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THE ELECTRICAL CONDUCTIVITY OF AN INTERACTING ELECTRON GAS

David Y Kojima*

ABSTRACT

A manybody theory by the propagator method developed by Montroll and Ward for lhe equ'tbrium statistical
mechanics, is reformulated to describe the elect'ical conductivity for an electron ga* lyttem contriing impurity The
theory includes electron-impurity interact'on to the infimte order and eiect'on-electron interaction to the first order
exchange? effect The propagator used by Monuoli, and Ward •> sepa'eted into two propagator, each of wtvch satisfies
either Bloch or Schroedinger equation, to utilize the perturbation method Correct counting of 8>apht are presented
Change in the relaxation time due to the e'ectfon-e'eetron interaction is explicitly shown and compared with recent
«vorkt

I - INTRODUCTION

It has been assumed for a long rme that the electron-electron lee) interaction did not have a
great effect on the electrical conductivity and many works were reported with this assumption. Kohn19'
pointed out that the effect of the e-e interaction only exited through the break down of the Galilean
translational symmetry as a result of introduction of fixed impurities. Langer has reported in his series
of papers / 1 2 > 1 3 ! the importance of the e-e interaction through the electronic screening effect on
impurities The frequency dependence of the relaxation function by the random phase approximation
has been calculated by W Gotze and P. Wolfie141 for a frequency range from zero to values greater than
twice the Fermi energy EF, using the memory function technique deve'oped by H Mori '1 6 '1 7 ' . The
technique appears to be powerful, but the introduction of the e-e interaction is not clear One might
have to take into consideration the locality of the external electric field, when the e-e interaction is
included because the coulomb interaction is a long range one, while the wave number of an electric field
with a frequency C J - 2 E F is of the order of 10' ~103 A. Ting, Yang and Quinn1181 (T.Y Q.) recently
developed a theory which closely resembled Langer's. They introduced the center of-mass coordinates of
an electron gas system to show explicitly the points made by Kohn. They showed that the electron
coupling was brought atwt only through the center of-mass variable of the system. However, the
theory, as well as Langer's, left the renormalization factors of the Fermi level uncalculated.

The propagator method developed for the equilibrium statistical mechanics by E. Montroll and
J, Ward1141, and later by Isihara161, was first utilized by Montroll and Ward115' to describe the
electrical conductivity. They, however, developed the theory only to describe two component
Boltzmann gas system. The method of counting similar graphs presented by them is, therefore, good for
the Boltzmann gas, of which components are countable particles. The use of the distribution function of
an equilibrium system to the linear response theory is established in the expression of the Kubo
formula' . We shall develop the propagator method to include the first order exchange effect
explicitly, in chapter II, and show that the effect only appears in the expression of the relaxation time,
in chapter IV. The time correlated distribution function in the momentum representation b(p,, t | , p't,
t',) is also developed in the process of the formalism in chapter II.

I*) Centro de Proteção Radològica e Dot"ne!- a - Am de Mate>'a>3 Doiimttrícoi - Instituto de Energia Atômica ,
Sio Paulo. SP - Bran,
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II - FORMALISM

The grand ensemble average of a macroscopic observable of a system is defined as; the sum over
the number of particles N of the multiples of the fugacity z to the power N, the partition function Z N

and the partition function average of the observable, devided by the grand partition function E, under
the same volume and temperature. Thus the grande ensemble average of the electrical conductivity is
written as

where ''^v
 N ' (to) is the partition function average of the electrical conductivity as it is given by the

Kubo formula for the N charge carriers:

o,JN)io>) = / " d t e - * w /0dX Iim — T r < N ' l p o J ^ ' ( - i W . ) JLNI ( t ) } , (2-2)
o o V ~* °° V

where superfix (N| represents the total number of particles of the system in the volume V,po. the
d i s t r i b u t i o n f u n c t i o n def ined as p0 = exp (- <3H)/ZN, a n d the c u r r e n t o p e r a t o r ,
J^IN) ! i \ =exp( ih" ' tH)J ; U

( N 1 x ax,, ;• •ttf' tH), respectively. One must take the thermodynamic limit in
the above expression as the volume V is brought to infinity. The conductivity is given as the response of
the system to the external electric field: E = Eo exp (icjt). The grand ensemble average is no longer a
function of the total number of the particles, but of the fugacity. It is thus necessary to introduce a
supplementary equation which relates the total number with the fugacity, that is

a inZ |
N = (2-3)

3 In z (3, V

The Eq, (2-3) relates the Fermi momentum pF , defined as z = exp ((3pF
2 / 2m) where ,i = 1/kT and m is

an electron mass under consideration, with the absolute Fermi momentum defined as

3 n1 h3 '

A ratio pp / p o obtained from Eqs. (2-3) and (2-4) serves as the renormalization factor. The
Eq. (2-1), together with Eq. (2-3), thus, determine the conductivity as the function of ine numbe.-
dencity of the electron ga?, usually by making use of the absolute Fermi momentum p0

The total Hamiltonian i fo , the syst m in the absence of the external field can be described as follows,

JÍ = H + >i\ (2-6-a)

1 - -
>1'= 2 0|r, - r,), (2-5-b)

2 i j
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H = X Hlji ^ Z. r a + S V(r*- Ra) }.
j = 1 i = i 2m o

where 0 ( r ' - rj) is the coulombic repulsive potential between the i-th 2nd j-th electrons and V(r * - Ra) is

the potential between the j-th electron a* 7, and a-th impurity atom located at Ra. The total

Hamiltonian In Eq. (2-5-al >s for the N electrons, thus Eq. (2-2) is described with this 3-.'. The electrical

conductivity IJ^CJ) can be separated as

in accordance with the number of the e-e interactions involved, thus the first term in the right hand side
is that for the ideal gas, and the second for the first order exchange graphs, and so on. Each term in
Eq (2 6) is still the function of pF, unless renormalized

The Kubo formula, Eq (2 2), is reexp'essed, when no magnetic field is present, as

^ Z N v , j m, mj °

x T r ( N I [expl- (0 -À + ifi^'r) 3f ) p,,, exp(-( \ - ifl"'r) W) pjV ], (27)

here e; and m. are the i-th electronic charge and mass, and plv is the f-th component of the i-th
momentum in the operator form. The above expression is now rewritten by making use of propagators,
as was done by Montroll and Ward.

*• ZN V i j m, m, o o

+ ih" ' r ; p l 2 l ,X)K|p ( 2»,A,p ( 1 l , ih- ' r ) , I2-8)

where

ZN = Z expl j:En) = / dp'1» K(p(l|i?;p(l1, 0),
n

and

K(pm , s,;p'2», *./ = I*n(p(1))tfn(pl2l>exp<"iJEnl, (2.9)



where +„(?">) is a Fourier transform of a wave function of N-particle system with H, satisfying the
antisymmetric relation of the exchange of any two variables. In this forr->, the current is no longer the
operator and counting similar graphs becomes possible. One must notice here that Eq.(2-9) is the
propagator with which particles at p l2> at a complex reciprocal temperature s2 propagate to p ( 1 ) -t s,
The two propagators in Eq (2-8) can be rewritten by introducing two more propagators, it becomes

+ i h - ' r ; p < 2 U ) K(p l 2».;\; p^'.ih^r)

dp<3'dp!4» K(p (1 >, ih-'r; p'3>. 0) K(p(3>. 0; p ( 2 ' . X)

x K(p ( 2 i , X;pl4>. 0) K(p(*». 0;p<1 >, i t r1 r ). 12-10)

The second and the third propagators are the Green's functions of Bloch equations, and the
first and the fourth, those of Schroedinger equations. The fourth one is the complex conjugate form,
thus follows the c.c. form of the Schroedinger equation. These two are identical to the Feynman
propagators121, and follow the same condition of the time flow. The Green's functions of the two
equations satisfy the following:

.'JKIr11' Ç,, r l2) fl-1
---'-—•'-'- i ' - ~ : * y + H, K = -.(r'l» - r«21) (2-11)

3(3,

with conditions

K= V ' - r 1 2 1 ) if ' , - f j + 0

= o iff, < , ; , ,

b K(r (1 ' ,ih-'t,; r<2>.fr' I,» h . . . . . . ,„ , . .
- - - - - - - H, K = --. It, - t a ) : ( r < 1 l - r ' 2 ) ) , 12-121

at, i

with conditions:

K =(' ( r ' ^ - r 1 2 » ) i f t , - ' tj + 0

= 0 i f t , < t3 ,

where .Mr111 - r121) consists of 5- functions of the Slater determinant w'th an appropriate weight factor.
It is possible to combine these two types of propagators at any order of the perturbation series.
Introducing Ec,.(2-8) into Eq (2-1), the grand ensemble average of the electrical conductivity yields

V M = " ~ i / e - ' " « d t / d X / d p , 1 " dp,12> P l l " p . ' 2 » b ( p , : i \ p , ( 2 l l , ( 2 ' 1 3 ' b )

o



where

b ( p , l 1 l . p l
1 2 ) ) = - - I N 7 z N ; *

VHN i = 2

xK(p ( 1>, (J + ih'T;p1 2 l .X) K(p(2>, X; p ( 1 ) . ih- ' r )

= bt° l (p, ( 1 ' , p , t 2 ) ) + bl11 + b l 2 l + • •. (2-13b)

The function b(p ( 1 ' , p l2>) is the singlet distribution function, which can be expanded also according to
the order of the e-e interaction as is expressed in Eq.(2-13 b).

a) The zeroth order contribution in the e-e interaction ( I ' =0) . When electrons do not interacts
among themselves, but with impurities, it is well known that N-particle trace in Eq.(2-2) can be
rewritten in terms of one-particle trace. This term was extensively investigated by Chester and
Thellung111 in 1959 and by many others. We shall review this briefly by means of the propagator
method with emphasis on the counting of the graphs. The singlet distribution function without the e-e
interaction is given as

b [ ° W 1 ) . p . 1 2 ) ) - - 1 — I N ' * " / \ dp^'dp;'2»
VZ 0 r-: i - 2

2 1 , X;p'1>, ih- '7), (2-14)

and

where the superfix [0] means the absence of the e e ineraction. Each Kernel in Eq.(2-14) consists of the
Slater determinant carrying 1/N! as the norm and it becomes now

x the two corresponding determinant of one-body propagators,

where the one-body prcpagator is defined with an eigen function00n<rj(k') of the Hamiltonian Hk(j) in
Eq (2-5) and the eigen value En, as

n

The multiple of the two determinants consists of (N!)3 terrr~, and the variables in question,

P i " ' and p , ( 2 ) , are distributed in various ways as the parts of clusters. Obviously from the assumption
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of a homogeneous system, when the two variables are placed in sepatate clusters, the contribution is
zero. It is enough to consider only cases with the two variables in the same cluster. A set of clusters,
A(, is defined in which the two variables are distributed in various ways unintegrated. The method of
counting graphs is the same as the case without time variables. One cycle of 1-toron, however, consists
of a time development from if f17 at P i t n to zero at an arbitrary coordinate p,131. a temperature
development through a relay point ( p , ' 2 ' , M to a point (p,'41. 0), and finally from zero to ih~' r at
P i 1 " with the reciprocal temperature (3 This process is shown in Fig. l a , in which the complex
temperature flows from right to left. Summits of graphs always belong to the set p m , while planes, to
the set p l7> and X, the reciprocal temperature integral of zero to 0. The Figs. 1-b and 1-c stand for the
following clusters ( in this case. 2-torons).

|1-b> o j d p j
m K 1 < p , m , 0 + ih-'ripj*1». i h - ' r ]

x K, (p.,'", (3 + iff1 r;p, <*\A) K, (p, <2>; X; p, <1 >, i h ' r )

( I )
p1<21, X;p,<1>, i l r ' r ) .

Pi" I r Pi ( I )

itf'-e ( a )

3 P,(2) 0

r~ n ( Dp,1

p(2) 0



t e )

p,(2 ) 0

Figurei - Graphs appearing in the ideal gas contribution. The graph (a) represents 1-toron with
complex reciprocal terrperature. The graphs (b) and (c) represent two different 2 torons.

similarly

', ih-'r ). (2 19)

Extending this to the 8-toron case, one can obtain for Ag that

Ao = ( - ) e ~ 1 7s £ ' K , ( p , ( 1 l , ( e - s ) í + i h - ' T ; p , ( 2 1 , »
* s = 0

x K , ( p l 2 l , s 0 + X, p'11 (2-20)

where ( ~ r 1 appears because of the Slater determinant, since f-toron exchanges ( t - 1) times their
positions, and z2 comes from z N , leaving z N ~ s for the rest of the configurations. First, the N particles
are separated into £ and N - 8, in such a way that £ particles from a C-toron, with p i ( 1 ' and P i < 2 > in it.
Addressing the two variables in the C-toron, one finds t-1 available spaces for each set of the variables.
Those spaces are filled with the rest of the variables in the sets, p111 and p ( 2 ) , and integrated, so that
characteristic differences no longer exist. The number of ways of filling the spaces are

[ ( N - 1 H N - 2 ) I N - 1 - ( 8 - I ) ) ) 2 = [ ' W 1> ] * ,
< N C ) !

The above argument only describes one of the elements in Ag in Eq.(2-20), however, A j is the
collection of Ctorons, with different configurations of p , ( 1 ' and p , | 2 ) . Thus the first part concludes

( N - 1 ) ! ,

(N-t)! *
(2-21



The rest of the variables form arbitrary number of both same and different toron clusters, and the same
configurations appear [(N - £ ) ! ] ' times after integration of all variables. All the different configurations
of forming the clusters out of N - 1 variables are given as

(b,° f
I I-1- (z«)st, <2-21b)

with a condition

£ t st = N - £,

where b.° is defined as

* t!
(2-22)

The detailed derivation of Eq.(2-22) is given in a textbook161 by Isihara. Collecting all the
factors and introducing them into Eq.(2-16), the singlet distribution function of the zeroth order is built
up to give

bl°]<p.<'». P,(2)) =-'- x—-1-—r 2 ( — - ' l : A Í
V i o N [ ( N - 1 ) ! 1 ! Í = 1 L ( N - e ) ! *

„,„-,.>• =i

V t = 1 S = 0

ih-'r). (2-23)

b) The first order contribution.

The are two types of graphs appearing as the first order of the e-e interaction, as the partition
function is constructed. One of the two is removed by the effect of the positive background, that is,
types of graphs characterized by u (q = 0) = 0, where u (q) is the Fourier transform of the coulombic
potential between two electrons. When the perturbation method is applied to the right side of Eq.(2-10),
it is easier to treat each kernel (propagator) in the real space and later transform it to the momentum
space. Each kernel is expanded in terms of r (q) and the same kernel used in Eq. (2-14). The kernel
involves the impurity-electron interaction as it is. Since both the time and reciprocal temperature kernels
possess the same structure, these are recombined arter the proper perturbation process at any order of
perturbation. Of course, the directions of the times must be chosen correctly. After all the above
processes, the singlet distribution function is expressed as



W P , « ' » . p, ( 2 ' l = —z^Z I N1 2* f n «»!>,«'» d p " '
V i i N = 1 i-2

- / dp<4ldqV3u<q|i:

where

exp( - i r j j .— ) d ^ , (2-25)

(2-26)

The summation in Eq.(2-24) together with K t°J(p<2), X; p ( 4 ) ^ ' i ) represent N I / I 2 I . IN -2 ) ! )

Slater determinants, in each of which a pair of interaction momentum ±q i* placed without repetition in

two arbitrary columns of the tet, p'4>. Thus in K(p121, X;p ( 4 l ,0 'q) one finds

P i < 4 ) , P » l 4 ) P, (4 ' + 7 . P !V 1 . - . P-J4-' 1 . P j ' 4 1 - * • - ) P N 1 4 1 -

The higher order terms with respect to ulq) are also important to form the grand partition
function and the grand ensemble average, and cannot be neglected, although in Eq.(2-24) only the first
order is shown for the purpose of abbreviation. The first term in Eq.(2-24) is that for the noninteracting
electrons, and it produces
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From the first order term, two different categories of collections of graph» appear, other than
trie separation of the pair variables. The first category (i) is that tha pair appaars in a toron with the e-e
interaction, and the second (ii), is that the pair and the e-e interaction, u(q), are placed in different
inrons. For (>), one sees that the independent clusters, which are separated form p,1 1 1 , P|1 2 1 and u(q)
yields the grand partition function of the ideal gas. - „ . > n d It '» multiplied by b l ' M P i ' " , P i ' 2 1 ) . For
, ' : ) , the clusters minus the cluster with the pair make a group which doas not invoiva u(C|) and a toron
which forms the first order exchange interaction so as to creste finally E b J ' J z ' , where b.,11] is an
irreducible cluster of the first order. The first order term in Eq.(2-24) will, therefore, results the
follow'ng fo'rrr

{ W . p . ^ ,, X D [ t j 2 t } . (2-28)
v ioi,... t = a

The second order term in the perturbation will also produce similar terms. Considering these higher
order together, one obtains Eq.(2-i3-b). To obtain tha explicit form of h l ' l l p / 1 1 , P i ( 2 > ) , it is thus
sufficient to observe the fust appearance of the term in Eq.(2-24) for the category (i). Now define C^
for this purpose as given in Eq (2-29), which is expressed only by the one-body kernel and one e-e
ntetaction, u(q) It contains all the possibilities of constructing S-torons with the momentum pair and

u(q) placed in various locations, as was done to construct A j .

„ o dcT * •* v+s+|t)+u£ Í + » " ' T

', ,Y;p,',X)lp,',R;(PÍ'

+ lp*).X,p',.X)(p':,fl,|p?-

* / àff {<P,,X;(P!' Wfi'HP,'. $ + 0"; p, "XXpi, l^-t-X;(pl'+"q), T " " "

(r7, ,X . (p,1 - q». Í ')(p,', »0.<pi' + Q)JOHv'i, fU • r * i .JMPI , W'ip,, ih"r.)

,X; p :

with

(2»)
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where (t) in the sum-restriction is either t or t', and each bracket represents the one-body kernel defined
in Eq.(2-17). The iirst, second, fourth and fifth terms are schematically shown in Fig. 2 a through 2-d
for the case of 6 = 2 The third and sixth start from Í = 3. The thick lines in Fig.2 represents the region
where 0' integral variable associated with ji(q) nwes, and the wavy horizontal lines, (i (q) itself,
respectively. In the first and foarth graphs, the pair is partitioned by the wavy lines but the second and
third have no such structure. These four graphs can not be combined in a simple manner in general. As
an example of constructing the general case of Cj we only show schematically the graph corresponding
to the first term in Cj in Fig 3 Following the same technique as derivation of b l ° M P i ( 1 ) , P i f 2 ) ) , one
can obtain the following result:

bl'Jip.d) pi<2>) = - I I Cj. (2-30)

Here, L>*»ides the distribution of the momentum pair, one must take care of two more variables,
which belong to the set, p141, in Eq.(2-24) and which play roles of the entrance and exit of the
interaction variable q. The second category (ii) is easily investigated following the same technique, but it
will not be presented here.

By introducing Eq (2-23) into Eq.'2-13-a) and breaking the kernels to represent it by the
one-body trace, one obtains well known formula of the electrical conductivity with-out the e-e
interaction.

V m
" W V Tr<1» { P/J(T ) f(H) p^-iff'

( 2 3 , ,

where f(H) is the Fermi distribution function with the Hamiltonian H(j). Similarly by introducing
Eq.(2-30) and Eq(2 29) into Eg.(2-13-a) and performing the same procedure, the first order
contribution to the conductivity, oj^Jlu) yields

cd i ] M = - ^ T / " d r e - i " T / d \ / dp, " 'dp, '1»/ dqV3 u|q) [ A V t <
M V m2 o 0 X

I P̂  (r + i0'W I b X c l ?VW- X)) ld> + < a I f. p^ifi «?' -X)> P,.(T + i/3'h) I b><cd >

+ i(3'h)l b X c If pvUhlp'-\))t Id > + <al P / ((T + i|3'W p,,(iti

f. l b > < c d > + t alfpv(ifi((3
/-X))PJU(T + i0 'h) lb: -<cd>1 !, (2-32)

where I a > = I p / 2 l > . l b > = I p,111-q >, l c > s l p , l l > , l d > = I p1,21 + q > ,

f s f(H), f s 1 - f ( H | , < cd>= < c l f l d>andP /J(tl = f _ p^ltlf.
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v

0
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(b)

p;(2)

( c )

( d )

Figure 2 - Graphs for (he fi<st orde. exchange contributions in the case of 8 = 2
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Figure 3 - The graphical representation of the first term in Eq (2-29). The numbers, 1 and 2, in the graph represent 0 + ifi"' T - /} and (J* - X, respectively.

The tummand parameter t starts with zero, yet <t - 1)0 appears because boxes on the both sides of the (t - 1)8 boxes can become identical one.
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Tht úbove expression is most general and can not be expressed in terms of the one-body trace.

Ill - THE CONDUCTIVITY OF THE ELECTRON PLASMA (NO-IMPURITY)

When impurity effect is not introduced, the whole theory must be reduced to that for the ideal
gas even with the presence of the e-e interaction. Although the result is obvicus it is worthwhile to show
how it is derived in our theory. The Hamiltonian H here consists of only the kinetic energy and
commutes with the momentum operator. The kernels for Eq.12-23) are those for the ideal gas, then

K 1 ( p 1
( 1 ) . $ 1 ; p , l 2 U ) = S i 3 ' ( P l

( 1 >-p , l 2 >)exp { - 0 | p , " > ) ' / 2 m } (3 1)

As a result one obtains

[oi „ e P, . o , ,
M ICÜ m 2 x 3rr2 h3

The first order contribution is given as

[1] _ 2! É.JL
^ * W m ! iw h6

xf lp ' t o3 (1 - f!p + q)] + P^Py [1 - f(p)][1 - 2f(p)| f(p) f (p + q)}

3m e2

-n PF fi
(33)

The grand partition function necessary to this order can be found eleswhere171, and the
operation in Eq.(2-3) gives

N p 0 ' PF 3

- ----- = - - 1 1 + 3 * + . . . ) , (3-4)
V 6ff2 6»r'

and then

po-= P F ( 1 + 3 s + , ) 1 / 3 , (3-5)

where

IT 9 nF ° PF
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Adding Eq.(3-2) with Eq (3 3) and introducing Eq (3-5). one obtains

where n = p^ /6TT! h3 Throughout the formalism the electronic spin factor was neglected.

IV - IMPURITY EFFECT ON THE CONDUCTIVITY

The procedure of solving Eq.(2 31) is complicated for finite frequencies but it is possible in the
case that the frequencies are much smaller than the Fe<mi energy as was done by T.Y.Q.. To make the
situation simpler, let us assume the frequency to be zero here, and later combine this result with the
plasma conductivity. Chester and Thellung showed the following description of the conductivity:

V = 0 l im /T<Jt Tr Í * "o Uu{x) -M 0 1 + JAI (0> -V1 ' 1 }

= --- T lim / Tdt Tr { PoJ/i(t) Jv(0) }, (4-1)

where p0 is either exp «JfjiN - H])/So or exp( -0H) /Z N ° , and 8(t) = explih"1 t 3 0 B e x p M f T 1 tX>.
The Eq (4-1) can be obtained with an assumption that ^ - op^ With this formula one notices some
slight change in the complex reciprocal temperature in the propagator expression. In Eqs.(2 23) and
(2-29), the reciprocal temperatures, 0+ i f r ' r Vj3 + th ' r and t f l + i K ' r a r e replaced by 0 v& and X0, all
the Vs. by ih ! T and ih ' - in the last kernels, by zero, respectively. The X-integration must be replaced
by 0 Because of the lengthy expression the explicit forms are omitted. The expression with operators
are now given with the Hamiltonian of one particle in Eq.[2-5-c) as

"«I 0 ' - - T liro / T d t /dp<p l f (H ) (1 - f (H ) )p u (O) pv(t) l ^ > (4-2)

" J ^ = — — lim / T d t / d p / d p ' / d q u ( q ) [ / d ^
"i h T __ . T 0

r<p'l Pjulif^'li p-q><plP, , ( t ) lp<-q> + <p'lf__ pp(t)

) (v(t)flp*-q><plfl p' + í > } +•— Soar

x { < p IP^I - r ) lp - q X p l f p y ( t - r ) - p v ( t - T ) fl p' +q>

L : >'' PM i- •) Pi,'t T) p^li r l P M ( r ) l p - " q X p l f lp' + ^ • } ) (4-3)

where f. f_ , P,, (t) are defined in Eq.(2 33) The first three terms can be combined by making use of the
factthat131
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3 a P
f = fpd0'PJW) = f d0M(H)p (-ifip-MI-f(H))' (4-4-a)

dt*v o ^ ° *•

where

f^li+explílH-Ep-íu"))]-'. (4-4-b)

with u being ac-number One. then obtains

(/{!) = - ^ — - lim / dt / dpdp5 d<fu(q> [— « ^ ' I f l p - q >
^ mh*T-*--T du/j

x < p I f'_ pJt) f I p" + q > + - / dT {the same as Eq.(4-3) ] (4-5)
h o

To obtain the lowest order in impurity density, n^ it is only necessary to maintain the correct
Hamiltonian in the places of pv{t), and the rest of the Hamiltonians are approximated by those for the
free particles. The second part of the right side of Eq.(4-5) then disappears and Eqs.(4-2) and (4-5) are
reex pressed to give the following simple forms:

0

m h T
u-»o

[ 1 ] » 2 | 3 - • - • 3 - • - • T -, •*
uv = — ~ lim /dpdqu(q)- [ f ' (p + q)[1 -f'o(p)]f'olp)]/<plp I /(t)lp>dt.h mh* T-»- du. -T

u-o ^ (4 6b)

Assuming that the impurities are distributed at random in the system, and that only binary scattering is
important, the time integral in Eq.(4-6) can be given as

lim / T <p* lp v l t ) i p > d t = P a r ( j ) , (4-7-a)

T-+» -T

where

= - / d k l V ( i o P i ( E - - - Ep(1-cos(pTp+lT|] (4-7-b)

Substituting Eq.(4-7-a) into Eq. (4-6) and recognizing that a possible value of p is only at pF and that
rip) is a smooth function of p at least near pF , then r(p) can be factored out of the integration, as
r(p F ) . The final expression is identical to the case without impurities except that instead of l/!'.•'. f (p F )
is introduced. Thus,

eJn nF ,
aiw = ^hv ' ' P F U — 1 (1 + 3s + . . . )

m po

m
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Here, the first order exchange effect only appears through the value of pF in the expression of
the relaxation time. The addition of relaxation times from various sources is given as

1 1 1 1

7,0, T, T2 TS

and if o* recognize that 1/ICJ is a part of the relaxation time mechanism, the Eq (3-6) may be added
to Eq.(4-4) to obtain

It is important to recognize that r (p F ) also depends on the frequency u>, in reality, but it may be
neglected if u is much smaller than EF Thus the Drude formula for the low frequencies is obtained.
The ideal gas part of the T.Y.Q.'s result has the opposite sign to our result. O : "suit is the
consequence of the definition of the external electric field. It, therefore, does not contradict with the
classical result. Gotze and Wolfle obtained the frequency dependence of the relaxation time
quantitatively, and showed that for the small frequencies, the dependence is minor.

The relaxation time at the Fermi momentum is given, by integrating the radial part of the
momentum variable, by

1 n, m pD

T(pF) (2 f f> I [p - . /p o ] i [1 *3s+ ] Pf

= "™~-f S d f l ,;p (0 ) |1 " cos 0). (4 10)

where

V|k) = ; V ( r ] exp'-^- krTdr~afv! o^ (0) =
h1

Here, the scattering amplitude, °P FW). depends on pF as well as the coefficient in front of the
inverse of the relaxation time.

V - DISCUSSION

We have performed explicit calculations of the e-e interaction for the electrical conductivity to
the lowest order of impurity density by making use of quantum statistical mechanics, and also have
investigated the pF-dependency of the electrical conductivity. The final expression is simple and only
the relaxation time is purely pF-dependent, and its form is the same as that for the ideal gas relaxation
time with impurity. The rest of the conductivity expression does not depend on pF but on the real
number density of the electron gas. It must be pointed out, however, that although the e-e interaction
changes the magnitude of the relaxation time, it is not only because of the screening effect as was
pointed out by Langer and others but also because of the decrease of the Fermi momentum, which
makes electrons at the Fermi surface less active. To include the screening effect due to the r.-lectron
cloud, one hat to involve the chain diagramatic expression in between an impurity and an electron of
interest: thus V(k) will be modified approximately by
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1 + u(k)Xj(k)

where X,(k). the eigenvalues of the electron propagator, can be found in the same book by Isihara. The
appearance of this sort of screening effect -*tay be independent of the couting method of graphs which
we have investigated

Assuming only j = 0 term with small momentum is important, Eq (5-11 becomes

where í = 4 [2 / r i / 3 ] " 3 / f f J ,

and Z, the number of excess valence of the impurity atom.

Using Eq.(S-2) the relaxation time has the form

(5-3)

with A = i (r,/4) (po/pF)

The ratio *(po) to r(pF) is approximately given as

PF

The screening effect buffers the impurity effect so as to make the relaxation time in Eq.|5-3) larger. On
the other hand, the effects of the e-e interaction makes pF decrease with increase of r, so that, as can

be seen from Eq.15-4), the real relaxation time decreases slightly from the ideal gas relaxation time.
These two separate effects, thus, play different roles on the relaxation time. Langer did not mention this
point althoighh he referred to the same screening effect, since the renormalization of the Fermi level
was not performed explicitly. Using 6q.(4-10), the conductivity can be written as

^ ^ it m* n, J

Comparing this with the result by Langer, one observes that the term, (1 +3» + 0 V ) l , is not
included in his expression. This comes form the fact that the Fermi momentum kF in their theory,
which differs from the absolute Fermi momentum, is not identical to our pF . The Fermi momentum
which we use is directly connected with the fugacity or the chemical potential. The theory by T.Y.Q. is
the extention of Linger'». They have the final expression of the conductivity with an effective mass
m* = po/ug, where ug is the group velocity at the Fermi level, and with the effective relaxation time
r*, which also contains ug. Reexpression of their result shows that the group velocity goes away form
the expression of the conductivity. The result is given in their notation as
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T ÍW
 l

 Po aPo

where p0 is the absolute Fermi momentum

Comparing this expression with ours, Eq.(4 10), our renormalization may be identified as

Pc m d E(p_, 0) ,
I * - ] 1 i i • * + . . . ] « M I r^f-

Po Do °Po

It is not clear in their notation whether or not lu(fl) P depends on p F . According to Langer, the
corresponding part does. When the classificai equation of motion for the center of mass degree of
freedom is used to obtain the relaxation time i.e. the cemer-of mass relaxation time, the momentum
appearing in the expression must be the Fermi momentum p F which involves the quantum effects and
the e-e interaction effects.

Before closing our discussion we would like to comment a few points concerning our result. The
dependence of the relaxation time and the conductivity on the Fermi momentuin p F would not change
even with the inclusion of the higher order e-e interactions, apart from the argument concerning
screening effects. If so, the effective mass appearing in the conductivity is mainly due to the band
effect. This may be true since the e-e interaction effect only appears through the impurity potential
with pF . The Fermi momentum up to the third order ring diagram contribution (except the third order
exchange) was recently calculated by the auther and A. Isihara191 In the metallic region, the ratio,
PF /p 0 , decreases from unity by 20 "- 50 per cent.

Appendix I

First few terms in Ei.(2 16) can be expressed as

b[°J(p, (1).p, l2>) = ~ 2 DN (1-1)
V A 0 N

and

D, = A,

0 , = (z l ,A . + A 3 + + B j )

O, = ( A , + I , A J Z + ( I , - l , ) z a A , / 2 - B J

D4

, where A j is defined in Eq (2-20), and

Bj s 2Ktto,<n.&t>,{1)JO)K,{0,MAt-tW:p,nKO) (1-2)



IS = / K, (p ,"» . Üftp,»>.O) dp,»» a ( - )* ~ ' íb§ <l-3)

Substituting Eqs.(l - 2), (I - 3) and (2-20). into (I - 1 ) one will observe following procedure:

b ° = — .[ A,(1 +21, + — ( I ? - I j U 2 + . . .)
s 2

+ A 2 ( 1 + z l , + . . . . )

— I, V + . .
2! 2

1
— 2o A 8 expUl, - zJ l , /2 + . . .
-o *

The final expression is the same as Eq.(2 - 23).

Appendix II

As a example of construction of Cg, let us rmkt the first term in Eq.(2-29). For this purpose see Fig. 4.

To f/Tive at p'j from p j m , the complex reciprocal temperature moves a path

- i b - ' r 10 t i tT ' i—i f f 1 T+A +2=up- + 0 ' - i r f 1 -

Therefore one has the kernel Kitp'i, ^ + (}' p, '". ih"1 T) . TO arrive at p, ( 2 t from p'i, the path is

.where s starts from one, then obtains K, (p,121, s0 + X ; p'j - qfi). To arrive at p'{ from there,

r - i f i ' T + A - i 2 = $ * 0' - \

then K, (p., «3+(3 ' ;P I ( J > , X), here t starts with zero, yet ( t - 1 ) appears because boxes on the both
sides of (t - 1)0 boxes can become identical on». For the last part, the path is

i f r '7 + ( i ' - i ) 0 - i r i - | T + 1 = c(3 + ifr1 - 0 '
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Thus the corresponding kernel is K, ( p , ' ' ' , 1$ + iff v:p'; q. p")

A convension was used in which whenever pV appears in the left part of the kernel either ± q was
attached. Several important rules of the construction of graghs are given below:

1) The reciproca' tempcature must always be overall positive

2) The imaginary pan never exceed >h~' r .

3) The position of (p , ' 2 V X) can be chosen at any positon in the bottom parts of the
boxes.

4) The total oiinhi:- of/3distr'buted m the kernel must have altogether C

5) The positions of p , ' " are always fixed at the both corners of the graph.

6) The two thick lines representing the range of the ^'-integration appears in any positions in

the graph, but the pair must appear in the same range.

Exactly same method can be used to construct the second order exchange contribution.

ACKNOWLEDGEMENT

The auther would like to thank Prof H. Tanaka in the Nagoya Institute of Technology for
mead ing the manuscript and for many helpful discussions

RESUMO

Uma t e c a de muitos copos pot rrwo do método dos propagadores. desenvolvido por Montroll e Ward para a
mecânica estat-suca no equiibno, é reformulada pa>a descrever a condutividade elétrica de um gás de elétrons
contendo >mpurezas A teo^a moui 'merações elétron- mpureza ale ordem infinita e interações elétron-elétron até
efeitos de t>oca de p'lme-a o-dem O propagador usado po> Monfoll e Ward é separado em dois propagadores, cada
um dos quj'S safsfa* a equação de 6'och ou de Schroed-nger. para util>zar o método perturbativo A contagem correta
dos diagramas é apresentada A mudança no tempo de 'elaxação ocasionada pela mteraçSo elétron-elétron é mostrada
explicitamente e comparada com trabalhos -«centej
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