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MATHEMATICAL FOUNDATIONS OF TRANSPORT THEORY

Ernest E. Burniston

ABSTRACT

Among various methods of solution of the linear transport equation. Case's method of singular
eigenfunction expansion is conside-ed the most elegant exact analytical solution. Although the technique has
been applied by many researchers to various problems and the solution is amenable to numerical evaluation
to a high degree of accuracy, it requires rather unfamiliar mathematics.

In this rpport fundamental concepts and theorems of the required mathematics are presented.

A short review of the theory of functions of a complex variable is followed by the definition of the
Cauchy principal-value integral The theory of singular integral equations of Cauchy-type kernel and related
Riemann boundary-value problems for a function are summarized. As an application of the developed theory,
analytical solutions of a class of transcendental equations are found. Further, systems of singular integral
equations and the matrix Riemnnn prolifems, as r<iquirod in thv multi-nroup model of transport theory, art
discussed

Preâmbulo

Este relatório contém as notas de aula sobre as Bares Matemáticas da Teoria de
Transporte que o Professor Ernest E. Burniston da Universidade Estadual da Carolina do Norte,
EUA, compilou durante a sua estadia na Coordenadoria de Engenharia Nuclear do Instituto de
Energia Atômica no mês de maio de 1975.

As aulas foram ministradas em forma de Seminário de Teoria de Transporte aos
Pesquisadores da Área de F ís>ca e Projetos de Reatores da CEN.

CHAPTER I

Review of Complex Variable Theory

In this chapter we give a brief summary of the complex variable theory required for the
methods described in the following chapters. Proofs of the results which we will quote may be
found in any standard text, such as L.V. Ahlfors"', and E.T. Copson(2>. To establish our
terminology we first give some definitions relating to the complex plane.

A neighborhood of a point z0 is the set of points z satisfying the relation

| z - z o | < e ,

where 6 is a positive constant.

Let S denote a set of points in the complex plane. A point z0 of S is an interic point of S
if there exists a neighborhood of z0 containing only points of S. If a set contains only interior
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points, then the set is said to be open.

We adopt the simple minded approach to connectivity in that we say a set S is connected
if each pair of points of S can be joined by a polygonal arc which consists only of points of S.

A domain will be an open, connected set.

If to each point z of a set S, we are given a rule, which we denote by f, which associates
with that point a unique complex number f(z) say, then we say f determines a function* of a
complex variable on S In some texts, this is defined as a single-valued function. If we may
associate two or more complex numbers with the point z we say that f determinesa multivalued
function on S. A function is differentiable at a point z, if

f (z) = lim
N+0 h

exists independently of the path along which \ h I -*• 0. f is said to be analytic at the point z if it
is differentiable in a neighborhood of r. A function is analytic on a set S if it is analytic at each
point of S

Consequently, we should think of analytic functions being defined on domains. A point
at which f is not analytic is said to be a singular-point or a singularity of f.

An arc or contour is said to be smooth if'11 it is simple, i.e., does not intersect itself,
and'2 ' it possesses a continuously turning tangent. Thus if it is given parametrically by

then x(t) and y(t) are continuously differentiabie functions satisfying

We may now state, without proofs, some theorems which we will need. CAUCKY'S
THEOREM: Let C denote a smooth contour and D its interior. If f is analytic in D and
continuous on D + C, then

/cf(z)d2 = 0

CAUCHY'S INTEGRAL FORMULAE: Let D*denote the interior of smooth count* C, and

D+ the exterior. If f is analytic in D * and continuous on D* • C, then

/ — ~ T « * t = 2

1 At this stag* we are making the distinction between a function f and its value f W. Later, however,we shall
speak of ''the function Hz)"



fit)
J dt = O, z e D
c t - z

zeD\

If f is analytic in D and continuous in D + C, then

1 f(t)
; dt = f H ,

2ffi c t - z

1 f(t)
/ dt=f(-)-f(z),

2JTI C t - z

A function that is analytic in every finite domain >s called an integral function, e g
polynomials are integral functions. An important theorem concerning integral functions is
Lioville's Theorem: If Hz) is an -ntegral function satisfying the inequality that

lf(z) K M , for all z,

where M is a constant, then f(z) is a constant, i e , the only bounded integral function is a
constant An extension of this result is that if f(z) is an integral function satisfying

lf(z) l < M l z l a , f o r a l l z

where a is a real, positive constant, then f (z) is a polynomial of degree [a], where [a] denotes
thi largest integer, which does not exceed a

TAYLOR'S THEOREM: If f (z) is analytic in a domain D containing the point z0 , then the
infinite series representation

= f<z0)
0 1! u 2 !

is valid in the largest, neighborhood of z0 contained in O

LARUENT'S THEOREM: If f(z) is analytic in the annulus R, < l z - z 0 K R j , then f(z) has
the representation

f{z>= 2 an(z-z0)"+ X b n (z-z o r n -
n=0 n = 1

in that annulus The second series is usually referred to as the principal part of f (z) at z0

If at least one of bn's is not zero, then we say that f has an isolated singularity at zo If
the principal part terminates, i e , bn = 0, n = N + 1, N + 2, . . , then f has a pole of order N at
zo, with residue b. If the principal part does not terminate the f has an isolated essential
singularity at zo If all the bn's are zero then either f is analytic at z0 or has a removable
singularity, i.e., a singularity which may be removed by suitably defining f(z0)

IDENTITY THEOREM: Let f, andfj be two functions, analytic in a domain D If fx (z) = f2 (z)

for all 7. on some arc within D, then f j (z) = f 2 (z) for all z in D (There arc more general versions



4

ot this theorem but the one given here is sufficient for our purposes).

MORERA'S THEOREM: This is the converse of Cauchy's Theorem If f is continuous in i
domain D and is such that

j " c f(z)dz = 0.

for any contour in 0. then f is analytic in 0

These last two results may be used to establish two important analytic continuation
results

ANALYTIC CONTINUATION THEOREM: Let D, and D2 be two disjoint domains, whose
boundaries intersect in an arc C If f, is analytic in D, and continuous in D, + C, f2 is analytic
in D2 and continuous in D ; + C, while f, (z) = f2 (z) for all z on C then f, and f2 are analytic
continuations of each other, and define a unique analytic function in D, + D2 + C

SCHWARZ REFLECTION PRINCIPLE: Let C denote a part of the real axis, and f a function
analytic for y > 0 (S+) continuous onto C such that f (x) is real for all x on C Then f can be
analytically continued into y < 0 (S') by defining for y < 0,

f(z) = fTz>,

and so

g(z) =f(z), y > 0 ,

= f (Ü. y < 0,

defines a unique analytic function in S* + S"+ C

ARGUMENT PRINCIPLE: Let f be analytic within and on a smooth contour C, except for at
most a finite number of poles within C, (f is meromorphic within C) In addition let f have
only a finite number of zeros within C and no zeros on C Then if N is the number of zeros and
Pthe number of poles within C, we have that

f'U)

where multiple zeros and poles are counted as to their multiplicity The notation [Argf(z)]c

denotes the change in the argument of f as the contour C is traversed one time in the positive
sense

We now turn our attention to the question of multivalued functions The multivalued
function which is basic to the study of this class, is the argument function The argument oi a
complex number has infinitely many values which differ by multiples of 2it, i.e, if we set
z= re 0 then arg z = 0 + 2nn. a<0 <a + 2n where a is a constant andn =0 1 , - 2 , . . • Thus



the logarithm function

log z = In I z I + i argz,

is clearly multivalued, with its values differing by multiples of 2n\. Let C be any contour
enclosing the origin and z0 a point on C. If we let z traverse C starting at zo and returning to z0 ,
then clearly if we compute logz continuously, starting with any particular initial value, as z
traverses C, then the initial and final values of log z0 will differ by 2iri. Consequently, to
construct analytic functions from the log function we must restrict the domain so as not to

include contours enclosing the origin. This may be done by removing all the points on the ray
reia, where 0 < r and a is an arbitrary constant, from the complex plane. It is now a straight
forward matter to show that, for each given n, the functions

fn(z) = In r + H0 + 2mr), n = 0, ±1, ±2 . . . ,

are analytic in the domain r > 0, a < 0 < a + 2n These analytic functions are called branches
of the log function in the domain r > 0 , a < 0 < O i + 2TT. The ray re'a, r > 0 is the branch cut
for these branches with the origin and the point at infinity being branch points. The particular
case of Q = -7T and n = 0 defines the principal branch of the log function which we wili. denote
by Log z, i.e.

Log z = In | z | + i arg z, | z | > 0, ~v < arg z ' TT.

We shall determine branches of other multivalued functions by moans of the log function.
For instance, for the square root function we can write

z1/2 = exp(1/2logz|

= exp (— - - + - - [argz + 2n7ri)),

where o < arg z < a + 2ff, and n = 0, ±1, ±2,. ., thus,

z% = rVi e i(0/2+nrr>,

= r % e i 0 / 2 . neven,

= - r'/' e< e/2, n odd

Therefore, for any given a, there are two branches of the square root function.

Trn principal branch of z /2, however, is determined by using the principle branch of the
log function, i e,,

z/x = yjf e' e'2, r >• 0, -IT < 9 < TT



More complicated functions may be handled by reducing them to simple functions by means of
transformations, compositions, etc. For example, consider (z3 - 1)^. in terms of logarithms we
have

2 - 1 ) }

= exp {% log(z -1> + % loglz + 1) }

= exp { V i l n | z - 1 | + 1 / 4 l n | z + 1 | + iarg<z- 1) + i arg(z+1)}

On taking the principal branch of each of these log functions we find that the principal branch
of (z2 - 1 ft can be expressed as

where 0 i = arg (z - 1 ) and fa = arg(z + 1). It appears that the branch cut here is the union of
the two branch cuts corresponding to the two log functions, i.e., the half line x «= 1, y = 0.
However, this is not the case. Let us consider the limiting values or (x1 - 1)1/j on the real axis to
the left of z = - 1, i.e., for x < - 1, y = 0.

Mm (z* - \ft = y/x2 - 1 exp [ y (ff + n)].
y-Kf

lim (z2 - 1)1/l = v / " 2 ~ 1 e xP t"T< ~" " W>1»
y - 0 - V 2

= - V x 2 - 1 .

and '.0 by the analyt - continuation theorem (z3 - 1 ft is analytic f or x < - 1, and so the brancn
cut is-1 < x < 1 , y = 0.

Another interesting example is the arcsin function, We pose the problem of determining
all analytic functions (for some suitable domain) such that

Replacing sinco by its exponential form gives

i - 1 - 0,



which yields

To make this equation meaningful we assign the branch cut (-•»-- 1 ] and [+ 1, + °°), and
so eiu> may be either of the two analytical functions;

where yj z1 - 1 represents that branch of the square root function determined by
assigning^/' 1 the value i. In other words

y/z1 - 1 = exp { V, log (z - 1) + V4 Log(z + 1) } ,

where

0 < arg( z - 1 ) < 2ir and -v < ar&(z + 1 ) < it.

if we iow rrake tie observation neither z + V 4 2 - 1 nor z -\/z2 - 1 can vanish in the

specified domain, then it makes sense to take logarithms and so we may write

2

or

Before specifying a branch of the log function we make use of the fact

( z + y z 2 - 1 ) ( z - i

and so to may be represented by
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Now noting that the function 2+ y/z' •»• 1 can never assume a negative real value for
any z in our domain, we may specify the principal branch of the log function and finally
deduce that all the analytic functions satisfying sinto = z, may be represented by

11} k= 0 , s l . i 2 .

CHAPTER II

Cauchy Integrals and Riemann Problems

Cur purpose in this chapter will be to present the basic properties of Cauchy integrals and
to give an introduction to the so called Riemann boundary value problem We will make no
attempt to be exhaustive and in a simpler vein we will not give a theorem proof type of
development. There are several excellent texts on these topics, N I Muskhe;.shvili(3' and F D
Gakhov ( 4 ) , for instance, which we recommend for those who require a more detailed study.
We will include only those proofs which we feel useful in themselves in understanding the basic
concepts. We begin by defining a Cauchy integral:

DEFINITION (2,1): Let C be a smoth arc or contour and0(t) a given function, integrable on
C, then the integral

;
2trt c t - z

is called a Cauchy-iniegral (sometimes referred to as a Cauchy-type integral) The function 0(t)
is called the density function and ( t - z)"1 the kernel. A general theorem concerning integrals
which define analytic functions is the following.

THEOREM (2.1): Let C be a smooth arc or contour Let f (t,z) be a continuous function of t on
C, and also be analytic in some domain D for all t on C Then the function

F|z )=Lf ( t , z )dt

is analytic in D. The theorem is easily proved by showing that F'(z) exists in D The points at
which f(t,z) ceases to be analytic are singular points of F(z), and so Cauchy integrals are
singular at each point of C Thus if C is an arc, Mz) given by equation (2 1) will be analytic in
the plane cut along C If C is a contour, the integral of equation (2 1) will define in general, two
functions, one analytic in the interior of C and one analytic in the exterior of C

Example: * ( t ) - 1 , C a { t : - 1 < t < 1 }

t - Z
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To compute this for a given z we must specify a branch of log(t - z) in the t-plane with a cut
from the point t = z to the point at infinity, not passing through [- 1,1]. Thus we can now
write

=-=4— { log(z-1)- log{z + D } .

If we take a branch of log(t - z) with the branch always to the left (right) then ''•' (z) will
be analytic in the plane cut from - 1 to 1.

Example:

* ( t ) = lF3T' c = { t : l t l =

Let D+ denote the interior of the unit circle and D "the exterior of the unit circle. Rewrite the
integral as

1 3 dt 1 1 1 dt
2JTÍ . / , t ( t - 3 ) t - z 2m / , ( t - 3 f ) t - z '

|tl = i |t| = i
Now, by the Cauchy integral theorem

1 1 dt 1

while

ST / TTTTT^r'2
i t i = i

= 0, z e D ".

t

2ffi t t - z '
| t | = 1 = -zeD'

z
Thus we have that

The largest class of functions for the density function <t>(t) in equation (2.1), which
admits a fairly simple treatment is the class of Holder functions

DEFINITION (2.2): Let C be a smooth ,c or contour and <p (t) a given function defined on \
Then <f> (t) is said to satisfy a Holder condition on C if for every pair of points t i and t2 on C

Wti)-0(ta)|<A|t,-t,|\ (2.2)
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where A and X are positive constants. The constant X is called the Holder index. For brevity, we
say 0(t) c H(\) on C. If X = 1, the condition (2.2) becomes the Lipschitz condition. Clearly if
X > 1, then 0{t) is a constant on C. We thus will assume that 0 < X < 1.

t n e "Example: Show that if 0 t it) e H(Xi) and 02 M
 e

(a)

(b)

(O

are H(X) where X= min(Xi, Xa).

Example: Shdw that

In t 2

= 0 t = 0

is continuous but not Holder in [0, '/a]

Example: Show that (Mt) = 111 is Lipschitz but not differentiate in ( - 1 , 1 ].

DEFINITION (2.3): The Cauchy-principal value of

,b dx
J ' a < c < b,
a x ' -ci

is defined as

lim
e->0

its value is, of course, given by

c - c ^ x _ +

a c - x .
Jt) dx

4 C X - C

; •>_£_
a x - c c - a

(2.3)

where we have introduced the symbol P to denote the Cauchy principal value. We now consider

the Cauchy principal value of

jr"
a x - c

a<c<b.
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THEOREM (2 .2 ) : I f 0 (x) satisfies a Holder condition on (a,b), then

L ' a < c < t'i exists as a Cauchy principal value
" x - c

PROOF: Formally we may write

, win,w~ P 0(x) ~ (j>(c) P dx
f = f dx + 4> (c) J
a x - c a

 x '"c a x - (

Now the first integral exists in the ordinary sense, since

I0(x) - 0 ( c > | < A | x - c | \ o < \ < 1 ,

and so

|x-cT\

Consequently if we take the Cauchy principal value for the second integral we have

b0(x)dx b0(x)-0(c) b - c
p j -j d x + Q ( c ) |n( ,, a < c < b , (2.4)

a x - c a x - c c - a

We now generalize this to a smooth arc C and so consider

p j , t n o t a n enc| poi
C T - t

where r and t are points on C We draw a circle of radius e, center at t sucn that the circle
intersects C at two points t, and t ; only (this can always be done if 6 is sufficiently small).
Denote that part of C within the circle by Ce

DEFINITION (2.4): The Cauchy principal value of the integral

»( T )dr
L r-t
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is defined as

lim

provided that this limit exists. In order to state a general theorem concerning such integrals we
first consider the case of 0 ( r ) = 1 on C, i.e.

dr
P/

C T - t

Now the primitive here is log( r - 1 ) . So we must first give a rule for computing this function
for T on C. This can be done in a variety of ways, but a convenient one is to let log( r - 1 ) be
the value of a branch of logU - 1 ) on C, with a branch cut from z = t to the point at infinity
For def initeness we will adopt the convention that the cut is to the right of t, not intersecting
C, of course, see Figure I.

Figure 1
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Thus having chosen a definite branch we can write

[logtr - t)ti + {log(r - t)U ,
r - 1 a 2

a - t t | - t
= - log{ ) + log<

b - t t2 - t

a - t
where a and b are the end points of C where by log ( ) we mean log(a - 0 log(b - U The

! - t
t, -1

teim log ( ! is interpreted in the same way We shall always use the notation that as C is

traversed in the positive direction, the first or initial end point will be denoted by a and Hie
second or final point by b Now

tB - t . t, - t ,
log( ) = l n I l + i(0, - 0 2 ) ,

t 2 - t t 2 - t

where 0, =arg(t] - t) ind 82 - arg(t; -1) The first term here is zero as t t and t are
equidistant from t As the curve at t is smooth it is also clear that

e -'O

so that

dr a-t
j =-log( ) +iff 12
c r - t b t

'i iis result enables us to establish the following theorem.

THEOREM (2.3): If 0 r) satisfies a Holder condition on a smooth arc C then the
following principal value integral

j exists, (t not an end point) and
c r - t

given by

a-t
j r + (t)[-iog( ) +m) (2 6)

C T " t C T - t b - t
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where again log( ) is interpreted as log(a -1) - log((o -1).
b ~ t

Example: Ind'cate The simplifications in formulas (2 5) and C? 6) if C is a contour.

We now turn our attention to the limiting values of Cauchy integrals as z approaches
points on the contour We will need the following Lemma

LEMMA (2.4): If the aensity function £(T) of a Cauchy integral satisfies a Holder condition on
a smooth arc C, and if the point t is not an end point, then tne function

d r >

is continuous at t from the left and from the right of C In other words

0(r)0( t )
lim *.<z) = / — dr -
z-n c r-t

as z -* t along any path, where '&t(t) is continuous on C.

We omit the proof of this Lemma and refer the readers to N. I Mushkelishvih(3), or F. D
Gakhov'4' for the details. The importance of this lemma is in establishing the following basic
theorem

THEOREM (2.5): Let C be M smootl closed contour and 0|r) a H(M function on C, then the
Cauchy integral

'I' z = -T-r- f '
27TÍ C T - Z

is continuous on C from the left and also f ->m the right

PROOF: As usual we denote the interior of C by D* and the exterior of C by D~ We also
denote the limit process as z approaches t along a path in D+ by z -* t ' . Likewise if the path is
in D", we write z -* t*. Similarly we define
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We shall also use the following results, which we derived earlier,

1 dt

2»ri c t -
= 1 . z e D \

= 0, z c D",

while

2JTÍ C T -

Consider now the function

— J dr.
II C T-Z

On writing

2n\ c T - Z 2?ri c T - z

we have

and

and in addition

2wi c r - 1



16

However by Lemma (2 4)

and so we have

p

2iri

27TÍ

c

c

• <r)c
T ~

<t>{T)

T ~ t

IT

t

dr

(2.7a)

(2.7b)

Formulas (2 7) are generally referred to as the Plemelj formulas, although the name
Sokhotski is also used.

THEOREM (2.6): If C is a smooth arc and # r ) is Holder on C, such that £(a) = 0(b) = 0, the
formulas (2 7) stiil apply

COROLLARY (2,7): If 4>(a) and </>(b) are both nonzero, then the formulas (2 7) stiil hold with
exception of these ends.

Notice that an equivalent form of these formulas, which we will be using is

(2 8a)

(28b)

Consider now the behavior of a Cauchy integral nrar an end point. As before we suppose
Cisa smooth arc, 0(t) a Holder function on C, including the end points. Now if tf>(a) # 0 we
have

JS2
2rri c t - z
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0(a) dt 1 0(t) <p[a)
r i . _i*

27ri c t - z 2ni c t - 2

0(a) z - b
log(

2m z - a

z - b
where by log ( ) we mean log(z - b) - log(- - a) and

z - a

1 0 ( t ) -0 (a )
— / — dt.
i c t - z

Now, the density function of this last Cauchy integral vanishes at t = a and so by Theorem (2 6)
the Cauchy integral is continuous at a and hence H unded. For the multi-valued log function we
mean a branch analytic in the plane cut along C. Thus near z = a we have

|0 g < z _ a ) + (I,» (Z| (2.9a*

where (l»*(z) is analytic near a in the cut plane and continuous on C at a. We can effect ma
splitting off of the term log(z - b) taking a branch of log(z - a) analytic in the plane cut d long
C + C , where C is a line joining ? = b and the point at infinity, not intersecting C, and a branch
of log(z - b) analytic in the plane cut along C

Note that while the branch of log(z-a) may be chosen arbitrarily the branch of log(z - :>)
must be chosen so that log (v"_- — )is the original log function. The corresponding tormuiakv

Z 3

log(z - b) + <I>**(z) (2.9b)
2rri

where <I>* * ! ) is analytic near b in the cut plane,

Example: Determine the end point behavior when

C= { t : O < t < 1 } nearz = 0, if

(i) 0(t) = 1, (ii) 0(t) = t, (iii) 0(t) = Int ahd (iv) 0(t) = t 0 , 1 < cv < 0.
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Now, we come to our development of the Riemann problem for arcs We begin by
establishing some definitions and terminology (We will generally adhere to that used in N. !
Muskhehshvih's book13') As before we will let C denote a smooth arc and S will denote the
plane cut along C.

DEFINITION (2,5): A function <Hz) is said to be sectionally analytic in S if (i) it is analytic in
S, except possibly at the point at infinity, (ii) it is continuous on C from the left and from the
rignt, with the possible exception of '.he end tx>ints and (lii) if near the end points it satisfies
the inequality

M
< - ' 0 < c e < 1 ,

where M is a constant, and c denotes either end.

Now let 0(t) be defined on C, then we have the foiiowing definitions:

DEFINITION (2.6) :We say <j>{t) is Holder on C only if it is Holder at each point of C, including
the end points.

DEFINITION (2.7):0(t) is Holder at each point of C except possibly at the end points where it
is such that we can write

( t - c ) < V ( t ) = 0 * ( t ) , O < a < 1 ,

where (pit) is Holder on C, then 0(t) is found to be of the class H'on C

DEFINITION (2,8): If <p(t) is H'on C for arbitrarily srr j , = e > 0 , i.e.

is Holder on C for every positive e, then 0(t) is said to be of the class K̂  on C

Example :(t - c)$,(i real,and loglt - c ) are H^f unction*.

DEFINITION (2.9): The Riemann problem for a smooth arc C will be to determine a
sectionally analytic function $(z) in S; of finite degree at infinity whose boundary values satisfy

(2 10)
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where G(t) and g(t) are H(X) functions on C, and G(t) is non-vanishing onC . In general we
exclude the end points in equation (2.10). The function G(t) is referred to as the coefficient of
the Riemann problem.

We first consider the auxiliary problem

where 0|t) is Holder on C. By the Plemelj formula (2 8a) a solution to this which vanishes at
infinity is

1 0(r)dr
, ( z ) f

2JTI C T - z

Clearly, if we require a solution of degree k at infinity then

1 0(T)dT

/ — +
2JTÍ c T - z

Pk

where Pk(z) is a polynomial of degree k. In fact, we can easily show that this is the only
solution. Consider ^ (z ) = <!>-'t>,(z) where <l^(z) is some other solution. Now ^(z) vv.ll be
analytic in the plane except possibly at the end points, which are now isolated singularities.
However xV(z) is sectionally analytic and hence sathfifjs an inequality of the kind

< 0
Iz -cF*

near each end point and so these singularities must be removable singularities. Thus by
Liouville's theorem ty(z) is a polynomial of degree k.

Example: Show that if é(t) is H*on C the above solution is still valid. This uses the result
that if 0(t) is H*on C then near the end points

«W.JL ;_ *« *_
2ffi c t - z

( )

2i siruw (z - c)a

where we take the upper signs for c = a, and the lower signs for c = b. In addition the function
<l>#*(z) satisfies

° >ctc<a
I z - c t"o
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near z = c (See N. I. Mushelishvili(3>).

We may now proceed to the homogeneous Riemann problem, namely

<l>+(t) = G(t) 4>- (t), t e C (2.11)

Now as G(t) does not vanish on C, we may choose a value of log G(t), which is continuous on
C Having chosen a particular value we set

- z

Now by the Plemelj formula

and so

which shows that exp F(z) satisfies the homogeneous condition (2.10). However, it may not be
sectionally analytic, because it may not have the correct end point behavior. Hz) certainly has
the correct end point behavior but exponentiating it may destroy it.

Now by equation (2.9), near an end point

F(z) = + • log(z - eu) + Pi (z)

and so

r(z) = (z _^jf l fc + Wkerk{z)i k . u (2.13a)

where

(2.13b)
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with the upper signs for Ci = a and the lower signs for c : = b. In addition F*(z) is analytis in S
and bounded at z = a, while H (z) :s analytic in S and bounded at z = b. Thus if ak < - 1 some
modification of exp F(z) is necessary. We select integers XK so that

and now examine

(2.14)

Clearly X(z) is sectionally analytic in S, and the fact that the expression ( z -a )^ i (z-b)^J
multiplying exp P(z) is a rational function means that X(z) satisfies the boundary condition
(2.11). Consequently, X(z) is a solution of the homogeneous Riemann problem, in addition
however, it has, because of the right hand side of the inequality for Xk i.e., ak + Xk < 0, some
further important properties. Taking limiting values on the cut gives

X ^ t ) = (t - a ) * i ( t - b)*a exp[+ % log G(t) +

where

P log G ( T )

and so if we set

X(t) = ( t - a ) X i (t - b)X2 exp H t ) ,

then

and

G(t)

Now from the manner in which the Xk were chosen it is evident that X(t) does not vanish
on C, and so X*(t) do not vanish on C As X(z) does not vanish for z i C (except perhaps at
infinity) it follows that the solution X(z) is nonvanishing in the finite plane. Such a solution is
referred to as a canonical solution (clearly cX(z) where c is a non-zero constant is also a
canonical solution). A further property of a canonical solution is that every other solution can
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be expressed in terms of it.

Let <Mz) be any c: -; solution then we have

and

X (t) = G( t )X( t ) . teC,

dividing the first of these equations by the second, which is permissible since X~(t) and G(t) do
not vanish, yields

<I>+ ( t ) <!>-{t>
teC.

X ( t )

This implies however, that the function (Hz)/X(z) is analytic in the entire plane and so by
Liouville's theorem is a polynomial We may now state the following important theorem:

THEOREM (2.8): If X(z) is a canonical solution of the homogeneous Riemann problem (2 11)
then any other solution 4>(z), of finite degree at infinity can be written as

<Hz) = Xiz)P(z). (2.15)

where P(z) is a polynomial

Example: Show that X(t) and X±(t) are H*on C.

The non-homogeneous Riemann problem (210) is readily solved once a canonical
solution of the corresponding homogeneous problem is known. We have on replacing G(t) by
X*(t)/X~(t) that the equation (2 10) can be written as

(t) * - ( t ) _ g(t)

*(t)~ X ! t ) X*(t) ' t e

Thus, on using a familiar argument the solution of finite degree at infinity is seen to be

2m c X* (t) t - z
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where P(z) is a polynomial.

As an example of these results let us consider the problem

where C is any smooth arc. As G ( t ) = - 1 , we take log G(t) = in (any other value is

permissible). Thus,

2JTI c t - z

/ - — d t .
2t\ c t-z

2 z - a

z - b
where log ( — — ) means log(z-b)- log(z - a).

Consequently,

Now recall from equation (2.13b) that

logG(ck)

2
So ̂ cm the inequality - 1 < ak + \ < 0, it follows that

Xi=0,
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Hence a canonical solution is given by

( z - b ) v z - a v ' ( z - a ) ( z - b )

Exercise: Complete the solution if C = {t: - a < t < a }.

CHAPTER III

THE TRANSCEDENTAL EQUATIONS tan 0 = « 0 and 0 tan 0 = o>.<5>.

Consider the following Sturm-Liouville problem:

y" + Xy = 0,

y(0) = 0

where to is a real constant, which can arise in a variety of ways, for example in solving partial
differertial equations using a variable-separable technique. Generally we are required to find all
values of X (eigen-values) which yield non-trivial real solutions (eigen-functions) satisfying both
the differential equations and the boundary conditions. We usually begin by determining
whether or not there are any negative eigenvalues and for this we set X = - o 2 . For this
example it is a simple matter to show that non-trivial solutions exist only if a is a root of the
equation

tanh a = ua . (3.1)

We will show later that this equation has real roots other than a = 0, only if 0 < w < 1. The
reader may demonstrate this by sketching the graph of tanh a and ua. If we now examine the
case X= 0 we see that this is an eigen-value only if o> = 1. Turning then to the determination of
the positive eigen-values we set X = Ç?. In a straightforward manner we see that the positive
eigen-values are the roots of

tan 0 = wjJ. (3.2)

We will show that this equation has infinitely many roots for all w. Again we suggest that the
reader demonstrate this by sketchig the graphs of tan 0 and w0.

Now equations (3.1) and (3.2) are transcendental equations as they involve
transcendental functions of the argument. Alternatively we can say that they are transcendental
equations because they «re not algebraic equations. This requires, of course, the definition of an
algebraic function, which is a function f(x) say, for which there exists a finite number n of
polynomials oij(x), not all zero, i = 1,2,... n, such that
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Z o,(xMf(x))' = 0.
i = 1

An algebraic equation then is one which can be written as f(x) = 0 , where f(x) is an algebraic
function.

Returning to equations (3.1) and (3.2) we note that any real solutions of (3.1) give purely
imaginary roots of (3.2) and so need only consider the determination of all the roots of (3.2)
Our first step in solving equation (3 2) will be to change the problem from that of solving an
equation possessing infinitely many roots to that of solving a system of equations each
possessing a finite number of roots. One reason for this is that the use of the argument principle
in the former case can hardly be expected to yield any useful information. The technique we
use for equation (3.2) will be to "split" the inverse tangent function into its branches. We first
make the substitution

0 = — , (3.3)
wz

and deduce that

tan(±mr + — ) = — »n= 0,1,2... (3.4)
wz z

(Note that (3.3) requires w =*= 0, however, the case w = 0 can be solved immediately). On using
the identity

• 1 1 + f
tanh" f = — log( _ )•

We can write equation (3.4) as

1 + wz {Log + 2mri }= 0» (3.5)
2 # + 1

where the symbol Log denotes the principal branch of the log function. Consequently the cut is
the interval [ - 1,1 ]. Thus we consider the problem of determining the roots, in the cut plane,
of equation (3.5). For this purpose we introduce the functions

A0(z) = 1 + -j wz Log(-^~), (3.6
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and

A.Jz) =Ao(z) +nrriu;z. (3.7)

We note the following obvious properties of these functions

A o | z )=A o ( - z ) . (3.8)

A n ( - z ) = A _ n ( z ) o r A n ( z ) = A - n ( - z ) , (3 9)

and

(3 10)

The first two equations mean tnat if f is a root of equation (3 5) then so is - f, i.e. the
roots of equation (3 2) occur in equal and opposite pairs

We first consider the case when n = 0, and so we apply the argument principle to \ (z) in
a domain bounded internally by a contour encircling the cut [ - 1,1 ] and externally by a circle
of radius R > > 1. The boundary values of Ao (z) on the cut are

A* (t) = 1 + y wt l n ( - y ™ - ) ±— wtrri (3.11)

and so A*(t) and A^ (t)are complex conjugates. Consequently, if we shrink the inner rontcur
into the cut the change in the argument of A0(z) around this contour will be twice the change
of the arguments of A"o (t) in the interval [ -1,1] (The positive direction is assumed in each
case). Now

% WtTT
arg A+

O(t) = tan"1 { } .

1 + % cot In (——-—)
1 + t

In order to compute the change in argument of A^(t) we need to know the behavior of

D(t) = 1 + Y wt In <-—-> on [" 1'11-
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Now f or oj > 0

c>. 2 )-T-V]2 1+ t 1 - t

^>0v*enKt<
dt I < OwhenO < t < 1

Thus for t < 0 the slope of D(t) is positive and for t > 0, the slope is negative and so a
sketch of D(t) for GO > 0 is as in Figure 2.

Figure 2 - D(t) for c> > 0

Thus the change in argument for A* (t), w > 0, will be 2n as shown in Figure 3.

Figure 3
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Thus there is a change of 4TT in the argument of Ao(z) around the cut. From equation
(3.10) we see that Ao(z) -• 1 - GO, as I z I — «> and so the change in argument on the outer circle
tends to zero as R -*• °° Thus for w > 0 A0(z) has two zeros in the cut plane. (For CJ --1 these
zeros occur at the point at infinity) Now for to < 0 we observe that D<t) > 1 and so Ao(z) has
no zeros in the cut plane for w < 0 We can further reason by examining Ao(z), and showing

A0(z) = A0(z) that for x > 1 the zeros are real for 0 < w < 1 and imaginary for to> 1 We are
now in a position to determine these two zeros. Consider the Riemann probltm whose
coefficient is given by

Go(t) = ° - 0 < t < 1 (3.12)
A itj

Now from the methods given in Chapter 2 a canonical solution for this problem is

X0(z) = exp To (z), u > 0 (3.13a)

where

ro(z) = — / arg A+
o - ^ - (3.13b)

7T 0 X ~ Z

and where we have chosen arg A^(0) = 0.

Consider now the function

X O ( "Z )

We first compute the limiting values c *V(z) in the interval (- 1,1), For t < 0 we have

A> A+
0(t)

On using the fact that

A+(-t) = A ' (t)r
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We can write

A>A;«t) = A.U)
A*()X;(-t) )C0(-t)

However

Consequently by our analytic continuation theorem * (z ) is analytic for Rz < 0.

For t > 0

from which it follows, on using equation (3.12), that

i.e., ^U) is a solution of the homogeneous Riemann problem with coefficient G0(t). Clearly it
is of finite degree at infinity, consequently from theorem (2.8) we can write

*(z)=X0 (z)P(z)

where P(z) is a polynomial. From equations (3.8) and (3.14) we deduce what we shall call a
factorization of A0(z) in terms of Xo(z):

A0(z) = X 0 U ) X 0 ( - z ) ( z £ - z 2 ) ( 1 - w ) , (3.15)

where ±zo are the zeros of A^z) , <*> # 1. (Recall Xo(z) is non-vanishing in the plane cut from 0
to 1 on the real axis, except at infinity). Now equation (3.15) is an identity in z, i.e.,

( 1 - w ) X 0 ( z ) X 0 ( - z )
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so Ae can assign any convenient \ta<oe to z. An ^pociany simple result follows if we set z = 0

' = ;{a> •- 1) ' Vr exp ( - - - / ' A r g At (t) } , CJ > 0.
n 0 t

Finaily from tv^atton (33) we i n i

1 v r 1 r1 • d t .j3, = ±—(u>-1) / 2 exp { J Argn (t) },u>0. (3 16;
7T It j t

As the txpOfientiai ttí.m nere is real it is ev.dent t r . i i fo- 0 < u; < 1, Po« imaginary, wniia

We now tu n to the case n ̂  i , noting from equation (3 9) that this will simultaneously
cover the CÜS&S n < -). On appiyng the argument principle to An(z) around tne cut in a
manner sim: :?r to that used for Ao(z) , W3 find that arg A^, it) increases oy 2n as t proceeds from
- 1 ;o i : u . ;.;a'. ar^ A^dJ decreases by sit as t proceeds trom 1 to - 1 (Note from equation
(3.7/ that >nU; <*nu / i n i t ) a>t not complex conjugates of each other).

Thus there is no net cnange in arg A r (z ) around tne ci<t Tneie is a cnange around tnc
large circle nowever, due to the term nv,:.r: :r. e^jation (3.7). As R -*-*'this term y:e:ds a net
increase of 2i\ in the a.-gumaru of /\0\2h ana so An(z) has precisely one zero in the cut plane,
say i ) V Tn.s fesun noids for all real values of UJ. From equation (3.9) it is clear that z r s a
zero of A ..r [zi, whicn suggests tnat we con£ider the even function

,f'.?. (317)

We proceed as befc c to solve the homogeneous Riemann problem whose coefficient is given by

The canonical solution fcr this problem

Xp(z) = expr n ( z ) (3.19a)

where

t — z
(3.19b)
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with arg ÍÍ* (0) = 0. Using the same techniques for Í2n(z) as we used for^Mz) we show that
& n (z ) /X n ( -z ) is a solution of the Riemann problem with coefficient Gn(t) given by equation
(3.18) and so the factorization of Í2n(z) in terms of Xn(z) takes the form

S2nU) = Xn(z)Xn(-z)(z2 - z ^ n V w 1 , (3.20)

which we can immediately solve for zn . If we again set z = 0 in equation (3.20) we deduce that

and so from equation (3.3)

0 =±n7rexp{ — / arg S^(t)
7T 0 t

where from equations (3.7), (3.11) and (3.17)

= 1,2 (- (3.21)

Clearly the 0n, n > 1 , a r e all real. Figure 4-a gives a graphical display of these zeros for
0 < cj < 1 and figure 4-b for w > 1

Figure 4a - The 0- for 0 < u; < 1
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Figure 4b - The fy for co > 1.

Example: Are the Riemann coefficients given by equations (3.12) and (3.18) Holder on
[0,1 ]? If not, can our expressions for the canonical solutions be justified?

Example: Carry out the details on the following method of determining the change in Arg
A* (t), which is valid for complex to. Set w = 1/f and consider

f A 0 ( t ) - r - { - 2 t n ( - - - 2

Let C derote the curve determined by

x:y — -
1 - t -n

)
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see Figure (5) (The arrows denote t increasing).

Figure 5 — The Aj,(t) = 0 curve

Consequently for f e S* the change in arg A+
0(t) is 2ir, while for f e S "the change is

zero.

We now turn our attention to the determination of the roots of the equation

0tanj3 = w, w real. (3.22)

We leave the reader to pose a Sturm-Liouville problem for which (3.22) serves to determine the

eigen-values. In much the same manner as we derived equation (3.5) the substitution

leads to

z - — {Logl-?—-)± 2in7r } = 0,
Zw z + 1

(3.23)

(3.24)



from which we can determine tiierools. We introduce the functions

1 7 - 1
— ) }, (3.25>

~ mz. (3.26)

and

í2n(z) = Ân (z)Â-n (z) . (3.27>

The boundary values of these functions on the cut are given by

AiW-tít-JX^-jL-). R»
1 inrr

* 0 . 2 9 )

and

We now wish to apply the argument principle in turn to A0(z) and An (z) , n > 1 . From
equation (3.28)

Arg t + Arg A ± ( t ) ,

where

and so to determine the change in arg A0(z) around the cut we need to examine

- f f

2u
arg A+(t) - t a n * 1 { ^
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which in turn depends on the behavior of

Now

dD(t)

dt
• = 1 + -

and so for w > 0, D(t) is an increasing function passing through the origin. For o> < 0 howerer,
the situation is more complicated. Clearly D(t) has stationary points at

so the behavior of Ô(t) will depend on whether - 1 < w < 0 , o r u ; < - 1 . Figure6 gives
sketches of the various cases.

Figure 8 - Behavior of 6(t) for oj < 0
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In either case the net change in arg A*(t) is it. and as A^ttl are complex conjugates the
net change in arg A~(t) is also *. However, the change in arg t around the cut is-2ir so that
there is no net change in arg AQ(z) around the cut. The change around the large circle is clearly
4ir as (Âo(z)/z2) -* 1 when | z |-» <», so that Ao(z) has two zeros t zo say, in the cut plane.

The reasoning for An(z) makes use of the behavior of D(t), and indicates that An (z) ,
n > 1 has precisely one zero in the cut plane. We now are in a position to determine the
factorizations of Ao(z) and ftn(z). Now for Ao(z) the appropriate Riemann coefficient is

! ! < l . {3 31)

A" (t)

but to be consistent with our choice of taking the principal value of the argument it is
convenient to consider the cases to < 0 and w > 0 separately. Now for w < 0, Arg At,(0) = —
and arg A;{1) = jr, while for w>Ga.ç A^(0) = - | and arg A;<1) = 0. Thus by the results of
chapter 2 we can write.

X0(z) = - ~ exp { j J arg £ (t) - ~ }-co<0, (3.32a>

1 * #J+

X0W = — e x p { — / largA;(t) -JT^r'A'>0- 032b)

We can combine these results however, if we make use of the identity

1 i dt

2 \ t-z

deriving

1 1 , n dt
X0(z) = - 7 = = exp {— / [Arg A+

0(t) *• — sgn(«)] } , <3-33>
V no 2 t - z

where it is understood that

it 12, w < 0 ,
arg A+(OH
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The factorization for Ào(z) now takes the form

If we set z = 0, after first dividing the equation by z we deduce

z2 = *xp{ Jiafg A_(t) + ~r* sgn(co)] },
0 2íO 7T o Z *

and so from equation (3.23)

jrco ,, 1 • T dt mdi
/3O = ± (—y 2 exp { / [arg Ao(t) + - y sgn(w)]—— }• u.^/

2 f o T

This indicates that 0O is real if to > 0, and purely imaginary if co < 0, a result we could have
deduced by other means.

The factorization for í in (z) , n > 1, is

Ón(z) = ( z 2 - z 2 ) X n ( z ) X n ( - z ) ,

where

1 i * dt
Xn(z) = exp {— / argiTn(t) }•

Ti o t — Z

On setring z = 0 here, we find

and so

, = i -2- (4nJ - 1 )1/' exp {- — / arg ifyt» - ~ }'
2 if n X

(3.35)
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which is clearly real for all u. In figure 7 we give a graphical display of these zeros.

Figure 7a — Zeros of j3 tan j3 = w, u > 0,

Figure 7b - Zeros of 0 tan 0 = w, u < 0.
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Example: Apply the argument principle to A0(z) for complex values of co, in the manner
used for A0(z).

CHAPTER IV

The Matrix Riemann Problem

This chapter is essentially the same as in Muskhelishvili's book ( 3 ) .

Notation. As usual C will denote a simple contour, D+ the interior of C and P the exterior, as
depicted in the figure

A

•I<z) will now denote an n-vector i.e.

r
1 ' ( z ) = «I», ( z )

•I'.

(4.1)

When a vector or a matrix is said to be Holder on C we shall mean that each component is
Holder on C. Likewise <l<z) will be called sectionally analytic if each component is sectionally
analytic. The principal part of '<) at •» will be denoted by

y{7.) - (4.2)

Tn
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where each yi is a polynomial.

The Cauchy Integral

Let 0{t) be a vector, Holder on C and consider

0 ( )
4>(2) = / dr.

2rri c T - z

i.e.

4),(z)= / -^ or ,
2ffi C T - Z

1 02 M
/

27TÍ C T ~ Z

dr.

etc.

It is obvious that the Plemelj formulas yield

2 2rri c r - t

t ;
2 2TTÍ C r - t

(4.3)

By Cauchy's integral formulas it is also obvious that if <t(z) is analytic in D* and continuous on
C,then

1 * * ( T ) 1
= — - / -'dT,z e D+,

2TTI c r - z '

1 4>(r)
0 = — / drzeO-.

2m c T-2

(4.4)

THEOREM (4.1). The last formula of (4.4) is a necessary and sufficient condition for a
continuous function to be the limiting value of a function analytic in D*.



PROOF. The necessity is simply the above. To prove the sufficiency let
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F(z) = —
2

/
2n\ c r - z

zeD+.

Clearly F(z) is analytic in D+. By the Plemelj formula

F+ ( t ) -F"( t )=**( t ) .

But F" (t) = 0. Q.E.D. An equivalent form is

2ni c r - t
,„. (4.5)

This may be seen as it is evident that (4.5) follows from (4.4). If (4.5) is true then

1 r ^ < T )g(z) = — - / ár. z e D ,
2iri c T-Z .

has zero limiting values on C, and hence must be zero in D~, i.e. g(z) =0. Also by Cauchy's
Theorem

7(z) - —— / dfzeD
2rri c T - Z

2ff l C T - Z

(4.6)

for a function analytic in D "except for a pole at °°.

THEOREM (4.2). The last equation of (4.6) is a necessary and sufficient condition for a
continuous function to be the limiting value of a function analytic in D". It is equivalent to

2ffi c r-t
(4.7)

PROOF. Similar to the above

The Homogenous Riemann Problem

Let G(t) be a n x n matrix which is Holder on a given smooth contour C, and also is such
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that

onC

DEFINITION (4,1), The Riemann problem will be to determine a sectionally analytic function
<l>{z) such that

4>*(t) = G(t) *-(t> on C, (4.8)

* 3

*£

' In

J2n

Jnn

* 3

and so

•I =

We shall refer to this as problem I, i.e.

r+ G
2 J

<i+ (t) = G(t) * - ( t ) ,

1n

2 n *

Gn n * "

We first seek an equivalent statement of I, Oneis the following To determine a * " ( t ) ,
on C such that
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(1) <l>~(t) is the boundary value of <i<z) analytic in D~, with a principal part?(z) at00.

(2) <l>+(t) determined from I is the boundary value of a function «Ifa) analytic in D+.

Now an equivalent form of (1), by Theorem (4,2), is

[ ( )[ ( t ) — f - ^ - ^ - d T = 7 ( t ) - (4.9a)
2 2iri c T - 1

and an equivalent form of (2) is, by Theorem (4 3),

2iri c r - t
|4.9b)

Thus problem I is equivalent to determining a vector <P" (') wkr. simultaneously satisfies (4.9a)
and (4.9b). If we multiply (4.9b) by G'1 (t) we derive

4 ( t ) + /

2 2ffi c T - 1

On subtracting this from (4.9a) we have

r J e ; ' l « r , r l d T . m

We note two things here about (4.10)

(1) It is not necessarily equivalent to (4.9).

(2) It is quasi-regular Fredholm equation, since

G-'WG(D-I = G - . ( t ) [ ^ > y > ) , (4.11,
= G ( t ) _ y ,

and as G is Holder this kernel is integrable. For this reason we will sometimes refer to (4.10) as
KF).

Now with regard to (1) we ask the following questions: (i) when is (4.10) soluble? (ii)
when is a solution to (4.10- a solution to (4.9)?

We note that every continuous solution of (4.10) is Holder, by (4.11).

The Equivalence of KF) and Problem I

Here we assume (I r(t) is a solution of KF) and we wish to show it is a solution of I.
Consider the vector
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1
/ drTM.atetf" K.12a)

2iri c T - z

1 G(T)1 ( r ) . _ .
= f dT'zeD .

2ffi c T - 2

Now

1 1 <!>-{r)
* ( t , +

* ( t ) + f
2 27TÍ c T - t

Clearly \C(z) vanishes a t « , and so on writing (4.10) in the form

dr

which we term the accompanying problem of I, we have:

LEMMA 4.3.

If problem II has only trivial solutions which vanish at °°, then each solution of I(F) gives
a solution of I

PROOF. If ¥(z) - 0 then (4.12) implies that <3>~(t) satisfies I, as *+ ( t ) = *~ ( t ) = 0 and so the
pair (4.9) is satisfied.

We now introduce the idea of a problem and a corresponding Fredholm equation. Clearly
I(F) is the corresponding Fredholm equation to problem I. For problem II we rewrite

and so as we are seeking solutions which vanish at « we have from (4.5) and (4.7) that

J
7TÍ c T - t

t 1

27TÍ C T~t
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and so

-V+lrtdTO < 4 1 3

2rri c T - t

Recapping then we have

/ f
2ni c T - 1

' "(t),

/ J £ ^ ^ T , d r 0. IKF)
2ni c T -1

The Solubility of I

Now introduce the following problems with their corresponding Fredholm equations

•!"(t) = G-'{t)<!''1t),

2?ri Jc T-t

(t) I I '

f
27TÍ C T ~ t

G is the transpose of G. Problem I' is the associate problem to I. We also observe that I' is the
accompanying problem to IT. Thus we have:

LEMMA (4.4). If problem I' has only trivial solutions which vanish at °° then every solution of
the Fredholm equation corresponding to problem I I ' is a solution of I I '

PROOF. By Lemma (4.3)

THEOREM (4.5). If problem I is such that neither its accompanying nor its associate
problems II and I' have non-trivial solutions vanishing at °°, then the Fredholm equation
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corresponding to problem I (4,10) is soluble for any 7(t) and every solution of it is a solution of
problem I,

PROOF. By the above lemmas tnere exists * * ( t ) which is the boundary value of an analytic

function, { ^ ( t ) = 0 is one} Now a necessary and sufficient condition for the solubility of the
Fredholm equation corresponding to I is

/ 7(t)*+(t)dt = / [ 7 i *
c c

= 0,

Thisisagenerai'Zdtionof a Fredholm theorem as II'(F) is the adjoint of I(F) But, as we have
stated the ty* are boundary values of a function analytic in D +, the 7, are polynomials and so
7 i(t)4'*(t) are boundary values of a function analytic in D* and so Cauchy's theorem assures us
that the condition holds Q.E D

The Solution of I when Theorem (4,5) Applies

We restrict attention to solutions which are bounded at <*>, Now the theorem guarantees
that solutions of I (F) exist no matter what values we attach to 7. We thus write that

1

1

* •

is a solution when y{t) =

Similarly

~ 2

is a solution when 7(t) =

etc. up to $>"(t) and y{%), Clearly then the general solution of I(F) is

n +1
* " ( t ) - r , * ( t ) +

m
14.14)
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n + 1 m

Where <!' (t) . . . <r (t) are all the linearly independent solutions to the homogeneou;

aquation corresponding to I(F) i.e. 7 = 0, and the 7, are constants. We note that if <I ,"(t) and

<f'2~(t) are solutions when 7 = 7 then «I ,"(t) - 4 "(t) satisfies the homogeneous equation and
n + 1 m

SO is <|> (t) tO 'I (t).

Also by the theorem, if we denote the solution to the Riemann problem corresponding

to »I "(t) by «I '.2:, then the general solution to I is

1 n n + 1 m
< 4 1 5 >

It is clear that

* k H = S jk. (4.16)

General Case.

LEMMA (4.6). Let's denote the number of linearly independet solutions of the homogeneous

equation I(F) and let k be the order of any solution at - , then k < s.

PROOF. Let 'I (z) have a zero of order k at - i.e., near - ,

zk zk + 1

Now z<I (z), z2 ' l (z) . . . zk ~ 1 «I (z) are thus solutions of I which vanish a t -wh i ch will yield

solutions t«! " {t), t 2 ' K i t ) , • . . t k ~ 1 <T(t) to I(F) homogeneous. Now these are clearly

linearly independent, whence k < s.

LEMMA (4.7). An integer r > 0 exists such that the order of the zero of any solution to II
and I'at - does not exceed r

PROOF. By Lemma (4 6), s's exists for II and I' separately and so we simply take the larger.

To determine the solution of I of degree at - not exceeding r.

Consider the problem
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where a is in D+ . Thus G(t) -*• (t - a)rG(t) and we suppose we are seeking solutions bounded at
°°. Now the accompanying problem is

(t-a)r

and the associate problem is

« :MO.-P$-Í-W.
(t-a)r

* *
Now if either 11 or I' has a solution vanishing at °° then

- z e D "
and (z - a)r

'l'(z) = lHz>; zeD*

- a i r(z - a)

are clearly solutions or II and I' respectively, which vanish at °° with an order larger than r,
which contradicts the original statement about r. Consequently, by Theorem (4.5) I possesses
solutions which are bounded at °». Then

* ( z ) = * ( z ) , zeD",

= (z-a)r<í>(z). zeD",

is clearly then a solution of degree r or less of I.

We thus have the following theorem.

THEOREM (4.7).

Every solution of I of degree at most r at <», where r is sufficiently large, is given by

1 n
where <I>(z)... <l»(z) satisfy

(4.17)

Hm «-'í-W-k, (4-181
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and <1> (z). . (iMz) are solutions of degree less than r at °°. Clearly m depends on r.

The Homogeneous Riemann Problem and its General Solution

We will now assume that an integer r satisfying Lemma 4.7 has been assigned, and also
now it has been established in Theorem (4.7) that all solutions of degree of at most r at 0°, are
of the form (4.17).

LEMMA (4.8)

n
The solutions <I>(z), <lMz)...'!' (z) are not connected by any relations of the form

1 2 n

Q, (z)(!Mz) + Q2(z) <\iz) + . . . + O-ntzV'Mz) = 0, (4.19)

where the Q, (z) , . . . Qn (2) are polynomials, not all identically zero.

PROOF.

Now (4.19) is equivalent to the n equations

Q, (z)*a (z) + Q2(zH>a(z) + . . . + Qn(zH>a(z) = 0,

a = 1 . 2 , . . . n.

Now if polynomials Q i ( z ) . . . Qn(z) could be found so that (4.19) were true then necessarily
the determinant

í &ftfc) I

would have to be identically zero which is clearly not so from (4.18)

The Construction of a Fundamental or Canonical Solution

Among the solutions in (4,17) there will be some with lowest degree at °°.

[This is so because the order of the zero at °° is finite, see lemma (4.6)]. Denote this degree by
-Ki and a solution having this degree bv x(z). Note that if x(z) vanishes at «° Kt > 0, and if
X(z) has a pole a t » «i < 0 .

Now denote by - K 2 the lowest degree of those solutions which are not related to x(z) by
any relation of the form

Pi(z)x(z)



50

where Pt{z) is a polynomial. Let \U) be one of these solutions Clearly k2 ^ M
i.e. <i < «i

i

. Denote by - k j the lowest degree of those solutions which are not related to xU) and
\(z) by any relation of the form

where P,(z) and P2(z) are polynomials Let xU) be one of these solutions Clearly
- K 3 > - K I > - K I i.e

K2 < K ,
n

To demonstrate that this can be done until some solution x(z) is obtained, suppose that k
solutions xU), ,, xU) have been constructed in this way and assume that all other solutions in
(4 17} are expressible in the form

I "

Consequently the solutions <I>(z) 4>(z) could be written in this form, i.e. by successive
elimination it is clear thatnthis would imply a relation of the form (4 19) which is impossible
Thus n solutions x(z). • - X(z) can be constructed so that they are not related by polynomials
with degrees - K i , - K 2 . . . - K n such that

We will prove later that the process cannot be continued further

LEMMA (4.9)

Any solution of degree less than - K can be represented in the form

X(z) = P,(z)X(z) + . +P k -1 (

PROOF. Assume the contrary. Thus a solution of degree less than k would exist not of the
above form. This contradicts our method of selection however, as x(z) is supposed to be the
solution of lowest degree not representable in the above form

THEOREM (4.10). The expression

i i "
X (z) = a, x(z> + a?xlz) + - + anxU), W-20)
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where the a, are constants, not all zero, it non-vanishing in the finite plane.

PROOF. We prove the result by contradiction and so assume that:

Case (i) x(z) vanishes at z = c not on C. As x(z) is analytic at c it has an integer order zero so
clearly we can write

X(z) = ( z - c K ( z ) .

where <t>(z) is analytic at z = c. Now clearly 4>(z) is a solution of I as

X"(t) = ( t - c )# - ( t ) .

However x*(t) = G(t)x"(t),

=» 4>+(t) = G{tH'-(t) .
k

Let ak be the last coefficient which is non-zero. Thus the degree of (I>(z) is less than x(z) and so
by Lemma (4.9) can be expressed as

whilst from (4.20)

1 2
(z-c)*(z) = ()

These two equations however imply a relation

P, (z)x(z) + h (z)xIz) + .. - P,(z) x(z) = 0,

which contradicts the properties of the x(z).

Case (ii). Ajsume x(z) vanishes on C, i.e. there is a point c on C such that x*(c) = x"(c) = 0 .
Note that if one of these vanishes the other does as G(t) is non-singular. Consider now

z - c
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Clearly <t(z) is a sectionally analytic function with continuous values on C except possibly at
z = c. Now as x^ t ) are Holder on C

| t - c l a

0 < a < 1

| t -c | a

where * * ( t ) are continuous, and so equations (4.4), (4.6) will hold and so will equations (4 5)
and (4.7), except possibly at t = c. Consequently $~(t) will satisfy the I(F) for some 7(t)
except possibly at t = c. That is

, , 1 . G -Mt )G(T ) - l
X"(t) ~T fr

2JTI C T - t

and

1 . G ' ( t ) G ( r ) - l

2JTI C T - t
* - ( r ) d r

However both these equations have the same kernel, viz.,

K(u)

where K(t,T ) is continuous, and thus they have the same resolvent R(t,r ) which is also of the
form

and so

1 ,
*"(t) = 7, (t) +—: /

2?ri C
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except possibly at t = c. But the R.H.S. of this equation is bounded for ail t e C, consequently
(I*~(c) is bounded. This implies that a = 0 and hence <I>~(t) is continuous at c and hence Holder
at c and hence on C. {This requires defining*"^) = !im *~(t)). Thus<Mz) is a solution of I and
so the argument of case 0) now applies. t"->c

1 2 n

We now have the following properties for the x<z), x(z),.. . x(z):

Property 1.

A(z) = det I Xft I

does not vanish anywhere in the finite part of the plane. If it did vanish at z = c then the system

a2x(c! . . . + anx(c) = 0

would have a non-trivial solution for the a,, which contradicts (4.10).

Property 2.

Set

X°(z) = z « 0 x U ) . ( 0 = 1 . 2 , . . . n ) .

then

Ao(z) =

is non-zero is non-zero and finite at °°. It is clear that A°(°°) is finite. To show that it is
non-zero suppose it is. This implies that non-trivial a, can be found so that

a,z»<i xlzJ + ajz"* x<z) + . . . + anz
Kn x

= 0,},.
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as z -*• oo. Let ak be the last non-zero a. Then

X(z) = a,z*i

Consequently x(z) can be represented (Lemma (4 9)) by

l ) + . . . + P k - 1
k x ( z ) .

By equating these two expressions for x(z) we have

5(2) = Q, (z)x(z) + Q2(z)x(z) + • + Qk(z)x(z)

which is not possible. It follows from property 2 that any expression of the form

has a degree at infinity equal to the degree of those terms which have the highest degree, i.e.
m a x . ( m j - K i , m 2 - K 2 I . . . , mn - K n ) , thus the terms of higher degree cannot cancel.
Substituting for x(z) gives

X(z) = z-Ki P,(z)x -'<n Pn(z)x°(z),

and so near °°

X(z) ^ 2
m i K|

Xo H

J

mn *n
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Suppose that the highest order terms are z™*1 " ' and z™2 "2 and that they cancel. This
implies however that column 1 and column 2 are linearly dependent which is not so as
det l x M

Any n solutions of problem I having properties 1 and 2 will be called a fundamental or
canonical system of solutions.

The matrix

X<z) =
1 2
X, X ,
1 2

x2 x2

n
• • X ,

n
• • X ,

1 2 n
Xn Xn • • • X

will be called the fundamental or canonical matrix for I.

Also as

= G(t)X"(t),

it follows that

G(t) = t e C . (4.21)

THEOREM (4.11) All solutions of I can be expressed as

= P, (z)X(z) + P3(z)X<z) + . . . Pn(z)X(z),

i.e.

<Hz) = X(z)P(z),
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where

PU) =

is a vector of polynomials

PROOF. If 4>(z) is a solution, then

teC.

From (4-21) this is

e (X(z)]"14<z) is analytic in the entire plane and of finite degree at °° and so

Conversely it is also clear that

is a solution of I

[X(z)P<I>(z) = P(z). etc

= X(z)P(z)

COROLLARY A solution matrix X(z) possessing only property 1 is sufficient for this theorem,
as the only fact used is that X(z) is non-singular in the finite part of the plane,

The integers K , „ K2 , * 3 . «n are called the component or partial indices of I and their

sum

K =

the index or total index.

THEOREM (4.12). The component indices are the same for all fundamental systems.
PROOF. Let x(z) and f (z) denote two different fundamental systems. Then by the above
theorem (4 11) we can write

X(z) = Pi f ( ) +Pinf(z), (a)
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and

Í!z) = Q,1xU) + Qi2X(z)+ .. + Q inxW. (b)

where thu P,. and Q,: are polynomials. Now assume that the component indices for
i

the x<z) have been ordered so that nt>Ki> . . .>Kn and similarly for the f (z )
wi th X, >\2 > . • > A n .

Suppose t h a t / i , = K2 = . . .=Kk> Kk^^ and \ t = X2 = . . . = X £ > X ç + 1

Now degree of the R.H S of (a) > - X t

i.e. - K i >~\\,

and the degree of the R.H.S. of (b) > - X j ,

- X ! > - K X ,

i .e

X , = K ,

Now we need to show k = fi from (b)

f(z) = aix(z) + ajx(z) + . . . + akx(z),

for i - 1,2,... (, and the \ are constants. Suppose fi > k we could successively eliminate the
X(z) i= 1,. . . k to derive

bj}(z) + b,f Iz) + . . . + bgf (z) = 0,

which is clearly impossible. Similarly k > fi and so k = C. The argument proceeds in this manner.

THEOREM (4.13) The total index can be determined from G(t) directly.

PROOF. Consider the scalar problem

<l-+(t) = [detG(t) ]<IHt), t eC .

Clearly

= A(z)
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is a solution to this and

[logA+(t)]c =[logdetG(t)Jc + [logA-(t)]c-

Now A(z) is analytic and non-zero in D+ + C and so

[logA+(t)]c = 0.

Furthermore A(z) is analytic and non-zero in D~ except possibly at °° where it has the form

A°{z)
A(z) =

and so

[logA'(t)]c = -2ffiK.

Thus

K = [logdetG(t)]c. (4 22)
2TTÍ

THEOREM (4.14). If X(z) is a fundamental matrix for I. i.e.

then [X(z)]"1 is a canonical matrix for I', the associate problem, i.e.

* * ( t ) = [G(t)]'1 * ' ( t ) .

PROOF. From

we easily derive

(X^t)]"1 = [6WJ.-1 [X-(t)]"1
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and so it is a solution. To establish it as a canonical solution we need:

Property 1. The determinant is non-vanishing in the finite plane, This is immediate, however,
from

]

Property 2. Write

[Xlz) -» = [fa(z)j= [fa(

and so

A(z)

where h^U) is the co-factor of the element x« in the determinant Alz). Consequently

so the degree of f(z) at infinity is exactly Kjj. Also

which is non-zero at«°. Q.E.D.

Corollary. If « i , K j . . . Kn are the component indices of G(t) then - K I , - n j , . . - Kn are the
component indices of [G(t)j ' .

Examples. When the G(t) is a rational matrix, we can write

where qij(t) does not vanish on C.

Write

P(t)
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where P(t) is a matrix of polynomials and r{t) is a scalar polynomial. Further factor r(t) as

r(t) = r+(t)r_(t)

where r+(t) is a polynomial with no zeros in D*

r_ (t) is a polynomial with no zeros in D~.

Thus the problem

becomes

where

= G(t)«K(t) (i)

= r+(z)«t(z), zeD*

= - -7 - ; C(z ) ,zeD-

Now we know that det G(t) ¥= O on C and so det P(t) ^ O on C For the moment assume that
detP#Oin D*,then

where

k k
=7, z c D '

7 =

is a fundamental solution to (ii) Note as det P # 0 in D* (ii) has a zero total index
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Consequently by (iii)

= r_(2)7, z e D"

represents a fundamental solution of (i).

Ex. :D

G(t) = 1

0

0

1

1

0

0

0

1

Here r(t) = r+(t) = r_(t) = 1, i.e. G(t) = P(t),

X(z) = 1

0

0

1

1

0

0

0

1

,z e

and

X(z) 1 0 0

0 1 0

0 0 1

e D

Note K =0.

Ex. (2)

G(t) = t

0

0

0

t -1

0

0

0

t -2

Again r+(t) = r_(t) = 1 nnd P(t) = G(t). However C cannot contain 0,1,2.
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and

Ex 3

and so

with

X(z> = z 0 0

0 2 - 1 0

0 0 z 2L1

X(z)= ' 1 0 0 . z e D-

0 1 0

0 0 1

G(t) = izl
t + 2

0

0

— I —

t1

t - 1

t+ 1

t + 1

t + 2

0

1

r{t) -

d e t P - t 2 ( t - T ) ( t t 1 ) J ( t

' i t - l i l t *

0

0

t2(t +

( t -

1)(t +

1)(f

?.){

2)

21 (

0

t + 1)(t + 2)

1

For a contour not containing - 2, - 1 ,0 and 1 wo have

r+ = (t + 1)(t + 2 ) , r - =
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Thus

X(z) =
i s - Wz + 2) 0

0

z -

z +
0

0

1

2
z

z2

z - 1

z+1
z + 2

0

1

+ 2) (z v I ) 1

z2{z+1){z + 2> 0

( Z - I H Z + 21 (z + 1)(z + 2)

or

and

,z

Ex.4

z + 1

X(z) = f i 0 0
I 0 1 0
I Ü 0 1

G{t = t 0 0

0 t - 1 0

0 O t -2

where C encloses origin bu not 1 or 2.

•Jl 1 -

1 2

We can easily show that the total inrigx is 1.

Note

gives the 3 scalar problems

G(t)*-(t)

**(t) = t<f-(t),
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Thus we can write

giving us

*(z) = 1.

z

«Mz) = 2 - 1 .

- 1 .

Íi) = i-2.

= 1.

XW 1
0

0

z e

z e

Z c

ze

ze

0

D",

D \

D .

D*.

D ,

0

z-10

0 z-2

,z e

0 1 0

0 0 1

, 2 f D "

with

= 1, «2 = 0, K3 ^ 0,

Note if C includes 0 and 1 not 2

X(z)= 1 0 0 , z e D \ X{z) = 0 0 , z e D'.

o I r - o
0 0 1

0 1 0

0 0 z-2_

CHAPTER V

The Matrix Riemann Problem in Transport Theory

The method of singular-eigenfunction expansions, introduced by Case161, has in recent
years been uti l ized'7 l 2 > , in the degenerate-kernel approximation of the energy-dependent



65

transport equation, or the multi-group transport equations'71 A crucial point in its use is the
proof of the basic completeness theorem, i e the demonstration of the expansion properties of
the elementary functions Generally this is based on the reduction of a system of
singular-integral equations to a matrix Riemann problem of the form,

Í'*lt)=G<t)«I/ (t) +K_!t),te L, (5.1)

were L is an interval on the real line, G(t) and Kit) are given n x n matrices, and £~(t ) are
limiting values of the n x n sectionally analytic matrix <Hz) to be determined, i.e

'I-^lt) = Mm + <I>(t ± iy)
y-*0

The interesting cases are the half-ranges'7-9'11'121, or the two half-space applications'101, for
which we require a so-called solution of

£ + ( t ) =G(t) <K( t ) , te L, (52a)

where the matrix GJt) is of the form

G ( t ) = A ; { t ) [ A - { t ) ] - 1 , (5.2b)

with

l dt
A(z) = l + zf . 4i(t) (5 3)
~ ~ - t - z

Here ty(t) is a real function of t, and, without loss of generality, we take L to be the interval
(0,1) on the real line If Git) is continuous and non-singular on L,with G(0) =G(1) =J, then as
explained in ' 1 2 ) the theory of Mandzavidze and Hvedelidze'13' guarantees the existence of a
canonical solution <l{z) to the boundary-value problem. We use the term canonical to mean
that det #(z) =£ 0 in the finite plane In addition to this property a canonical solution may also
be of ordered normal form at infinity, I e it satisfies the equation

lim « H z ) Z K = * ( 0 1 . (5.4)

ZK=diag {zK\ , iKi ,. , zKn } ,

where £ ( 0 ) is a non-singular constant matrix and where the integers {K, }J = , are the partical

indices'13', of the problem. We will suppose that the partial indices are ordered so that

Ki >K3>.. ,>Kn. It is readily shown, see for example'7-12), that proving half-range

completeness is equivalent to showing that the K, are non-negative f Note that « = , = 1 K, is

calculable from the result K = — fa'g det C-(t)]0 , where | ,|ó denotes the change as t proceeds.
v "
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from 0 to 1 J One purpose of the present note is to show, for the general n x n Riemann

problem (5 2) that a canonical solution of ordered normal form at infinity exists which satisfies

<I>(z)='I>(z) = <Hz) (5.5)

We begin by c'ting some straight forward lemmas:

Lemma 1. If <I>(z) is a solution of the Riemann problem (5 2) then so is £(z)

Lemma 2. If * ( z ) is a canonical solution of the Riemann problem (5 2) then so is i$,'(z).P(z>,

where Plz) is an elementary matrix, i e a matrix of polynomials with det P(z) = const (=£ 0).

Lemma 3 If <I>(z) is a canonical solution of ordered normal form at infinity of the Riemann
problem (5 2) then so is <£(z) P(z) where P(z) is an elementary matrix whose elements satisfy
the following conditions:

(a) if i < j , degree of P(J(z) < K, - K,,

(b) if i = j .P, , (z) = const,

(C) if i > j , P l j ( z ) = O,

= COnst., Kj =K j .

For convenience we shall call such elementary matrices allowable. We now proceed to
our main result:

Theorem (5.1). For the Riemann problem (5.2) there exists a canonical solution of ordered
normal form at infinity, such that

<Mz)=<Mz)

PROOF. The proof is constructive. Now for large I z I we have

<l>(z) - { * ( 0 ) + ~ <I>(1' + - * ( 2 ) + . . . } Z~ K, (5.6)

where Z~K =diag {z ~ K i , z~Ki,..., z"Kn }, and t h e j j ( i ) , i > 0 are constants matrices with det

(jjio) ^ o |yjovv a s ^,(0) j s non-singular there is at least one non-zero element in its first column.

We take the first such element. <I>(0> say and without loss of generality assume it is unity, (if

á?íi ^ 1 we may divide the first column of >I>(z) by 4>£ ).'Now by multiplying <£(z) by a

suitable allowable elementary matrix the remaining columns of $(z) may be modified to that

(5.7)
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(To avoid the introduction of further notation we will still call the modified solution H-'UI) We

now select the first non-zero element *t>
m2 ' m ^ ^ 'n t n e s e c o n^ column of <|;l0) and assume .t

is unity. The succeeding columns are now modified, again by multiplying by a suitable
allowable elementary matrix so that.

^ j , 2 - K j ( 3 < j « n . (58)

This processes is repeated for the remaining columns. If some of the nt are equal say
Kp = Kp + 1 = • • • = / < q ' t n e n i n addition to the above steps we modify ^>{z) so that if the first

unit element in the nth column of * i 0 ) , p < r < q, is «I^'then <I>^ = 0, p < m < r. Thus jMz)

is now such that 4> l0) is the sum of a permutation matrix P and a singular matrix S such that if

Pjj = 1 then Spj = 0,1 < p < i and S j q = 0, j < q < n. Some of the remaining ^ ( l ) , i >\ will

also have, in general, certain zero entries. Our claim is that the 4>(z) so constructed satisfies the

equation 4> (z) = <I)(z).

Consider the following matrix,

(5 9)

Clearly >£(z) is a sectionaliy analytic solution of the Riemann problem (2) and so may be

written'1"", as

*(z)=<Hz)P(z) (5 10)

where^(z) is a matrix of polynomials. It is now a straightforward matter to argue that_P(z) = 0
Let J r (z) and £ r (z ) denote the r th columns of <j/jz) and « (̂z) respectively, so that from (10)"

(51D

We now examine ̂ r ( z ) , noting that only two cases may arise

|i)K, > K 2 From (5 11) it is clear that Pj; = 0,2 < j <nandso

where Plt is a constant On recalling that i bj = 1 and tyn = 0 it follows that P j , = 0 , and so
Ji(z) = 0.

(ii)«i -Kt = .. : = Kq. Here, we have that Pjr= 0, q + 1 < j < n , 1 < r < q , and so

* r | z ) = X * i ( z ) P i r , 1 < r < q ,

/vhere again the Pjr are constants. However, by reasoning similar to that used in (i), it is eviden-
that Pjr= 0,1 < j < q, 1 < r «* q, to that * r { z ) = 0 , 1 < r < q

By proceeding in this manner for the remaining columns of ""V (z) we iloi'i'o? that
indeed P(»)=0. ""
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We are now in a position to show that the partial indices are non-negative:

THEOREM (5.2). The partial indices for the Riemann problem (5.2) (5 3), where in addition
4'(t) is symmetric, are non-negative.

PROOF. We first observe that as * ( t ) is symmetric so is AJz). In addition it is also clear that
A(z) = A( -z ; R/ making use of these properties it can be shown that if <Wz) is a canonical

solution of the Riemann problem (5.2) then the matrix A(z) í ( - - z | is also a solution, where <l
denotes the transpose of £ Consequently we may write ~ ~*

A(z) - J(z)P(z)«H-z) (5.12)

where P(z) is a matrix of polynomials. We now choose <l'(z) to be of ordered normal form at
infinity' possessing the Schwarz reflection property. ~"

Suppose now that K n < 0 . By examining the Laurent series of both sides of equation
(5.12) near the point at infinity, it is clear that this assumption leads to a contradiction unless
Pnn(z) s 0. However from equations (5.3) and (5.12).

P<0) = $-'«»$-Mo),

so that as £ (0) is real and non-singular Pnn(0) =£ 0. Thus Kn < 0.

RESUMO

Oe ítre os vários processos de resolução da equação de transporte linear, o método de Case de expansão
singular e considerado o mais elegante das soluções analíticas Apesar desta técnica ter sido aplicada por
muitos pesquisadores em vários problemas e a sua soluçSo possibilitar um tratamento numérico com alto grau
de acuidade, ela requer conhecimentos de matemática nã convencionais

Neste relatório, sáo apresentados os conceitos fundamentais e os teoremas matemáticos requeridos.

É feita um rápida recordação da teoria de funções de variáveis complexas seguidas da definição da
integral do valor-principal de Cauchy e os problemas de contorno de Riemann para uma função, são
apresentados de maneira sucinta Como aplicação da teoria aqui desenvolvida, são encontradas as soluções
analíticas dft uma classe de equações transcedentais. São discutidos, também, os sistemas de equações
integrais singulares e os problemas de matriz de Riemann requeridos no modelo multi-grupo da teoria de
transporte. Finalmente, como exemplo, um problema típico de aplicação da teoria de um grupo é resolvido
em detalhes
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