linear, 0 método de Case de expansao
singular e considerado 0 mais elegante das solucSes analiticas, Apesar desta técnica ter sido aplicada por
muitos pesquisadores em vérios problemas e a sua soluclio possibilitar um tratamento numérico com alto grau
de acuidade, ela requer conhecimentos de matemaética nd- convencionais

Neste relatério, 30 apresentados os concertos fundamentais e os teoremas mateméticos requeridos.

€ ferta um rdpido recordacdo da teoria de funcdes de varidveis complexas seguidas da definicdo da
mntegral do valor-principal de Cauchy e os problemas de contorno de Riemann para uma fungdo, sdo
apresentados de maneira sucinta Como aplicagdo da teoria aqui desenvolvida, sio encontradas as solucde:
analfticas de uma classe de equacles transcedentais. S3o discutidos, também, os sistemas de equacdes
integrais singulares e os problemas de matriz de Riemann requeridos no modeio multi-grupo da teoria de

transporte. Finalmente, como exemplo, um problems tipico de aplicagdo da teoria de um grupo é resolvido
em detalthes
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