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THE MILNE PROBLEM FOR TWO ADJACENT HALF-SPACES IN

THE THEORY OF NEUTRON DIFFUSION WITH

ANISOTROPIC SCATTERING

C E Siawert and Yuji lihiguro

ABSTRACT

The e'emenia-y so'ui-ons 0' ine one speeo neuron transport equal on «tin i-many amsovopic scattering a>e
usea >n co-iuna-or» * • " Chanaaieki»* s rw* ance p> ncpies to to've n a conscw nwnner 'He M'inc problem tcx ir.o
Miacent ha-> scaces

I - INTRODUCTION

An early paper by Kuszelt"1 was the fust to use the newly developed, by Case121, theory of
elementary solutions of the neutron transport equation to study neutron diffusion for problems defined by
the presence of two dissimilar media The early work of Ku&tel l1" was limited to the case of «otropic
scattering and was left in a 'ainei cumbersome final form Later work by Mendelson and Summerf lel t í ' ' ' '
also contributed to the general area of mu I ti region problems; however, it is to the basic we k of
McCormick19' and McCormick and Doyas19' that we must bokfor the most significant contributions to
two media problems with the effects of amsotropic scattering included

It is, of course, weli known that the treatise by Cnarvdrasekha-151 established a vast amount of
knowledge about the jquation of trair.fer, for radiative heat-transfer applications Chandrawkhar151

developed extensively the invanance principles associated with the equation of transfer for amsotropic
scattering, a» well as toi isotropic scattering Today in the fie'd of neutron transport theory many
researchers consider me fundamental paper published by Caso121 in 1960 to be the cornerstone of the
theory of "exact" solutions In 1969 Pahor and Zweifel" " in an elegantly written paper demosirated how
the work of Chandrasekhai'51 and Case12' could be coupled and utilized at the same time to obtain in a
profriaole and concise manner certain results :or a variety of single medium (semi infinite or finite slabs)
problems

In an early important, but not so well known, paper Chandrasekhar*4' put forward the idea of
using the S function, a consequence of his principles of invanance, to study adjacent half pace problems
This idea has been used recently by Ishiguro and Maiormo16 ' to investigate several problem based on the
two group model; the idea has also been used by Siewert and Burkar t " 4 1 for the critical reactor problem
for a reflected stab Though the paper by Siewert and Burkar t1 '4 I is thought to illustrate the advantages of
using the S function fo> problems involving two dissimilar media, we shall see here more dramatically the
considerable improvement, over eailie<* efforts, the use of the S function provides

II - FORMULATION OF THE MILNE PROBLEM

Let us consider the one speed neutron transport equations for region 1, r. > 0, and region 2, x < Ü,
written m the familiar manner

'" 1 i
u . - * a <X,M) •• * a ( M - , ca/,*a!x.M'l(1 + bowndíí' (D



Here % (x. p) denotas the neutron angular density in region a, as a function of position (in optical unitt) x
and the direction cosine of the propagating neutrons, u In addition, ca denotes the mean number of
secondaries per collision in region or, and bg B the coefficient of anisotroptc scattering.

For the considered Milne problem, we seek a diverging (at x ~- ") «oiution of Eq (1) tuch that

(i) l im*,(xji)exp( x / ^ X . » , (2a)
x • • « •

lim * , (x,jil = 0 (2b)

and x

uB{ 1,1) (2c)

Here f0 denotes the discrete eigenvalue in region 3 We assume in this work that c, < 1 and Cj < 1; but
clearly with some slight modifications in Eqs. (2). the problem (and solution) will be meaningful in the
limits c, ~' 1 and/orcj —• 1.

Relying on the basic work of McCormick and Kusce- " o l , we can immediately write solutions to
Eq ID that satisfy the boundary conditions listed as Eqs. (2a) and (2b):

/ p, j p (3)
o

and

* , ( X J J ) = B[ %)<t>. ! r^. /i)exp(x/n0) + /u B( f/W, (-ijjJlexpíx/nídí? (4)

Here we are using the elementary solutions written for region 1 as

0i KM = --9- Ri K^ ; ~ r ; / (5>

where

R,(x,y) = 1 +8 ,xy ,wi th í , =bs (1 - c , ) , (6)

''o ^ I 1.1) is the positive zero of

A,(z) = 1 c,iR,(z.z)tanh ' +c , t , (7)

and

1 ' R K ) T f., IKJUH- >l) , (8)
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with

The symbol P is used to denote the principal-value functional, and £(x) » Dirac's functional

In a similar manner, we nave for legion 2 the following:

C.lin _ . . 1

where

and

also

<»J(I?^= - -yR. - ln^ l r_~y + MfNMn - iO, " H3i

lit - BASIC ANALYSIS

Since the solutions given by Eqs (3) and 14) inherently satisfy Eqs (2a) and (2b), we need simply
to constrain the solutions to obey Eq (2c), which we choose to write as

4*1 Í O , Í Í ) ~ ^ j (0,p),pt(0,11, (15a)

and

tyi (0,"/!) = ty;(0, "ii)f JUC(0*1) (15b)

At this point, we can use Chandrasekhar's S function141 to write

1 ,'p ,„ ,
2n o'

where



Here Hj <M > 's the H (unction for legion 2; s«nce we shall also need H, ( M ) , we list

3

where £, = f0 and £ ; = no Also required to define S2 i»\ (i I are the constants

If we now enter Eqs i1S) into Eq (16), we obtain

^ <20>

We consider that Eq (20) is the basic equation now to be satisfied, since if the expansion
coefficients A|v0) and A(?> can be chosen such that aq (20) is obeyed, B( r)ol and B(-fj), if desired, can
readily lie obtained from Eqs {15) by utilizing the available ( 3 ) half-range completeness and orthogonality
theorems for region 2 On substituting Gq (3) into Eq (20), we find that the integral over (i' can be
evaluated by invoking several of the H function identities given by Chandrasekhar*51 Because the algebra
involved m evaluating the integral over \x is tedious for xne case of anisotropic scattering, we shall list here
only the .esult obtained; however, the interested reader will find in Appendix A of this report, a detailed
development for th» case of isottopic scattering Thus

H,U )

(21)

where

with

q, = - --T-l Fi —. (23)

Equation (21) clearly is a singular integral equation that can be regularized by using the well
known13' half range orthogonality relations for one medium (m this case, region 1). Thus, if we multiply
Eq <2ltbynH,OilO,U-0,iil,where

and integrate over u from zeio to one, we can use the orthogonality relations summarized in Appendix B to

obtain



All? V

where

and

>K

«vi th

In a simil» manner, we can multiply Eq (2J) by ^H, ifiW, {v\n), f'e{O,t), and integrate over n to find
(again after utilizing Appendix B)

Heie

and

(30)

R, i*,»') f1) (3D

Eliminating Ã between Eq$ (26/ and 130), we can write

"ÍMK* [ " " 7 ' = "HÍ7Í~T
 l" ~»l J " 4(70"í VÍ" H ;(

 ; i / 0 !H, (Vo)



It now * • rearrange Eq 133) and multiply by Wb>), we can integrate to find

e.K.R. I^ .Kp) A<*o )H,^o )N t ( i -0 )K
^ > (34)

4H1(r0)M,(-i>0> H ! )

whtra tha two cowtant» K, and K, ara givan by

1 *

Eq. (34) can ba t u b t t i w d Into Eq. (26) to yield Mvol; that rawlt, along with Eq. (34), can tubiequently
bt uiad in Eq, (30) to give A(v>:

(37)

and

Equations (37) and (38) ara explicit expression! for tha expansion coefficients A ( P 0 ) and A(c); at
previously mentioned tha coefficients Bt%) and B(-n) can now ba easily established, should they be
required. Though our final results for Aty,) and A(»>) were obtained vary differently in appearance from
those of McCormicklB) and McCormtck and Dayat1*1, they art similar in that there appear extra terms, in
our case, W terms, in regard to either the itotropic scattering cate, or the tingle medium result, c, ~- 0.

We note that the neutron density in region 1 it given by

p, (X) • / ' * , (v u If1:/' AÍB. IB "/«'O + • • + / A M » " " ' 'd . . . (38)

I4 0 '

Al^Ja-^p+a"'^. (41)

Thus if we write

A{vo)« -f^h^o (42)

A l » , an Bfymptotic solution of tha Mlln* probltm can ba wrlttan at



men Eq. (41) can be written as

It is therefore clear that z is the extrapolated endpoint for the considered Milne problem.

(43)

(44)

IV - NUMERICAL RESULTS

In this section, we would like to list the results obtained by numerically evaluating lhe expressions
given for the solution of the Milne problem. The required H functions were established by solving
iteratively the non-linear integral equation; all integrals that could not be evaluated analytically were
represented by a Gaussian quadrature scheme.

In Table I, we list some typical values of the Milne extrapolated endpoint, as defined by Eq*. {37)
and (43), and in Figures i-IV, we plot lhe density /"(x) and the asymptotic density P[sM, as given 5»y
Eqs. (39) and !41). Our values are in general agreement with McCormfck and Doyas(9) and Burkart11'.

Table I

Milne Results

0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.7
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.5
0.5

b,

0.8
0.8
0.8
0.8
0.4
0.4
0.4
0.4
1.0
1.0
1.0
0.5
0.0
0.0
0.0
0.0
0.8
0.8
0.8
0.8
0.4
0.4
0.4
0.4
0.0
0.8
0.0

0.4
0.4
0.2
0.2
0.4
0.4
0.2
0.2
0.4
0.4
0.2
0.2
0.4
0.4
0.2
0.2
0.4
0.4
0.2
0.2
0.4
0.4
0.2
0.2
0.2
0.2
0.2

bj

0.8
0.4
0.8
0.4
0.8
0.4
0.8
0.4
1.0
0.0
0.0
0,0
1.0
0.0
0.0
0.0
0.8
0.4
0.8
0.4
0.8
0.4
0.8
0.4
0.0
0.0
0.0

2.18132124
2.18132124
2.18132124
2.18132124
2.02796762
2.02796762
2.02796762
2.02796762
1.637O94O5
1.63709405
1.63709405
1.50882202
1.40763431
1.40763431
1.40763431
1.20680425
1.18701913
1.18701913
1.18701913
1.18701913
1.14107736
1.14107736
1.14107736
1.14107736
1.10213202
1.10019110
1.04438203

z-> !

1.2206286
1 2636066
1.1134772
1.1312096
1.0422944
1.0777815
0.9536507
0.9684731
1.4495838
1.6297970
1,3819456
1.1387550
1.0128597
1.1159224
0.9748628
1.1248428
1.8148953
2.0016407
1.5447531
1.5949249
1.5693281
1.6907950
1.3780432
1.4162732
1.3299205
1.9736146
1.6275351
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c, = 0.8 b. = 0.0

c. « 0.4 b_ « 0.0

-1.0 -0.5 0.0 0.5 1.0 x

Figure 1 - The Neutron Demity
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c a 0.8 b. = 1.0

c_ = 0.4 b_ = 0.0/ 0.6-

0.2-

-1.5 -1.0 -0.5 0.0 0.5 1.0 x

Figure 2 - The Neutron Density
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0,8-

/0.6-

0.4-

0.2-
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0.8 b. = 0.0

c2 = 0.4 = 1.0

-1.0 -0.5 0.0 0.5 1.0 x

Figure 3 — The Neutron Density
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í.o-

O.E

0.6-

0.4-

0.2-

cx = 0.8 b » 1.0

c, = 0.4 b_ a 1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 4 - The Neutron Density
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APPENUIX A;

DEVELOPMENT OF EQ. (21) FOR THE CASE OF ISOTROPIC SCATTERING

For b. - 0, we see mat tne S. function is simply

S.(jLi,Mi Hi(ii)Hi(fi)' <A1»

for t>, :: 0, * i (x, ii) reduces to

/ ^ /"df, (A 2)

Ahete

and

On "ntering Eq (A 2i into

we find

(A3)

_ *• [ ! -c , i - tanh' i»Ji(i/-p) (A 4)

ÍA-6)

where

UM*-y I y-^ -H,(n') -^-.--j. í= t«-oor̂ (0,1) (A 7)

Clearly, after some partial fraction analysts, we can write Eq (A 7) as

uiri -- C " ^ -^ (»t¥)\y-.-~^W. (A8)

and tnus after using tne non linear H equation111.
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we find

We can now enter Eq. (A • 10) into Eq (A - 6) to obtain

j

Finally, upon cancelling like terms and common factor'., we arrive at

the version of Eq (21) corresponding to isotropic sc ittering.

APPENDIX B:

ORTHOGONALITY RELATIONS, RELATED INTEGRALS AND H-FUNCTION IDENTITIES

In this appendix we wish to summarize some of the important orthogonality relations that are
useful for half range analysis, with linearly anisotropic scattering. We will also list here additional identities
and expression* of interest in regard to Chandrawkhar's H function for linearly anisotropic setter ing.

The function

/ •,

l,VM)Vi c-yes

tan- [ Í S R J M L - J - Ê L } . (JM)
2Mx)

where

Me) = 1 - cc RIMtanh'1 v + ct»-2, (B-2)

6 = b(1 - c), R(x,x) = 1 + £x2, and c0 is ths "positive" zero of

A(*)= 1 -<zR(z,z)t3nh-' ~ + iÁâ, (B-3!

is the unique1'2' solution of the singular integral equation

' •£• = 1,1-6(0,1), IB-4a)
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and the linear const'amt

. \ . f H(p)R(p^) - - v ^ - = 1 (B 4b)

Alternatively, HU'I is the unique solution of the non linear equation

and the linear constraint

- — 9 - / H(x)R(x,x) — -_-- = 1 (B 5b!

Having established Hlju) for ur-|0,1|, we can extend the definition by allowing p in Eq (B - 1) to become
the general complex variable z:

1 +z , 1 i , DCXR(X,X) dx ,
H(z) - -••• - exp{- - - / tan"'[ •----] } (B 6)

/ 1 fr " 2\(x) x + z

3

Except for the pole at z - - vo. H(z) is a function analytic in the complex plane cut from 1 to 0 along the

real axis Tne function H(z) can thus be used is factor . (z) as

A U I = ~H(ZWTZ) {B7)

We can also deduce that

( B 8 !

Since

1
Hi--; - - : - : : - : : ; - — , (B-9)

/,c -|ci

Small can rfe ne from Eq (B • 8) the moments relation

V^I - c i ci = 1 -^ <a0 + ia2) , (B 10)

where the moments are defined by
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Chandrasttkh*'51 tuts abo found that

and

where

bq*---c + i.

2 - cao

2(1-c)

2 - ca0

The half-range orthogonality relations of Kuicer and McCcrmick'101 can be listed in the
H function notation as follows:

<B 15)

•T*
ÍB-16)

(B-20)

--• c|nH(<i)d(t • - , - — - ; -
2 2W + v Wiy)

IB-22)
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' % n, <B23)

Í? 24)

/ <>(*•>) p H M d ^ ^ ' O c)q"",i/ t{0,1). <B 25)
o

= co(1 - C|Q- ' , (B-26I

,e'e(0,1). (B27)
o

and

i = 1 - (1 c ) * n c q ' . (B28i

Here

NU) =:•[(' \(i4 >! + {- nR\vp) Hj (B-29)

and

MI i - ctlii o< it Cfit'g>1/Q' O~c)RCfrOi*}) , / o or»

RESUMO

Sáo utilizadas as sofuçdes elementares da equação de darisporce de neutions monoenergeticas para espaihamento
imearmentp ansotropico em coniumo com os princípios de n'vatiancia de Cnandrawkhar na resolução do problema de
Milne pata dois semi espaços adjacentes
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