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THE MILNE PROBLEM FOR TWO ADJACENT HALF-SPACES IN
THE THEQRY OF NEUTRON DIFFUSION WITH
ANISOTROPIC SCATTERING

C E Swwert and Yuji lshiguro

ABSTRACT

The e'emeniacy solut-ons 0! the OnNe 5QEEG NBUL'ON 1aNSEOrt BQUATON with :NB3 Iy ANISOI OPIC SCattenng are
USET 1N CONIUNCT-ON w-'n Chanyg-aseknar ¢ Nvd ance pr NLEIES 1O SO've N 8 CONsC-4@ Manner the M-ne problem tor 1v.0
adjacent ha-¥ $6aces

1~ INTRODUCTION

An early paper by Kuszell'?' was the fust to use the newly developed, by Case’2!, theory of
elementary soiutions of the neutron transpolt equation to study neutron ditfusion for problems defined by
the peesence of two dissmilar media The early work of Kuszell'?! was hmited to the case of isotropic
scattering and was left in a racher cumbersome final form Later work by Mendelson ind Summerfield! ' ??
also contributed to the genecal area of mult-region problems; however, it is to the basic wck of
McCormick @' and McCormick and Doyas'®' that we must iook for the most significant contributions  to
two media problems with the effects of anisotropic scafttering included

It is. of course, wel nown that the treatise by Chandrasekhar 'S’ esiablished a vast amount of
knowledge aboul the squation of tran-fer, for radiative heat-transfer apphcations Chandrasakhar!S'
developed extensively the invariance principles associted with the egquation of transfer for arusotropic
scattering, as well as for 1sotropic scattering Today in the field of neutror transport theciy many
researchers consider the fundamental paper published by Caso'2' in 1960 to be the corerstone of the
theory of “exact” solutions in 1869 Pahor and Zweifel!’ 3! in an elegantly written paper demosirated how
the work of Chandrasekhar‘®! and Case'2' could be coupled and utilized at the same time to obtain i a
prof+table and concise manner certain results of a variety of single medium {sem: infinite or finite slabs)
probiems

In an early important, but not so well known, paper Chandrasekhar'4! put forward the idea of
using the S function, a consequence of his principles of invariance, to study adjacent half-~pace problems
This 1dea has been used recently by Ishiguro and Maionno'S? 1o mvestgate several probieirs based on the
two-group inodel; the «dea has also been used by Siewert and Burkart''4’ for the critical reactor problem
for a reflected s:ab Though the paper by Siewert and Burkart! ! 4) is thought to #lustrate the advantages of
using the S function for problems invoiving two dissimilar media, we shall see here more dramatically the
considerable improvement, over earlier efforts, the use of the S funcuon provides

i - FORMULATION OF THE MILNE PROBLEM
Let us consider the one-speed neutron transport equations for region 1, ». > 0, and region 2, X < U,
written in the familiar mannar
il
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Here W, (x, s} denotes the neutron angular density in region a, as a function of position (in optical units) x
and the direction cosme of the propagating neutrons, i In addition, ¢, denotes the mean mamber of
secondaries per collision in region &, and by, 18 the coefficient of anisotropic SCATtering.

For the consiered Milne problem, we seek a dverging (8s x ~= =) sgiution of Eq. (1) such that

) hm W, (xulexpl x/py) < o=, (22)
X =
() lim¥, (xu =0 (2b)
and LS
{in) ¥ (0 = ¥;0u), pE( 1Y) {2¢)

Hers v, denotes the discrete eigenvalue in region 1 We assume in this work that ¢, < 1 and c; < 1; but
clearly with some shght modifications in Egs. (2), the problem (and solution) will be meaningful in the
hmitsc, - — 1 and/orc, — 1.

Relying on the basic work of McCormick and Kuscer!10), we can immediately write solutions to
Eg (1) that satisty the bcundary conditions listed as Eqs. {2a) and (2b):

Wy (e = Al lgy o alenpl-w/vg) + ¢ (v, Hlexplxly, ) +

H
S AWI®, (v exp( - x/v)de (3)
(1]

and

¥, (0 = BEMGIO: | T, leplxin) + S BI-n)g, (-nulexpixinidn @)

Here we are using the elementary solutions written for region 1 as

Cy ¥ 1
1 (g ) = "ég“ Rityy b L;_“ (5)
where
Ryl =1+ xy, withl;, =b,(1 -¢,), 8)
v, € [~1,1] 18 the positive zero of
Aifzb=1 c¢,2zR,(z.21tann ! 1 +e, 8,2, ()]

and

Y P
¢ lo ) = 2 Ry (vu) v ou W W, 8)



with
Aol =1 ceR, wpitanh 'y + 407
The symbol P 15 used to denote the principal-value functional, and 5(x) 1s Dirac’s functional

In 3 similar manner, we have for 1egion 2 the following:

;M 1
Balng ) = 50 Rufngum) o=

where
Roixy) =1+ 4xy, withl, =b, (1 - ¢y},
and
a1
A;{m,) = 1 - ¢, 1R, (g My Jtanh ! ot &y, =0
o
also
O lnud = SR s (nul - AN -u),
2 n-H

where

Ay =1 -e,nR,{nmanh ' n+c R0’

i — BASIC ANALYSIS

9

(10

(1

112

{13)

(14)

Since the solutions given by Egs. {3) and (4) inherently satisfy Eqs. (2a) and {2b), we need simply

to constramn the solutions to obey Eq. (2¢), which we choose to write as

W10, u) =W, (0,4}, iel0,1),
and
V0, -u) =W, (0, -4), ue{0,1)

At this point, we can use Chandrasekhar’s § function!®) 10 write
1 1
¥, (0 = % fosal#'.ul\l’:m, w'du’, HE(0,1),
where

Cy . s
Syl ) = ";,’l';;““ [1-calp + ') - QuuiH, (WH; )

{16a)

(15b)

(18)

(17)



Here H, (1) s the H function for regron 2; since we shall also need H, (1), we list

e Mol Sanet TRl de
Mol = T e Tty PPl I g T el 08
3

n
where £, = v, and £, =7, Also required to define S; (", i} are the constants

c,%;a,,
JDa AT ~“B-7=-':W’“Td“ 119)

c =
¢ 2"0;0;,,'

It we now enter Eqs {15} into Eq (16), we obtain

1
W 10u) = o [S U, W10, )W, 1ELO,1) 20)

We consider that Eq (20) s the basic equation now 10 be satishied, since if the expansion
coetficients Als,) and Atv) can be chosen such that eq. (20} s vbeyed, B{-n,) and B(-7), if desired, can
readily be obtarned from Egs (15) by utilzing the avaitable '3’ naif-range completaness and orthogonality
theorem:s for region 2. On substituting Eq {3) into Eq {20}, we find that the integral over u' ¢an be
evaluated by mvoking several of the H-function igentities given by Chandrasekhar't! Because the algebra
involved in evaluating the integral over u° is tedious for the case of anisotropic scattering, we shall list here
only the result obtaned; however, the interested reader will find in Appendix A of this report, a detailed
development for the case of isotropic scattering Thus

Alv )

o

AW
Hitg) {01 lvg. ) ’W(uo)]+“f)-ﬁz»&~)- [0s i) ~ Wip) v

.H.;‘(—‘uo" fo oo ) - Wivg)] p€10.1), 21
where
1 . i
W(E) = o n;c.’(sgis,' (606, - 4,0 (Q,H, (8) - 1) - & R, (£8)]. (22)
with
- T-¢ {23)

1-Y%ca,,,’

Equauon {21) clearly 15 a singular 'ntegral equation that can be regularized by using the well
known '3 ha"-rangg_o«thogonalny refations for one medium (in this case, regon 1). Thus, if we mulitiply
Eq (21} by uH, ()0, (v, 1), where

O lE) = (E,) + N1

Y L (28)

and integrate over u from zeto 10 one, we can use the orthogonaisty refations summarized in Appendix B to
obtan



Altg) lNl("' MMy te ) - 7oQi Wi )} ”oQI

Hy b,
= _H_";( 0 )[J( Folo) = vpthi Wi~ #)], {25)
where
=] -ﬁ_(:) Wirlde, 26)
N.wo)=—EL;—';~~ Ry g, vl c":'(:_;"'_p;’: - "::;::::3’-5")-]. @n
and
vy, vg)= 2o Lo g o1 ], (28)
4 H)
with
ALY (20}

in a similar manner, we can muluply Eq. {21) by uH, m)a; {o",u), Ve(D, 1), and integrate over u to hnd

{agan after utihizing Appendix B)

L Ag) | v Ay} . . L
H, (v,) ‘w‘"“H( y NI HA v A= Hol vg)
[Jt=vg, ¥ - Vg W= v} ), v E(0,T) (30
Here
Nilod = & [ Ay (o) Pr IM«;-- Ry o) } ] (31)
and
ST
Jovg, )= - 20, +V)H (7R I TR Y R T ) {32
Eliminating A between Eqs (26; and (30}, we can write
A M) A M) el Rl
t== My () - Ve &u, +u) Hy i H )



it now we rearrangs Eq. (33) and multiply by Wir), we can integrate to tind

R SR ) Al Nl K, o0
#H, vy 1, (- v,) VoHa (p,)

where the two constants K, and K, are given by

) v WM(vL— )

= 36
K= L o, G, + 91 %)
snd
- » Wy}
K= N, M, 0 e

Eq, (34) cen be substitu’~d into Eq. (26) to yield A(v, ); thet remit, slong with Eg. (34}, can subsequently
be used in Eq. (30) to give A(y):

Hg) [erw {1-Rivd +20,8; +8:KiR, 0y 000} = A, (o) WE- 1))

Afpg) = -
Hy{-vy) [4N, vy )H, (v,)H, ‘l’olﬁ - g, K;) “",H; (I'JW(’,)}
(37
and
Aly) = vH, () Alvo)H, (veIN, (ve) € o~ v} Ry (wo ve) (38)
N.(D)H, (V) von wo, “yo + l" HI‘ -yo)H] (”o)

Equations (37) and (38) sre explicit expremions for the expsmion cosfficients Alv,) end AlY): ms
previously mentioned the coefficients B(-7,) and B(-n) can now be essily estsblished, should they be
required. Though our finai resuits for Alv,) end Alv) were obtained very differently in appesrance from
those of MeCormick!B) and McCormick and Dayas'®), they are similar in thet thers sppear extre terms, in
our case, W terms, in regard to either the isotropic scattering cass, or the single medium result, ¢; ~—~ 0,

We note thet the neutron density in region 1 is given by

]
B0 = [ ¥ s Alpgle W+ 0 o s [ AWIETNg, o

Aiso, an ssymptotic solution of tha Milne prablem can be written ss

Wy o) = Alg)ey vy le~ o 4 ¢, (=vg uw¥/¥o 140)

p )% ¥ Gl = Alrg) 0" Mo s ¥V, (41)

Thus if we write

Aly,) v -0- vy (42)



P
e A WU (43)

then Eq. (41) can be written as

Piglx) = @X/Vg-g-ix+ 22,y {44)

itis therefore clear that z_ is the extrapolated endpoint for the considered Milne problem.

'Y = KUMERICAL RESULTS

In this section, we would like to list the resu!ts obtained by numericaliv svaluating the expressions
given for the solution of the Miine problem. The required H functions were established by solving
iteratively the non-linear integral equation; all integrals that could not he evsluated analytically were
represented by a Gaussian guadrature schemne,

tn Table 1, we list some typical values of the Milne extrapolated endpuint, as defined by Eqs. {37)
and (43), and in Figures i-1V, we plot the Jensity r(x) and the asymptotic density p;,(x), as given Ry
Egs. {39) and {41). Our values are in general agreemer:t with McCormick and Doyas™®? and Burkart!?),

Table |
Milne Results

[ by (] by v, z,

0.9 08 0.4 08 2.18132124 1.2206286
09 08 04 04 218132124 1.2638065
09 08 02 08 218132124 1.1134772
0.9 08 0.2 G4 2.18132124 1.1312006
0.9 04 04 08 2.02796762 1.0422944
09 0.4 04 04 2.02796762 1.0777815
09 0.4 0.2 0.8 2.02796762 0.9526507
09 0.4 0.2 04 2.02796762 0.9684731
0.8 1.0 0.4 1.0 1.63709405 1.4495838
08 10 0.4 0.0 1.63708405 1.6297970
08 1.0 0.2 0.0 1.63709405 1.3819456
08 0.5 0.2 00 1.50882202 1.1387550
08 0.9 04 1.0 1.40763431 1.0128597
08 0.0 0.4 0.0 1.40763431 1.1159224
0.8 -0.0 0.2 0.0 1.40763431 0.9748628
0.7 0.0 02 0.0 1.20680425 1.1248428
0.6 08 04 08 1.18701913 1.8148953
08 0.8 0.4 04 1.18701913 2.0016407
0.6 08 0.2 08 1.18701913 1.56447531
0.6 0.8 0.2 0.4 1.18701913 1.5849249
06 0.4 04 0.8 1.14107736 1.5693281
06 0.4 04 04 1.14107736 1.6807950
0.6 04 02 08 1.14107736 1.3780432
0.6 04 0.2 04 1.14107736 14162732
0.6 0.0 0.2 0.0 1.10213202 1.3299205
0.6 08 0.2 0.0 1.10018110 1.9736146
0.5 0.0 0.2 0.0 1.04438203 1.6275351 J
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Figure 1 — The Neutron Density



P (™

1.0"‘ 91(‘)
o4~
/ cl =0.8 bl =1.0
/ 0.6 €, = 0.4 bz =0.0
/ 0.4
=
/ 0.2
v
<4 i 1 ki i
-1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 2 ~ The Neutron Density



10

Pr1a(®

1.0

0.8 p(®)

h1 = 0.0
t:2 = 0.4 b2 =1.0
0.4
/ 0.2
{/ ! 1 1
-1.0 -0.5 0.0 0.5 1.0 x

Figure 3 — The Neutron Density



P1a(®

1

1.0-
PI(X)
0.8/
/ 0.6+ c, =0.8 L =10
/ €, = 0.4 2 =1.0
0.4
/ 0.2+
[ ] / L 1 i ]
1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 4 — The Neutron Density



12

APPENLIX A:
DEVELOPMENT OF EQ. {21) FOR THE CASE OF ISOTROPIC SCATTERING

For b; = 0, we see that the S, function s simply

Copp
S < o Hy M,y
wrp

tor by = 0, ¥, (x, ¢) reduces to

. U
Wl = Alg )9 g uiie X¥o + 9, v ple/to + [Allg, W uie Xfas,

where

W= e )
¢I "Qnu 2 Vo u

and

Civ P o1
Oyt ) = 2 'IA +[1 - e i tann” " w]dl - )

On ~ntering Eq. (A 2} inta

‘ 1
¥, (0 = 24 J:,'S;(u'. MW, H0, i’ HEL0, 1),

we find

H
Aleg 3o g ) + 0y Uivg i) + f ALl lep) do =
1
HoGfAW Lt ) + LLeg b !(’A(v)uw)do]r

where

W
e £= tygoriEl0,1)

.

cc; 'y .
N it )
Ciearly, atter some parviai-fraction anatysis, we can write Eg (A - 7) a8

LT B U - u ,
LiEw = -y ﬁ--u'[»H"‘“”Ew’"wu"d“'

and thus after using the non-linear H equation'™',

H B

. i
-1 Sk Lox
L J;H:(J‘) ey

{A-1)

(A-2)

(A-3)

(A 4)

(A5}

{A-6)

(A7)

(A-8)

{A9)
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we find

LiEw) = ¢y (Ea— (A-10)

hi !
We can now enter Eq. (A - 10) into Eq (A - 6) to abtan

1
Al (v ) + @y -yl + fo AW, vuldy = Ry WAl ), b, 0] H;' o |;—)]

1 1 1 1
+ ¢ (- v TR T e ]UAMMU#L iy -—H;T;)—ldv)- A1)

Finally, upon cancelling like terms and comman factor, we arrive at

A( (-1
— __._.__. P — - _1
H e 'm (Vo) + fo ™ ( ) ¢ Wwu)dv Hz o) o1 {-vout), 4E(0,1], (A-12)

the version of Eq. {21) corresponding to iSOIropic scittering.

APPENDIX B:
ORTHOGONALITY RELATIONS, RELATED INTEGRALS AND H-FUNCTION IDENTITIES
In this appendix we wish to summarize some of the important orthogonality relations that are

useful for haif range analysis, with linearly anisotropic scattering. We will also list here additional identities
and expressions of interest in regand to Chandrasrkhar's H function for linearly anisotropic scatering.

The function
Hiuy = ——~——1—+—‘-‘_:-_—-—.__-: pl- 1 f m-l[lﬂ&i’!ﬂ-- _dx_ , (B-1)
3 T e 2 AMx) x+pu
lig” W1 c- -3"c92
where

Ay =1-cyRivyitanh~! v+ clp?, (8-2)

£=bl1~c), Rix,x) =1+, and v, is tha “positive” zero of

1
Alz) =1 -aRizz)tanh™! <+ cks, (8.3

is the unigue' 12" solution of the singular integral equation

!
HOA) + 2 1 Hi) Rlua) —”95‘7‘ =1, pEI0,1), (B-4a)



and the {inear constraint
cr, ap
o _ HuIR . {8 4b)
2 J: (BIR ) Py

Alternatively, H{y) 1s the unique solution of the non Imear equation

1 c ' dx
coem g S L HOROGK) <2 -, pEl0.1 (859
i 5 J, HixMR{xx iy pel0.1]
and the hnear constraint
cy dx
2o MR - =1 (B 5b)
2 7y Vo "X

Having established Hiu) for pCi0,1], we can extend the definition by aliowing 1 in Eq (B - 1) to become
the general complex variable z:

1+ 1 nexRix,x) dx
Hiz) == - B S expl- =~ [ tan~t[--m- -t ommmen } (B 6)
S mv 2A(x) X+2Z

/
(b + 2R/ 1 -c—"%- ot

Except for the poie at z = -+, Hiz) 15 a function analytic n the complex plane cut from -1 to 0 along the
real axis The function H(z) can thus be used (S factor . . (2) as

1
S S 87
M) = it 2 &7
We can also deduce that
1 € ! dx
[P S R o R B8
Hiz 1 P zfo H{x)R{x x} 2 28 [- 1,0} (8 8)
Since
1
by —ozzzTzzvooszzg, {89

Smalt can e e from Eq (B - 8) the moments relation

PR

Ve L1 S lag + oy, (810)

where the moments are defined by

ag = [' H(u)uadu {(B11:



15

Chandrasekiai'S! has also found that

4
al +i= PR 18-12)
and
by’ =+, (8-13)
where
L _Chay L21-c)
f= -2 llee gndg = -2 {B-14)
2 - o, 2-cap .

The halt-range orthogonaiity relations of Kuséer and McCormick!'®) can be iisted in the
M-function notation as follows:

} '
I oot ) + -5 el kil -HINWIS W - 1), v, V'E(0,1), {B-15)
Q
f,i Plugulely ) + 5’;— c] uHidu =0, »€(0,1), {B-16)
Lot u{obg ) + = ”“’ &) uH Ul du = 0, vE(D,1), {B-17)
! ¥,
Jo 0o 0 [0tgu) + <52 EluHl du = HivgINivg!, {8-18)
f‘( bl ) + 22 & st 1-1, +2 (B-19)
° ¢ "’o-p [¢ ”o# 2 c] 4”(}".)’ Vo C]
o’ ey v’
f Sl w Qi) + 5 H) dp = oo [1 = g 42U, + ),

Hugy +' M)

v€E(0,1), (8-20)

o,
4 H PRt - AN £ I IS +
f ol - vaullole, 4 c}u idu = b er) HO) [1~fytily, +0)]

KEO,), . iB-21)

' L S L
fo‘t(‘VJI)[NV#H c]un)du PYRPRLYITR (1~ #ev +0)

vy'€(0,1), 8-22)



[ toWwan + -5 EuHde- va vEDY, 823)
[}
I Tty + 9‘;‘}* &} uH () du = v 4, (2 24)
v
t
I oy pH{pdp =2 (1 - cg™, v €(0,1), {8-25)
9
. 1
[ @lvgs) uHiE) dp =volt - cla™", (8-26)
. .
I ol mHu du =1 - (1 -chw'ég™", v €0.1), B:27)
0
and
i
Jy ool Hu du =1 - (1 -ehgtg™!. {B-28)
Here
B i 12 r cV ¢
Niwd =off Mp) 17+ -~ nRlw ) H) (B-29)
ang
- L yy.CRivg kg (1-CIRGvo,u) ‘
Nive) = 757 Rlvgwoll volwl-h voRlpg o) 7 830
RESUMO

Sdo wtih2a0as as sotugdes elementa-es da equacdo de transporte de neutions Monoenergeticas para espalnamerto
hrigarmernte ar'soliOPICO em CONJUNIO CCM O PrnCipios de (hvananc:a de Chandrasekhar na resolugéo do problema de
Miine para dors sem: espagos adjacentes
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