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THE ELECTRICAL CONDUCTIVITY OF AN INTERACTING ELECTRON GAS

David Y. Kojima”

ABSTRACT

A manybody theory by the propagator method deve'oped by Montrail and Ward for the equ:':brium statistics!

h , is reformuiated to describe the eiectrical conductivity for an electron gas system conts’nng impunty The

theory includes electron-impurity interaction to the infinvte order and electron-eleciron interaction to the first order

exchange effect The propagstor used by Monteoll, and Ward is sepa-sted into 1two propsgstors, sach of which satisties

either Bloch or Schroedinger equation, to utlize the perturbation method Correct counting of graphs are presanted.

Change in the relaxation t'me due to the e'ectron-s'ectron interaction s explicitly shown and compared with recent
works,

I — INTRODUCTION

It has been assumed for a long t'me that the electron-electron (e-e) interaction did not have a
great effect on the electrical conductivity and many works were reported with this assumption. Kohnm
pointed out that the effect of the e-e interaction only existed through the break down of the Galilean
translational symmetry as a result of introduction of fixed impurities. Langer has reported in his series
of papers“"m'”’ the importance of the e-e interaction through the electronic screening effect on
impurities. The frequency dependence of the relaxation function by the random phase approximation
has been calculated by W Gotze and P. wolfie'®! for a frequency range from zero to values greater than
“twice the Fermi energy E,_, using the memory function technique developed by H Mori 1817} The
technique appears to be powerful, but the introduction of the e-e interaction is not clear One might
have to take into consideration the locality of the external electric field, when the e-e interaction is
included because the coulomb interaction is a long range one, while the wave number of an electric field
with a frequency w ~2EF is of the order of 10 ~10° A. Ting, Yang and auinn''8) (T.¥y Q) recently
developed a theory which closely resembled Langer’s. They introduced the center-of-mass coordinates of
an electron gas system to show explicitly the points made by Kohn. They showed that the electron
coupling was brought abo:t only through the center-of-mass variable of the system. However, the
theory, as well as Langer’s, left the renormalization factors of the Fermi level uncalculated.

The propagator method developed for the equilibrium statistical mechanics by E. Montroll and
J Ward“‘”, and later by lsihara‘s’, was first utilized by Montroll and Ward“5) to describe the
electrical conductivity. They, however, developed the theory only to describe two component
Boltzmann gas system, The mechod of counting similar graphs presented by them is, therefore, good for
the Boltzmann gas, of which components are countable particles. The use of the distribution function of
an equilibrium system to the linear response theory is established in the expression of the Kubo
formuta' 19, we shail develop the propagator method to include the first order exchange effect
explicitly, in chapter 11, and show that tha effect only appears in the expression of the relaxation time,
in chapter 1V. The time correlated distribution function in the momentum representation bip;, t,, p'y,
t'y) is slso developed in the process of the formalism in chapter }l.

{*} Centro de Protegdo Radiologica e Dosimetra — Area de Materiais Dogimétricos ~ Instituto de Energis Atémica ,
$do Paulo, SP -- Brasi



Il — FORMALISM

The grand ensemble average of a macroscopic observable of a system is defined as; the sum over
the number of particles N of the muitiples of the fugacity z to the power N, the partition function Zy
and the partition function average of the observable, devided by the grand partition function Z, under
the same volume and temperature. Thus the grande ensemble average of the electrical conductivity is
written as

T N 2y "uvun {wl, 2-1)
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where ' ,/N! (w) is the partition function average of the electrical conductivity as it is given by the
Kubo formula for the N charge carriers:

0,,Nw) = f dt e-iwt f"dx S Tr"‘”lp IV =iy SN 3, (2:2)

where superfix (N) represents the total number of particies of the system in the volume V,p,, the
distribution function defined as po = exp (—~fHNZy, and the current operator,
3N 10 = exp (i tH) ANV s axi 1 il tH), respectively. One must take the thermodynamic fimit in
the above expression as the volume V is brough_t> to infinity. The conductivity is given as the response ot
the system to the axternal electric field: € = E, exp (iwt), The grand ensembie average is no longer a
function of the total number of the particles, but of the fugacity. It is thus necessary to introduce &
supplementary equation which relates the total number with the fugacity, that is

no2ins (2:3)

The Eq. (2-3) relates the Fermi momentum pg, defined as z = exp (Bpg? / 2m) where i =1/kT and m is
an electron mass under consideration, with the absolute Fermi momentum defined as

P 2-4)

A ratio pg / po obtained from Egs. (2-3) and (2-4) serves as the renormalization factor. The
Eq. (2-1), together with Eq. (2-3), thus, determine the conductivity as the function of (he numbe:
dencity of the electron gas, usually by making use of the absolute Fermi momentum p,

The total Hamiltonian /Mo, the syst m in the absence of the external field can be described as follows,

H=H+ ¥, (2-6-a)

1 e d -
P= 2 _).‘ @i, - ) (2:5b)



H= I M= T ith+EZVIG-Rybh (25<)

where ¢(r - ) is the coulombic repulsive potential between the i-th and j-th electrons and V(r - Ru) is
the potential between the jth electron at r and o-th impurity atom located at Re. The total
Hamiltonian in Eq. (2-5-a} s for the N electrans, thus Eq. {(2-2) is described with this J". The electrical
conductivity i, {c) can be separated as

ny(w) = UL(:.](w) + U[[i:a]‘w) + u;ﬁ.l(w) +... {2-6)

in accordance with the number of the e-e interactions involved, thus the first term in the right hand side
is that for the ideal gas, and the second for the first order exchange graphs, and so on. Each term in
Eq {2-6} is still the function of pg, unless renormalized.

The Kubo formuia, £q.{2 2), is reexpressed, when no magnetic field is present, as

N
oV w) == E S5 J7 dr e fax
Iy v o j m m;

x TriNT [exp(— (B~ +ih™'7) 3C) p,y, expl-A = ih"' 7} K} py, ), (2.7)
here e and m_ are the ith electronic charge and mass, and pj, is the »-th component of the i-th

momentum in the operator form. The above expression is now rewritten by making use of propagators,
as was done by Montrolt and Ward.
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where
=il ) (i)
pt =l ot )
2y = Zexpl- FE,) =/ dp' Kip") 2:p!", 0),
n
and

Kip'), 5150, 5,0 = £ W (p! 1), ip'2Nexp(- BE ), (29
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where W, (p!1') is a Fourier transform of a wave function of N-particle system with H, satisfying the
antisymmetric relation of the exchange of any two variables. In this forra, the current is no longer the
operator and counting similar graphs becomes possible. One must wutice here that Eq.{2-9) is the
propagator with which particles at p'2! at a complex reciprocal temperature s, propagate to p!1! .t s;.
The two propagators in Eq {2-8} can be rewritten by introducing two more propagators, it becomes

K(p“).ﬁ + ih",’;p(?’,)\) K‘pm)';\: p“",ih",—)

= f dp'3'dp'd) Kip!", it r; p'3), 0) Kip'd, B; 0'2), N

x Kip'2', x;p!%, 0} K(p'4), Op!"), ik ' 7). {2-10}

The second and the third propagators are the Green's functions of Bloch equations, and the
first and the fourth, those of Schroedinger equations. The fourth one is the complex conjugate form,
thus foliows the c.c. form of the Schroedinger equation. These two are identical to the Feynman
propagators‘2) and follow the same condition of the time flow. The Green's functions of the twe
equations satisfy the following:

K, 22, )

Ll N K=l - (12)) {2-11)
ag,
with cnonditions:
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with conditions:
K =i (e!?)--pi2) ifty ~t, +0
=0 ity <1y,

where 5(r'!) - r12)} consists of 5~ functions of the Slater determinant w'th an appropriate weight factor.
It is possible 1o combine these twa types of propagators at any order of the perturbation series.
Introducing Eq.(2-8) into Eq (2-1), the grand ensemble average of the electrical conductivity yields

el

2-13-b
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where
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1

2
x Kip'"), g +ih ' 7;pl2 ) K(p'2!, x; pt ik 1)
=pl0)ip, (1), p, 2 4 pl1 ] 4 204 . (2-13b)

The function b(p!??, p!2}) is the singlet distribution function, which can be expanded also according to
the order of the e-e interaction as is expressed in Eq.{(2-13-b).

a) The zeroth order contribution in the e-e interaction {-' =0). When electrons do not interacts
among themselves, but with impurities, it is well known that N-particle trace in Eq.(2-2) can be
rewritten in terms of one-particle trace. This term was extensively investigated ty Chester and
Thellung!?! in 1959 and by many others. We shall review this briefly by means of the propagator

method with emphasis on the counting of the graphs. The singlet distribution function without the e-e
interaction is given as

1 N
b[O](le)‘ P (2)) =oe— ¥ NN I dpi(”dp;(m
VEO " 1=2
xKIONpt) g+ it 17,0020, ) kONpi2) Npt1), in-t7y, (214
and
Zo=xNzZl0l= 2N pap! klOhpth), 5 01, 0), {2-15)
N

where the superfix [0] means the absence of the e-e ineraction. Each Kernel in Eq.(2-14) consists of the
Slater determinant carrying 1/N! as the norm and it becomes now

1 N N
plOlip (1, @y = — ¢ ——— [ 7
Prin va, v £

{2-16)
dp.(1)dp,(2)

2

x the two corresponding determinant of one-body propagators,

where the ona-body prcpagator is defined with an eigen functiong ¢"(ri“") of the Hamiltonian H,(j} in
Eq.(2-5) and the eigen value E,,, as

Kitp'), 51012, s1) =29, (') 971(p;'2) expl- sy ~ 1,)E,). 217
n

The multiple of the two determinants consists of (N!)? term-, and the variables in question,
pi'") and p, 12, are distributed in various ways as the parts of clusters. Obviously from the assumption



of a homogeneous system, when the two variables are placed in sepatate clusters, the contribution is
2ero. It is enough to consider only cases with the two variables in the same cluster. A set of clusters,
Ay, is defined in which the two variables are distributed in various ways unintegrated. The method of
counting graphs is the same as the case without time variables. One cycle of 1-toron, however, consists
of a time development from ih™'7 at p,!!' to zero at an arbitrary coordinate p;'3, a temperature
development through a relay point {p; ‘2!, A} to a point (p, !4, §), and finally from zero to ih™" 7 at
P.“’ with the reciprocal temperature § This process is shown in Fig. 1-a, in which the complex
temperature flows from right to left. Summits of graphs always belong to the set pt? ), while planes, to
the set p'?’ and A, the reciprocal temperature integral of zero to i. The Figs. 1-b and 1-¢ stand for the
following clusters { in this case, 2-torons).
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Figure 1 — Graphs appearing in the ideal gas contribution. The graph (a) represents 1-toron with
complex reciprocal temperature. The graphs (b) and (c) represent two different 2 torons.

similarly

{1-c) » Kylpy (M, B+ih ' 10 D 0K p, 12, B+ x; p 11, bt ). {219)

Extending this to the £-toron case, one can obtain for Ag that
£
Ag = (=718 Kip, ! (-8 +ihtr 0,12 N
s =0

x K (p'2, s+ X p!"), it r) (2-20)

where (— g1 appears because of the Slater determinant, since £-toron exchanges (¢ — 1) times their
positions, and z° comes from z, leaving zN"¥ for the rest of the configurations. First, the N particles
are separated into £ and N ~ £, in such a way that £ particles from a -toron, with p; {1 and p, (2} in it.
Addressing the two variables in the 2-toron, one finds £-1 available spaces for each set of the variables.
Those spaces are filled with the rest of the variables in the sets, p'7) and p!2’, and integrated, so that
characteristic differences no longer exist. The number of ways of filling the spaces are

(N= D!
N-1N-2)..... N-1-( & =) =[——F,
IN-1UIN-2).... ( ] e

The above argument only describes one of the elements in Ag in Eq.(2-20), however, Agp is the
coliection of £-torons, with different configurations of p,{') and p, 2! Thus the first part concludes

!
ML RN (2-21-a)



The rest of the variables form arbitrary number of both same and different toron clusters, and the same
configurations appear [{N —£)!]* times after integration of all variables. All the different configurations
of forming the clusters out of N — ¢ variables are given as

(bo
T N—tes o (25, (2-21-b)
s,!
with a condition
Tts,=N-¢
t
where b.° is defined as
A e el
be =——————— [ Ky tp; 1 8p,1, 0) dp; 1. (2-22}

t!

The detailed derivation of Eq.[2-22) is given in a textbook!S) by Isihara. Collecting all the
factors and introducing them into Eq.{2-16), the singlet distribution function of tle zeroth order is built
up to give

1o - N
(O, 11 p (2= T 3 e A
AL =3 ATYNETHTEPE- M yrr Tl e

b. z%)5 -
x{N-gup s kX

s¢! v =1 "t
1 - -
=— % 3 (=3It D g+, 20N
Vi=18=0
Kilpy'2, 884 xipy 1) ikt ), (2:23)

b) The first order contribution.

The are two types of graphs appearing as the first order of the e-e interaction, as the partition
function is constructed. One of the two is removed by the effect of the positive background, that is,
types of graphs characterized by u{q =0) =0, where u(q) is the Fourier transform of the coulombic
potential between two electrons. When the perturbation method is applied to the right side of Eq.(2-10},
it is easier to treat each kernel (propagator) in the real space and later transform it to the momentum
space. Each kernel is expanded in terms of i {(g) and the same kernel used in Eq. (2-14). The kernel
involves the impurity-electron interaction as it is. Since both the time and reciprocal temperature kernels
possess the same structure, these are recombined after the proper perturbation process at any order of
perturbation. Of course, the directions of the times must be chosen correctly. After all the above

processas, the singlet distribution function is expressed as



1 - N
b(p,‘”,p,u'l = — T N M !_n ”'(ll @,ﬂ'
VEE--- N=1 i=2

(kI pt1), 8 + intrp2) N IO} (p1D) n;p!Y), i)

— f dp'M ag " uig) X

”g+m KIONipt!) g+ ity ;p2), ) klO) (pt21 3 pt®), g 3) kO (p!®) . M) ! 1)

+ ;;“gp' k(0)ipi1, g+ i-tr; '), 5 q) KIO) (o) g pi2), 2) kO] (o120 A pt1), i1 1) } +
\ T

ofu*{a) ], (2-24)

where

ula) = S #(ry) expl~ir, )dr,,, 2:25)
N 12) ! 4)g 12) i
Kip'',s; P -'2’=§ﬁf Kir'' sy ,m-xp(--;
xiri11 pl1) 7121 5021y gritighia, {2-26)

The summation in Eq.(2-24) together with K [0)ip(2), 2 pt4), .8 9) rapresent NI/(21.(N— 2)1)
Siater determinants, in each of which a pair of interaction momcntum iq is placed without repetition in
two arbitrary columns of the set, p4). Thus in K(p!2), 3;p'4),3°3) one finds

(4 {
p, 4, pzm'm'p‘uuq p”) .. ’:‘-’1 p’w_q up

The higher ordes terms with respect to uig) are also importsnt to form the grand partition
function and the grand ensemble averege, and cannot bs neglected, sithough in €q.(2-24) onty the firn
order is shown for the purpose of abbrevistion. The first term in Eq.(2-24) is that for the noninteracting
electrons, and it produces

blo](pl “,- P?’) ZO'

—
VEE,. ..
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From the first order term, two ditferent categories of collections of graphs appear, other than
the separation of the pair variables. The first category (i) is that the pair appears in a toron with the e-e
interaction, and the second (ii}, is that the pair and the e-e interaction, u(q), are placed in different
wrons. For (i), one sees that the independent clusters, which sre separated form p, {1}, p, 12} and uiq)
yiekls the grand partition function of the ides! gas, =, and it is multiplied by b[" o, 1), p, ‘). For
1), the ciusters minus the cluster with the pair make s group which doess not involve u(g) and a toron
which forms the first order axchange interaction so as to create finally T bt[']z', where b [?] is an
irreducible cluster of the tirst order. The first order term in EQ.(2-24) will, therefores, resuits the
follow 'ng form:

a2
o=

: .
e (6l (1), p, 20z 4 0]z, 2 U 2-28)
[} -

The second order term in the perturbation wiil also producs similar terms. Corsidering these higher
order together, one obtains Eq.(2-13-b). To obtain the sxplicit form of bl1) (p,1) , p,12)), it is thus
sufficient to observe the first appearance of the term in Eq.(2:24) for the category (i). Now define Cy
for this purpose as given in Eq.(2-28), which 1s expressed only by the one-body kernei and one e-e
.nteraction, u(g) It contains all the possibilities of coastructing £-torons with the momentum pair and
u(q) placed i various locanons, as wes done to construct Ag.

+5+{t)+ul g+ ih;‘;r

.
Ce =t 1821 @) cap dpy
n? vst > 1tudo " A

-+ > - - -> -~ - > - - ot
x { (py X Py -~ Q)L BNE, Y P/ ANP; R;(p3 + a), )(F;. Wp,, K T)
htd - : -
(0 X. (P} - Q),EHOY, 047+ Q).OBE, Y:0% AN, WiB5 b~ 7)

+P XL AP L RLIBE Q) 8IBY, 1B:AP; +Q).0Mpy,. Wip,, ') }

A - 9 - -, - - - - - -
+J h"fdﬁl {tp, rx;‘pfv' QoMp,. B+ 89 Np, B AP + q). ﬂ')‘p:{ W.p, ih"'r)

nd vy, i i Vo -, -, RedinTe
S Py X (B - A) BB, s0.P3 + Q)0 , 18+ 8 P1, MPL, WDy, N 1)

4 - - i %, 'y ¢ -
+ 0p X By NPT, B+ MDY ~Q) BB, 580 +a). ONBa.W: Py, ' r )},

with

X=vB+i't W=+ Wau+) Yo@sf

Ras8+A py=p,'" end p, wp, @, (2:29)
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where (t} in the sum-restriction is either t or t’, and each bracket represents the one-body kernel defined
in Eq.{2-17}. The Tirst, second, fourth and fifth terms are schematically shown in Fig. 2-a through 2d
for the case of ¢ =2 The third and sixth start from ¢ = 3. The thick lines in Fig.2 represents the region
where [’ integral variable associated with u{q) nwves, and the wavy horizontal lines, u (q) itself,
respectively. In the first and fourth graphs, the pair is partitioned by the wavy lines but the second and
third have no such structure. These four graphs can not be combined in a simple manner in general. As
an example of constructing the general case of g we only show schematwally the graph corresponding
to the first term in Cg in Fig. 3 Following the same technique as derivation of bloT(p, 1), p,12)), one
can obtain the following result:

1 -
b[']mn”) p,(Z)) =_\7. 252 Cq. (2-30)

Here, Lasides the distribution of the momentum pair, one must take care of two more variables,
which belong to the set, p'4!, in Eq.2-24) and which play roles of the entrance and exit of the
interaction variable Q. The second category {ii) is easily investigated following the same technique, but it
will not be presented here.

By introducing Eq (2-23) into Eq./2-13-a) and breaking the kernels to represent it by the
one-body trace, one obtains well known formula of the electrical conductivity with-out the ee
interaction.

2
o i = 7::; S dr et ,/:d)\ Tr) {pytr ) HH) D= k7' 1) (1= HHD ],

(234

where f(H) is the Fermi distribution function with the Hamiltonian H(j). Similarly by introducing

Eq.{2-30) and Eq(2-29) into EQ.(2-13-a) and perfor'ning the same procedure, the first order

contribution to the conductivity, u}!/iw) yields

o - ﬂ+ih-|7’
Ul”(w) ='-—-e—-f dr e"i“”'fcd)\ I dp,(”dp,(” S dah ? uia)[ S an 1<
uy vm? o 0 A

1Py (7 +i8H) 1b> <clIPy(ih(g" - M) 19>+ < a £ pylih (B ~N) Py(r +ifh 16> < cd >

A
+<u|P“(‘r+iﬁ'h) py(ih(ﬁ’—)\))flb><cd> -+ Iih"rda' {

<a!Pﬂ {r +8h) b><cltpy, (ih(F -1 Id "+<a|Pl',(r+iB’m p,lih
BF-At ib><cd>+ 7 alfp,,(ih(B‘—-M) P,_J (r+ifh Ib<ed> 1, (2-32}
where | a > = 1 pf2> 1b>= lp{M-gq> lc>=lp! !> 1d> = Ip{? +a>,

t=fH,t =1-HH),<cd>= <clfld>and Pyt =t_ D,_,(ﬂf-
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Figure 2 — Graphs for the fi'st orde: exchange contributions in the case of £ =2



«<—(v-np —> «—(t-np —> <> -—>

Figure 3 — The graphical reprasentation of the first term in Eq.(2-29). The numbers, 1 and 2, in the graph represent § + ih"'r — B and § — ), respectively.

The summand parameter t starts with zero, yet (t - 1)8 appears because boxes on the both sides of the {t — 1)§ boxes can become identical one.
w
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The above expression is most general and can not be expressed in terms of the one-body trace.

11l — THE CONDUC™1VITY OF THE ELECTRON PLASMA (NO—IMPURITY)

When impurity effect is not introdiuiced, the whole theory must be reduced {o that for the ideal
gas even with the presence of the e-e interaction. Although the result is obvicus it is worthwhile to show
how it is derived in our theory, The Hamiltonian H here consists of only the kinetic energy and
commutes with the momentum operator. The kernels for Eg.{2-23) are those for the ideal gas, then

Kylp, 1Y, 5,50, 2V 8,) =63 (p, "' —p,;12)) exp {-Blp,!"1)?/2m} 3n

As a result one obtains

ol 3 P,
o' e = 5, o (32)
The first order contribution is given as
] e g1, >
Oy () = =2 - ;,,—I daulq) [dp {p,lp, + ) flp) [1-flp)]
- - - - -
xHp'+q) {1~ flip +a)] +pyp, [1—Hpl)[1 - 2f(p)] H(p) Hp + al}

3me?

Y
= d% . . (33)

Dph

The orand partition function necessary to this order can be found eleswhere!”), and the
operation in Eq.(2-3) gives

N F’o3 pF’

s o= =e—e (14354, ), (3-4)

vV 8r! 6n
and then

Py = Pell +3s+. )13, (3-5)
where
me! 1 4r¢ P P
$ = —— == [— VI o {~%) =s [-F].

tpeh 79 e o' pg
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Acding Eq.(3-2) with Eq (3 3) and introducing Eq (3-5). one obtains

Oplw) == (3-6)
where n=p_' /61 h* Throughout the formaiism the electronic spin factor was neglected.

IV — IMPURITY EFFECT ON THE CONDUCTIVITY

The procedure of soiving Eq.(2 31) is complicated for finite frequencies but it is possible in the
case that the frequencies are much smaller than the Ferm: energy as was done by T.Y.Q.. To make the
situation simpler, let us assume the frequency to be zero here, and later combine this resuit with the
plasma conductivity. Chester and Thellung showed the following description of the conductivity:

=8 _tm [Trat Te { % £, [ 4,00 3,000 + J,(0) 00 ]}

g tim 7 dtTr { pdytty 3,0 }, (4-1)

-m -

where £, is either exp (BluN - H)I/Z, or exp(~PHI/Z\O, and Blt) = exp(ih™' 1H) B expl~ih™" 1)
The Eq {4-1) can be obtained with an assumption that g, =0, With this formula one notices some
slight change in the complex reciprocal temperature in the propagator expression. In Egs.(2-23) and
(2-29), the reciprocal temperatures, 3+ ih™'7 v3 +ih''r and t3+ib™’ 7 are replaced by 8. vf and 1§, all
the A’s,. by i !7 and ih ' 7 in the last kernels, by zero, respectively. The A-integration must be replaced
by § Because of the lengthy expression the explicit forms are omitted. The expression with Operators
are now given with the Hamiltorian of one particle in Eq.{2-5-c) as

e‘ﬁ T - -
g fo) < =-= g dt fdp <p!HHM1 - HH)Ip,(0) pylt) i p> (4-2)
Hu mh> T »e -7 o

Jl]‘;‘r tim fTdvsdp S dp fdgu (Q)f Iadﬁ

Tae T

I - -> - - . T
x <p’| Pulitglip~a><plPyltiip+qg> + <p'li_pylt) P#(lﬂ’h)lp—q><p|f|p +o>

-> - - e - - i t
--<p'|P“(ihﬁ’) pyit) Hp-a><pltl p + g >} +-f-" Jodr

-

- - - -y d
x {<pOP”('-r)lp~q><p|fp,,(t—r)—p,,(t—ﬂfl p o>

-

- , s - - - b d
)'lpur W pyt ) opylteT) Pyl-7)p: g <plfip'+q -} (4-3)

where f. f_ P, (t) are defined in Eq.(2-33) The first three terms can be combined by making use of the
tact that!3!
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2
g = [ P, lih0) = fB dB" fIH) B, (—ihg') (1~ HH))" {4-4-a)
Op o [

where

'=[1+explB (H~Eg-p.u))] ™", (4-4-b)

with u being ac-number One. then obtains

T
[1] e’ﬂ N . -+ 3 3 SV giiing
o = — | dt [ dpdp’ dqulq) [—— <p’If'lp—aq >
w = T T J dpdp’ dg Q[aup
[T
t
x<plf_ pyl)flp~+q>+ —'h—j' dr { the same as Eq.{4-3) ] {4-5)
. o

To obtain the lowest order in impurity density, n, it is only necessary to maintain the correct
Hamiltonian in the places of p,(t), and the rest of the Hamiltonians are approximated by those for the
free particies. The second part of the right side of Eq.(4-5) then disappears and Eqs.(4-2) and (4-5) are
reexpressed to give the following simple forms:

T

97 -, —»

n[:,]= 8 im fdpl1-f (o) f, (pp J< Ep,,(t) Ip>dt. {4-6-a)

m h3 T = “-T
u-g
[1] Ozﬁ > > 3 - = . . T - Ind
O 4y =—= hm [dpdqula) == (F,(p+a)[1 =, ipl)f' o (P [<plp,tyIp>at.

mh® 1= du -7

u—=n o {4.6-b}

Assuming that the impurities are distributed at random in the system, and that only binary scattering is
important, the time integral in Eq.(4-6) can be given as

T — > e
h <plpylt) Ip>dt = ). {4-7-a)
TL'"..I-T plipylt) Ip P.Th
where
1 (2m*n o S
—= LGk VIR (€~ ~ EDI1 ~costp,p+K) ] 14-7-b)
e (2m*h’ p+k

Substituting Eq.(4-7-a) into Eq. (4-6) and recognizing that a possible value of p is only at pg and that
7ip) is a smooth function of p at least near pg, then r(p} can be factored out of the integration, as
T{pg). The final expression is identical to the case without impurities except that instead of 1/iz, 7(pg)
is introduced. Thus,

5 e’n , )[nF]3“+3 + )
Oy = —_! - s+ ...
uy Ly m Pr oo

e'n

=8, ). {4-8)
= (P
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Here, the first order exchange effect only appears through the value of pg n the expression of
the relaxation time. The addition of relaxation times from various sources is given as
1 1 1 1
= b - b 4
T T2 Ty

‘ot

and if 0 recognize that 1/iw is a part of the relaxation time mechanism, the Eq (3-6) may be added
to Eq.(4-4) to obtain

e'n {pe)
O™ By —

) . {4-9)
L M om 1+iw7{pg}

It is important to recognize that 7(pg) also depends on the frequency w, in reality, but it may be
neglected if w is much smaller than Eg. Thus the Drude formula for the low frequencies is obtained.
The ideal gas part of the T.Y.Q's result has the opposite sign to our resuft. Or.: —suit is the
consequence of the definition of the external electric field. It, therefare, does not contradict with the
classical result. Gotze and Woifle obtained the frequency dependence of the relaxation time
quantitatively, and showed that for the small frequencies, the dependence is minor.

The relaxation time at the Fermi momentum is given, by integrating the radial part of the
momentum veriable, by

1 e J dQ {0) i1 cos 0}
SRR 1. - N o -
Tiog) 27 (e Joo PP [1+3s+ -] PF

n . mpg
=P o g 0 (0) 10 - cos ), (4-10)
@ O
where
. i Ve pe) 2.
Vik) = fVIir) exp’— kr)dran? o, 6) = |~—P-f'-gf~l
h F I

Hers, the scattering amplitude, apF(O), depends on pg as well as the coefficient in front of the
inverse of the relaxation time.

V — DISCUSSION

We have performed expiicit calculations of the e-e interaction for the electrical conductivity to
the lowest order of impurity density by making use of quantum statistical mechanics, and also have
investigated the pp-dependency of the electrical conductivity. The final expression is simple and only
the relaxation time is purely pg-dependent, and its form is the same as that for the ideal gas relaxation
time with impurity. The rest of the conductivity expression does not depsnd on pg but on the real
number density of the electron gas. It must be pointed out, however, that although the e-e interaction
changes the magnitude of the relaxation time, it is not only because of the screening effect as was
pointed out by Langer and others but also because of the decrease of the Fermi momentun, which
makes electrons st the Fermi surface less active. To include the screening effect due to the rlectron
cloud, one has to involve the chain diagramatic expression in between an impurity and an electron of
interest: thus V(k) will be modified approximately by
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Vik)

————eee (5-1)

where X (k). the eigenvalues of the eiectron propagator, can be found in the same book by Isihara. The
appearance of this sort of screening effect may be independent of the couting method of graphs which
we have investigated.

Assuming onty j = O term with small momentum is important, Eq.(5-1) becomes

4re’h 2 p
il b 2 2K 5.2
P Er,n,,[po], (5-2)
where t=4[27°/3) 3 /2%,
and Z, the number of excess valence of the impurity atom.
Using Eq.(5-2) the reiaxation time has the form
1 nm 4ne’Z _p A 1+A
- p"[ ]2 °’[—-———1+en 1 (5-3)
T“’F) m 1+A
with A = £ (r,/8) (p,/pE).
The ratio 7(p,} to T(pg) is approximately given as
)
LI (5-4)

T{pg) Pr

The screening effect buffers the impurity effect so as to make the relaxation time in £q.{53) larger. On
the other hand, the effects of the e-e irteraction makes pe decrease with increase of r, so that, as can

be seen from Eq.(5-4), the real relaxation time decreases slightly from the ideal gas relaxation time.
These two separaie effects, thus, play different roles on the relaxation time. Langer did not mention this
point althowghh he referrert to the same screening effect, since the renormalization of the Fermi level
was not periarmaed explicitly. Using €q.(4-10), the conductivity can be written as

24

ep
L |1 + 35 +Ofs? )][f 3in8 do Iwpg — PP (1-costpg, Be)] ™" .

a,,=8

T amd

Compering this with the result by Langer, one observes that the term, (1 + 3s + 0{s*)), is not
included in his expression. This comes form the fact that the Fermi momenwm kg in their theory,
which differs from the absolute Fermi momentum, is not identical to our pg. The Fermi momentum
which we use is directly connected with the fugacity or the chemical potential. The theory by T.¥.Q. is
the extention of Langer's. They have the final expression of the conductivity with an effective mass

polu , where Up is the group velocity at the Fermi level, and with the effective relaxation time
, which alw contains ug. Reexpression of their result shows that the group velocity goes away form
the expression of the conductivity. The resuit is given in their notation as
Nea! ,_Neel

O —~—g3— 17" =

m m 0

’
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1 AZ(P,.
L_Pepom, mAZ@O o ek 11 - cost), (55)
T (2n) Po 3P,

where p, is the absolute Fermi momentum.

Comparing this expression with ours, Eq.(4-10), our renormalization may be identified as

3 X(p,, 0
[‘EE‘]ZU +3+...] “{1“1“‘(“;""0 "“)]1-
Po P 3P,

It is not clear in their notation whether or not Ju(@) ¥ depends on p.. According to Langer, the
corresponding part does. When the classifical equation of motion for the center-of-mass degree of
freedom is used 1o obtain the relaxation time i.e. the center-of-mass relaxation time, the momentum
appearing in the expression must be the Fermi momentum pg which involves the quantum effects and
the e-e interaction effects.

Before closing our discussion we would like to comment a few points concerning our result. The
dependence of the relaxation time and the conductivity on the Fermi momentun p would not change
even with the inclusion of the higher order e-e interactions, apart from the argument concerning
screening effects. If so, the effective mass appearing in the conductivity is mainly due to the band
effect. This may be true since the e-e interaction effect only appears through the impurity potential
with pg. The Fermi momentum up to the third order ring diagram contribution (except the third order
exchange) was recently calculated by the auther and A. Isihara!®). In the metallic region, the ratio,
Pg/p,, decreases from unity by 20 ~ 50 per cent.

Appendix |

First few terms in €1.(2-16) can be expressed as

1
bl%dip, (1), p, ) =— 3 Dy (-1)
VE, N
and
D; = A
D; = (2|]A0+A2++ Bz)
O, = (A3 + 1Az + (1, —1;) 22 A, /2- B,
+ lllB;)
D, =

. where Ap is defined in Eq.(2-20), and

L
By = zjx,(p.‘”, s8; p, 1110) K, (p; 2,12 - 9)8 :p, 12),0) (1-2)
ol



Ig = K (py "), Bp, 1,00 dp, V) = (-1 g -3

Substituting Eqgs.(! - 2), (1 — 3) and (2-20), into (I — 1) one will observe following procedure:

1
b0 =— [A(1+2 +—2 03— 1022+. . )

di=

+A 1+ 4+ )

+ Aglt+.. .. [ |
1 1 2,2 2
=— EAgitszh+—4" 2" +. . ~—hz* +.)
z, 2!
! 2
= — nggexp(z!, —zt/2+ .. )
<o

]

Ll ]

>
E3)

The final expression is the same as £q.{2 - 23).

Appendix 1|
As a example of construction of Cg, let us make the first term in Eq.(2-29). For this purpose see Fig. 4,

To &mive at py from p, !1), the complex reciprocal temperature moves a path
—ib ' i tr— i T A 2=uB e~ i
Therefore one has the kernel K (g3, 8+ 8. p, /1L 7). To arrive a1 p, 12} from pj3, the path is
Teihtlr A (SN i e n=80-B +

.where s starts from one, then obtains K, {p,/2! 8+ \; pj - a.0). To arrive at p' from there,

B-A+i'r —h'r+(-NP+ihir—ih'r + A4+ 2=+ -2

then K (py, 8+ 8;p;'2!, A), here t starts with zero, yet {1t — 1) appears becauss boxes on the both
sides of (t— 1) boxes can become identical one. For the iast part, the path is

ilr = NB-ibTr + 1= +i - p
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Thus the corresponding kernei is K, (p, '), B+ ih™" +:p) - q.B)

A convension was used in which whenever py, appears in the left part of the kernel either £ q was
attached. Several important rules of the constructon of graghs are given below:

1

—

The reciproca’ temperature must always be overali positive

2

-

The :maginary part never exceed +h™' 7 .

3) The position of (p,‘2'. A} can be chosen at any positon in the bottom parts of the
boxes.

4

-—

The to1al rurher of §distrbuted 1n the kernel must have altogether ¢

S) The posttions of p, '1) are always fixed at the both corners of the graph.

6

—

The two thick lines representing the range of the [“integration appears in any positions in
the graph, but the pair must appear in the same range.

Exactly same method can be used to construct the second order exchange contribution,
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RESUMO

Uma teo'ia de muitos copos por me'0 60 metodo dos propagadores, desenvolvido por Montroll @ Ward para 8
mecénica estat’stica no equ: ‘brio, é retormuiada para descrever a condutividade eiétrnca de um gis de elétrons
contendo 'mpurezas A teo::a inclui '‘nrecagdes eiétron-:mpureza ate ordem infinita e :nteracdes elétron-elétron até
efsitos de troca de prime:a ordem O propagador usado po' Montioll e Ward é separado em dois propagadores, cade
um dos quas sat'sfaz a equagdo de Broch ou de Schroed:nger, para utiizar 0 Método perturbativo. A contagem correta
dos diagramas ¢ apresentada A mudanga no Tempo de relaxagdo ocasionada pela mnteracdo elétron-elétron é mostrada
explicitamente & comparada com trabalhos recentes
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