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NEUTRON TRANSPORT SN TWC DISSIMILAR MEDIA
WITH ANISOTROPIC SCATTERING

A R Bwfcart*. V. Ishigww and C E Siewert*

ABSTRACT

Th» damamiry solutions of tftt on* spted mutroi trampo't aquation with linearly amwtrnptc Kattarmg art inad
in conHmeiion wrt» Chandmeknar'i invananc» ptinc>ptt» to aotee in • eoncn* manner rht Mtlnt problem for two adjoining
half aeatet and tht chtiol mnor probMm tor a r*n*ct«d ttab

I - I N T R O D U C T I O N

The elementary solutions of Case (1960) were used by KuszHI (1961) to study neutron diffusion
for problems defined by the presence of two dissimilar media That work, however, was lirr iu-d to isotropic
scattering and was left in a somewhat cumbersome final form Later work by Merde'son and Summet field
(1964) added to the general area of multi region problems; however, it is to the basic work of McCormick
(1969) and McCormick and Doyas (1969) that we must look for the most significant contribution to
two-media problems with the effects of anisotropic scattering included. Today in the field of
neutron transport theory many researchers consider the fundamental paper by Case (1950) to be the
cornerstone of the theory of "exact" solutions Later Pahor and Zweifel (1969) in an ei-gent paper
demonstrated how the work of Chandrasekhar (1950) awl Case (1960) could be coupled and utilized at the
same time to obtain in a profitable and concise manner certain reiults for a variety of single medium
problems

In a recent note, Siewert and Btrkart (1975) demonstrated how the principles of invariance, as
developed by Chandnmkhar (1950), could be used effectively to analyze fhe critical reactor problem for a
reflected slab with isotropic scattering. In this work, we wish to show explicitly the complications that arise
when the same critical problem and the Milne problem for two adjoining half spam are solved for the case
of linearly anisotropic scattering

I I - THE MILNE PROBLEM FOR TWO HALF SPACES

We consider the one speed neutron transport equation for region i, x > 0, and region 2, x < 0,
written in the famili r manner:

1 '

Here ^ a ( x , fi) denotes the neutron angular density in region a , as a function of position (in optical units) x
and the direction sosine of the propagating neutrons. M- In addition, cu denotes th» mean number of
secondary neutrcM per eoli;*ion in region a, and bft is the coefficient of anisotropic scattering
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For the comidsrad Milne problem, we seek e diverging (as x—•••) sohitionof Equation (1) such
that

(9 Bm*,(x,i*e" ° < - (2a)

(ii) Mm*,(«,p9=0 f2b)

and

Hera Po denotes the discrate eigenvalue in region 1 - we use, with only sliejtt modification, the notation of

Retying on the bane «rark of McCormicfc and Kufter (1966), we can immediately write solutions
to Equation (1) that satisfy th» boundary conditions listad as Equations (2a) and (2b):

and

•a(«J

^ R«l|«, P) ç ^ ' (4)

whtra Ra(x,y) = 1 + ̂ xy , «a = ba(1 - c,,), ( , = v0, f j = Tfe, and { ^ 1 - t,1] isthe poiitiv» iero of

= 1 - V R B U , z ) u n h ' \ + *£j. (6)

Also

0o<l»M>= 2 R *^ ' * * |^~ + V ^ * < I " **» {€(-1,1), <6)

with

Sinct the solutions given by Equations (3) inherently satisfy Equations (2a) and (2b), we need
simply to constrain them to obey Equation (2c), which we choose to write as

• , ( O , j i ) - * , ( O , t f end ty (0, - # = * i (0 - tf, Í«=<0,1). (8)

At this point we can k,w the S function of Chandrasekhar (I960) to write

% (0, *J) - f £ 4 S»'



where

c, uii

Here K, (u) is Chandrasefchar's H function for region 2 and. in general.

HO»

2(1

If we now enter Equation (8) into Equation 19). we can obtain

*«»0,1) (12)

We consider that Equation (12) is the basic equation now to be satisfied, since if A(»»o| and A( f ) are
established by Equation (12). then B(- 1?O) and B( - TJ) can be obtained immediately from Equation (8) by
using the half-range orthogonality relations of McCormick and Kuscer (1965).

On substituting Equation (3a) into Equation ( I 2 i . we find that we can evaluate the integral over
u' to obtain

\. ÍJ6I0.1), (13)

where

W({)= J

Equation (13) clearly is a singular integral equation that can be regularized by using the half range
orthogonality relations for one medium (McCormick and Kuscer, 1965) Thus, if we multiply

Equation (13) by [0 , (va, fi) + - - — c, ] f H, (,•) ?nd mte';rate over / i , we find

(- P0.v0) - (15)

where

and



In a similar manner, we can multiply Equation (131 by [0, | I * \ M ) + ~, c, ]>iHil/i). f '£(0,1),and

integrate to obtain

Here

N, (v) = 4 f X, (t>) r * {•C>-"R,(»'. W }• | (20)

If now we rearrange Equation 119) and multiply by Wlc) we can integrate to find

C . K . R . I I V V ^AdVH.U'olN.li'olK;

W . U ^ H J i>0)
 + ^ H , (i>0)" '

where the two constants K, and K, are given by

V)
and K ^ '" N M H / W d " ( 22 )

Equation (21) can be used m Equation (15) to findA(t>o). and subsequently A|y> can be found from
Equation (19)

Alu ) ~ - - - ° ° _° -. o_ _ o' o — . __ (23)
° H,( Vo) [&U;\V0)H,\Va\Hx\-jQW q , K , ) 4r0H l(l 'o)q l¥V(»'o)l

and

V M ( f

Equations (23| and (24) are explicit expressions for the expansion coefficients A(e0) and Ale) Though our

final results were obtained differently and are different in appeal ance from those of McCormick (1969) and

McCormick and Doyas (1969), they are similar in that there appear extra terms, in our case, W terms, in

regard to either the isotropic scattenny case, ^, -- lij - 0, or the single medium result. Cj = 0

*'V° + e * * 0 + JV AWe " """

We note that the neutron density in region 1 is given by

p, (x) = / ' * , (x. MWM- A ( e > *'V° + e * * 0 + JV, AWe " """. (25)

Also, an asymptotic solution can be written as

pu[*) = M'c)e*y° fe" ° (26)

Thus if we write



then Equation (26) becomes

(28)

It is therefore clear that z is the extrapolated endpoint for the considered Milne problem.

I l l - THE CRITICAL PROBLEM FOR A REFLECTED SLAB

We consider the transport equations for the core, -a < x < a. and the reflector, I x I > a, written
as Equation (1), where o = 1 implies the core and a = 2 implies the reflector Clearly we take c, > 1 and
c2 < 1 We thus seek solutions of Equation (1) such that * f t ( - x, - n) = ^ ( x , n),
* , (a, v) = % (a, y), pe(- 1,1). and % (°°,fj) = 0. We consider that c, and Cj are aiven and thus seek the
critical half-thickness a

For the core, we can write the desired solution as

•xlv xiv i -x/P xlv
o + 0 ( » > o , u ) e ° J + / „ Â M { p [ ) t { )

xiv i x/P xlv
o+0,(-»>o,u)e °J + /„ ÂM {<p,[i>.H)e +<t>t{-KH)» ]&, (29)

which clearly satisfies the symmetry condition For the reflector, we need only consider x > a, and thus we
write

x>a. (30)

As in a previous work for isotropic scattering (Siewert and Burkart, 1975), we would now like to use the
continuity condition at x - a in the reflection equation

to obtain, what we consider to be, our basic boundary condition:

*'(a' ~U) = 2ni'°S>(/i'' * *'la' ̂ ')df1'- p e ( ° ' 1 ' • <32>

If we now substitute Equation (29) into Equation (32), we can evaluate the integral over u' to obtain

I.I); (33)



where

. . . . CJ'CI "

and
c,l>

(35)

Equation (33) is a singular integral equation that can be regularized by using the half range
orthogonality relations ' McCormick and Kuscer (19651 Thus we multiply Equation (33) by

Ci V
JUH, (fi) [0, {PO, fi) + --— e, J and integrate to obtain

1 2a/f
- / 0 D<P)e [ H 2 ( P ) K ( V ) J ( - » ' > ' 0 ) " >»0Qi G(>») 1 dv, (36)

where we have introduced

In a similar manner, we can multiply Equation (33) by jiH, I//) [0, (f , / i ) + - 5 - i , ] , ^€(0,1),
and integrate to get

DM* [Hi{v)KWi[-vy)-^qiG{V)\<iV, 1^6(0,1), (38i

where

Equations (36) and (38) are the two regular intagral equations tha. we must solve simultaneously to obtain
the critical half thickness a Though it is perhaps unreasonable to expect to be able to find analytical
solutions to Equations (36) and (38), to construct a numerical solution certainly poses no problem.

Before listing our final results, obtained by solving Equations (36) and (38) iteratively, we nott
that there are two immediately available approximations we can introduce. The simplest is to set D(O = 0
and ignore completely Equation (38) This approximation leads to the critical condition, from
Equation (36),

<40»

where



^ Lofl {-~J~- [Wiiv0)Hxiv0)HtWo) - 4V», <„

+ [cxvo { 1 - Í, vi + 2K 0 CI > " ^ o " " <"<,>«• « I " »„> 1 > (41)

On the other hand, we might approximate Equations (36) and (38) in such a way that we can utilize the
results for the Milne problem developed in Section II We observe that if we neglect the integral terms on
the right-hand sides of Equations (36) and (38). then the two approximated equations will have the
solutions

and

9a ../u
'=A(fo ) , (42)

where All*,,) and A|i>) are the Milne solutions given by Equations (23) and (24). From Equation (42), we
get the critical condition

aoM= x 7 T l ^ l - z » u . (43)

where

= " Lo« í - ^ 7 j

* lc , l -0 { 1 - M o + 2voit + q, K, A, {Vo?o)} - 4»0H, ( fo )q, W|-1»0) ] } . 144)

For the case of isotropic scattering, C, = K j = 0, or for the case of a bare reactor, c? = 0, the two
approximations given by Equations (40) and (43) are identical, but in general they are different. In Table I,
we list some typical value» of zo B and z o M , and in Table I I , we list a o B , a o M and our "exact" results
obtained by solving Equations (38) and (38) iteratively We note that our "exact" results are identical to
those reported by Carol and Aronson (1973) Also z o M and a o M agree with the asymptotic results of Doyas
and McCormick (1968). Numerical results in addition to those given here can be found in the thesis of
Burkart 11975).



Table I

Extrapolated Endpointt

«oB 'oM

101
101
101
101
106
106
120
120
120
120
150
150
150
150
160
160
160
160

0.0
10
00
10
00
00
00
10
00
10
00
10
00
10
00
10
00
10

09
09
09
09
09
09
04
04
04
04
09
09
09
09
04
04
04
04

00
00
10
10
00
10
00
00
10
10
00
00
1 0
10
00
00
1 0
10

•818175
t 697328
1 533918
2 285898
1564092
1366538
06992548
1 091650
0660828
1 037642
0 7914220
1 190381
0 7479395
1 142157
0 5097969
0 8605117
04900796
08343955

18W5
2 69/147
1 537910
2 291668
1564092
1370686
0 6992548
1090817
06631535
1040783
0 7914220
1 182627
07516228
1 140871
0 5097969
0 8578493
0 4920241
0 8360061

Tabtelt

Critical Sizn

C|

101
101
101
101
106
106
120
120
120
120
150
150
1£0
160
160
160
160
160

b,

00
10
0 0
10
00
00
0 0
10
00
10
00
10
00
10
0 0
10
00
10

c,

0 9
09
0 9
09
0 9
09
04
04
04
04
0 9
0 9
0 9
09
04
04
04
04

b2

00
00
10
10
00
10
00
0 0
1 0
10
00
00
10
10
00
00
10
10

"OB a'oM a

7 214751
8 393351
7 49S008
8 804780
2 052395
2 249949
1 182975
1 328226
1221402
1 382234
02910616
0 3002338
0 3345442
0 3484569
0 4609333
0 4922023
0 4706506
0 5183184

7 214751
8 393532
7 495017
8 799010
2 052395
2 245801
1 182975
1 329059
1 219077
1 379093
02910616
0 3079674
0 3308609
0 3497437
0 4509333
0 4948646
0 4687061
0 5167079

7 214751
8 393532
7 495017
8 799010
2 052360
2 245784
1 182419
i 328237
1218626
1 378425
0 2825876
0 2889746
0 3248086
0 3347018
04468885
0 4817374
Ü 4653584
0 5051470



RESUME

La» solutions «tmantairn de i tqurnon dt transport dt neurons monotnt'Otuquts avtc deviation •sotropiqu*
>>n**>rt so. . uti»Hts coniomtwiMfii aux príncipes d >nva"anc* dt Chaud<astkhar j f n dt retoudx d l manwr* concisa !•
probiemt d * Miin» pour deu» «pacts adio>nts t t it p'ob'emt du 'cacttur et itiqu* type pvots refiecnissante

RESUMO

As solucãts tiemtni»'t> da «quaçio d* transport* dt naui'ons monotn*-get>cos com espaihamamo linearmente
an«otrop>co são usadas tm coniuniocomosprincp'Osdt nvar'ancadt Chand'astkfi» para rawHw dtmanti'iconouo
P'otMema dt Mun* pa>a dots «m tipacos adiuntw t o p'oWtma do • tt'Or cr tiCo fpo pa'tdt r
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