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NEUTRON TRANSPORT IN TAWC DISSIMILAR MEDIA
WITH ANISOTROPIC SCATTERING

A R Burkant®, V. ishiguro snd C. E Siewert®

ABSTRACT

The sementary solutions of the one spesd NELL’S™ PENSPO’T SQUELION With inesrly aNISCtIMPIC sCatterng are used
n conjunction wth Thendrasskhar's inverience prncipies 1o 0Wve i 8 CONCISe manner the Meilne probiem for two adjcining
hait-spaces andd the criticel resctor problem for a refiected sliab

1 - INTRODUCTION

The slementary solutions of Case (1960) were used by Kuszell {1961) to study neutron diffusion
for problems defined by the presence of <wo dissimilar media. That work, however, was limin«d to isotropic
scattering and was left in a somewhat cumbersome final form Later work by Merde'son and Summes field
(1964) added to the general area of multi region problems; however, it is to the basic work of McCormick
(1968) and McCormick and Dayas (1969) that we must look for the maost significant contribution 1o
two-media problems with the sffscts of anisotropic scattrring included. Todsy in the field of
neutron-transport theory many resssrchers consider the fundamental paper by Case (1950) to be the
cornerstone of the theory of “emact” solutions Latar Pshor and Zweifel (1969; in an el-gant paper
demonstrated how the work of Chandrasekhar (1950) anr Case {1960) could be coupled and utilized at the
seme tims to obtain in a profitable and concise manner certain results for a variety of single madium
problems

In a recant note, Siewert sr.d Burkert {1975) demonsirated how the principles of invariance, as
developed by Chandresekhar {1950), could be used effectively to snalyze the critical reactor problem for a
reflected slsb with isotropic scattering. In this work, we wish 10 show explicitly the complications that arise
when the same critical problem and the Miine problem for two adjoining half-spaces are solved for the case
of linearly anisotropic scattering.

N - THE MILNE PROBLEM FOR TWO HALF-SPACES

We consider the one-speed neutron transport equation for region 1, x >> 0, and region 2, x <0,
written in the famili:r manner:

pa Wytn, i+ Waln, i =S g 1| Waln, 1) (1 + by o i}

Here \lfa(x, H) denotes the nsutron angular density in region a, as a function of position (in optical units) x
and the direction cosine of the propsgeting neutrons, y. In sddition, c, denotes the mean number of
secondary neutrcas per collision in region a, and by, is the cosfficient of anisotropic scattering.
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For the considered Miine problem, we seek 8 diverging (as x — =*) solution of Equation (1) such

that
N LIS
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Here ¥, denotes the discrets eiganvalue in region 1 — we use, with anly slight modification, the notation of
Cone ond Zweifel (1967) so that many of the basic quantities need not be redefined here,

Relying on the basic work of McCormick snd Kuiter (1965), we can immediately write solutions
to Equation (1) thet satisfy the boundary conditions listed ss Equations (2s) and (2D):

. . .
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where Ralxy) =1+8axy, £ =bgl1 =cy), &1 =¥, £1 =7y, and E&[ - 1.1} is the positive zero of
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Since the solutions given by Equations (3) inherently satisfy Equetions (28) and (2b), we need
simply to constrain them to obey Equation (2¢c), which we choose to write ss

‘Pl‘op“)'q’a(orm m w] ‘oy-“):wj‘o "“,I "6‘0'1)' ‘s,
At this point we can Lye the S function of Chandrasekhar (1950) to write

B0, = 5 Jo B UK Ndie,  pEIO,), )



where

S (M. [ = ;:""" [V-é s 1) G H OH, () {(10)

Here K, (p) is Chandrasekhar's H function for region 2 and, in general,

& = ?!Eﬂn"'." Q. = 39__‘:9) 1
= 3 ey 8T T cqmgo ™ %= J, Heufau (1)

Hf we now enter Equation (8) into Equation (9] we can cbtan
W0, = 50 [, Sotis. ¥ (0 I, HEWO,N) (2)

We consider thst Equation (12) is the basic equation now to be satisfied, since if A{V,) and A(») are
estebiished by Equation (12). then B(- 1) and B{ — 1) can be obtained immaedistely from Equation (8) by
using the haif-range orthogonality relations of McCormick and Kuscer {1965).

On substituting Equation (3a) into Equation {12, we find that we can evaluste the integral over
i to abtain

Aw) - i
H (, ,lm - W]+ S W, (2 1V )~ WO f v
= T e W)L ke, "
where
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Equation (13) clearly is a singular integral equation that can be regularized by using the half-range
orthogonality relations for one medium (McCormick and Kuscer, 1965) Thus, if we multiply

v
Equation (13) by ¢, (v, 1) + '1‘2—0 ¢, JH, () and intesrate cver u, we find

Al °)[N,(V JHy (D) — Vol Wik )] - Vo8, A = " ( v, )[.u Vo Vo) = Vol WI=,) ], {(15)
where
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and
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(43
In a simJar manner. we can mu'tiply Equavion (13) by [p, (v, @) + '; ¢, JuH, (), P’€(0,1), and
integrate to obtain

oL n—‘“—i N, M, ) - V8 R = — oo - b V) - VR, W Bg)). (1)
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If now we rearrange Equation {19} and multiply by W(v) we can rtegrate to find

€ K, AL, W) AW IH (BN, (B)K,

._: 1
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where the two constants K, and K, are given by
BovWeY, ) ! YW(p)
= = RN, 1]
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Equation {27) can be used n Equation (15) to find Ay} and subsequently A(¥) can be found from
Equation (19)

Al = Howg) e, -1 - Gug + e, + KR 1, Vo) 1 A H Yy )9_,}7_(__?’4)_] (23)
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and
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Equations (23) and (24) are explicit expressions for the expansion coetficients A{v,} and A{¥) Though aur
final resuits were obtained differently and are differentin appeasance from those of McCormick (1969} and
McCormick and Doyas {1969), they are simtiar in that there appear extra terms, in our case, W terms, in
regard to either the isotropic scattering case, ¢, = ¥, = 0, or the single medium result.c; =0

We note that the neutran density 1n region 1 is given by
! x/¥ /v i x/¥,
P = [ Wik, iRz Alrgle . Cte O+ f Ae OV (26)

Also, an asymptotic solution can ba written as

x/¥, x/v,
Pyix)=Alrgle °re ° (26)

Thus if we write



v
z,= - :;3 enf- A(voﬂ, an
then Equation (26) becomes
/v A%+ 22, )/p,
P x=e ° - @ oo (28)

It is therefore clear that z, is the extrapolated endpoint for the considered Milne problem.

1)l = THE CRITICAL PROBLEM FOR A REFLECTED SLAB

We consider the transport equations for the core, -a < x < a, and the reflector, | x| > a, written
as Equation (1), where a = 1 implies the core and a = 2 implies the reflector. Clearly we take ¢, > 1 and
c; <1. We thus seek solutions of Equation (1) such that Wol-x — u) = Wuix, i,
W, (a, 1) =Wy la, p), UE(-1,1), and W, {oe,u) = 0. We consider that ¢, and ¢, are given and thus seek the
critical half-thickness a

For the core, we can write the desired solution as

- /v -x/p x/v
¥, (x, 1) = Avy) (¢, 0,, phe o , B1i-vy, e °)+ I:, A i . e +¢il-v, e oy, (29)

which clearly satisfies the symmetry condition For the reflector, we need only consider x ~> a, and thus we
write

X/ X/,
¥, (x, 1) = B0z (M. e + [ Bimigs(m, e O, x>a, (30)

As in a previous work for isotropic scattering {Siewert and Burkart, 1975}, we would now like to use the
continuity condition at x = a in the reflection equation

i
L ACRT R 51,1 Jo Salr ¥ a, iu’, WE(O), 3%
10 obtain, what we consider to be, our basic bourdary condition:
¥, (a, —) =§1;‘ f:) Sy, 1\ (a, p)dp’,  pE(0,7) . (32)

If we now substitute Equation (29) into Equation {32), we can evaluate the integral over A’ to obtain

A /v
W) 9% (01 (W, 1) - Wing)] + . A 21 1y, - win Jaw
H; (¥,) H

: /
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where
K = fi!‘.Ll’.’?!..‘fé?é:g;‘%-—_ N8, en (38)
and
GM-” P w[H (K (&R, ) -0k, - )} + WL, - )G, (35)

Equation {33) is a singular integral equation that can be regularized by using the half-range
orthogonality relations . * McCormick and Kuéter (1965) Thus we muitiply Equation {33) by

¥
uHy () (¢, 0, 1) + *'—2—9 &, ] and integrate to obtain

2a/u
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where we have introduced
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In a similar manner, we can muitiply Equation {33) by mH, () @, v,y + —L— &1 veln),
and integrate to get

2a/v
o) Xy Cwa Wi
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where
Clys
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Equations (36) and (38) are the two regular integral equations tha: we must solve simultaneously to obtain
the critical half thicknessa Though it is perhaps unreasonable 10 expect to be able to find analytical
solutions to Equations (36) and (38), to construct a numerical solution certainly poses no problem.

Before listing our final results, obtained by solving Equations {38) and (3B} iteratively, we note
thet there ere two immediately available approximations we can introduce. The simplest is to set D(1) =0

end ignore compietely Equation (38) This approximation leads to the critical condition, from
Equation (36),

8, = % mly, | - 2,8, (40)

where



=% Hy (- ¥, N
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On the other hand, we might approximate Equations {36) and {38) in such a way that we can utilize the
results for the Milne problem developed in Section || We observe that if we neglect the integral terms on
the right-hand sides of Equations (36) and (38), then the two approximated equations will have the
solutions

Dy ¥ = A

and

ezﬂoM /VO — A(po" 42)

where AlV,) and A(v) are the Milne solutions given by Equations (23) and (24). From Equation (42), we
get the critical condition

i
%Wm = 5 Tl - 2g0m. (43)
where
Vo H, (-
Zom = 5 Log {5 My w, I4N.w W (Rg)H, (85) 11 - 8, Kz) = A8 Hy (8,)Q, WIK,) )
ey {1 -G08 + 2008, + 6,K, Ry (0, 5) } — 4, H, (4,8, Wi- ) 11 144)

For the case of isotropic scattering, {; =%, =0, or for the case of a bare reactor, ¢, =0, the two
approximations given by Equations (40) and (43) are identical, but in general they are different. in Table [,
we list some typical values of 2,5 and z,y, and in Table )1, we list agp, gy and our “exact” results
obtained by solving Equations (38) and (38) iteratively. We note that our “‘exact’ resuits are identical to
those reported by Carol and Aronson (1873} Also 2,y and a, ) agree with the asymptotic results of Doyas
and McCormick (1968). Numerical results in addition to those given here can be found in the thesis of
Burkart {1975).



Table |

Extrapolated Endpoints
c, b, c; b; zOB Zom j
101 0.0 09 00 1818175 1818175
101 10 09 00 < 697328 2697147
101 00 09 10 1533918 1837910
101 10 09 10 2 285898 2291668
106 00 09 00 1564092 1564092
106 00 09 10 | 366538 1 370686
120 00 04 00 06992548 06992548
120 10 04 00 1 091650 1090817
120 00 04 10 0660828 06631535
120 10 04 10 1037642 1040783
150 00 09 00 07914220 07914220
150 10 09 00 1 190381 1182627
150 00 09 10 0 7479395 07516228
150 10 09 10 1142157 1 140871
160 00 04 00 05097969 05097969
160 10 04 00 08605117 08578493
160 00 04 10 0 4900796 04920241
160 10 04 10 08343955 08360061
Tabie Il
Critical Sizes
¢ b, € b; L) WM a
101 00 09 00 7 214751 7 214751 7214761
101 10 09 00 8 393351 8 393532 8 393532
101 00 09 10 7 492008 7 495017 7 495017
101 10 09 10 8804780 8 799010 8 799010
108 00 09 00 2 052395 2 052395 2 052360
108 00 09 10 2 249949 2 245801 2 245784
120 00 04 00 1182975 1 182975 1182419
120 10 04 00 1328226 1 329059 1328237
t20 00 04 10 1221402 1219077 1218626
120 10 04 10 1382234 1379093 1378425
150 no 09 00 029106168 02910616 02825876
150 10 09 00 03002338 03079%74 02889746
150 00 09 10 03345442 03308609 03242086
180 10 09 10 03484569 03497437 03347018
160 00 04 00 04509333 0 4509333 0 4468885
1680 10 04 00 04922023 04848846 04817374
160 00 04 10 04708506 04687061 0 4653584

180 10 04 10 05183184 05167078 06051470
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