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NUMERICAL SOLUTIONS OF TWO-MEDIA PROBLEMS IN TWO-GROUP
NEUTRON TRANSPORT THEORY

Yup Ishguro and Roterio D M. Garcia

ABSTRACH

Mhree protieims involving two masdia 1o dans gevanstry sie solyesd numaricasl!y, n twwo gioup nution b afspore

«

thaory for st scottenirg two shabs with anondioens Hux, the <ninesd problem o retiectad slab jeactors, »nd the

cell gobiern Each proablern 15 esdaee 3 to g set o sequiar el soguations for the covtheients of the Case expansions

aned aobend nrativety Mursencal rissuits are reportert for alt problens -]

;

1 INTRODUCTION

The two group aeatron Lansport eguation foo Gotrape scattening i plane geoinetry has been
studiext by many researchers in the singpiar cigerfunction expransion meth:'an“ﬂ. The fist work was
reported, soon after the mtreduction of the me'hod, by Zclazity and Kus/cll("‘:‘, but their complateness
arfquments were not guite conclusive. Some yrars fater Siewert and Shleh”a’, fullowing the work of
e 2}, proved rigorousty the fullyange
compieteness and orthogonality theovems and analysed the disaete spectrumm. Some attempts were made
to soive halt space”z’m 15] and stab!’ B probiems bt 11 was not untit the half-range completeness and
orthogonality theorems ware establishug' 317,200
Hatf-<pace pmh!ems“” e soved i terms ot and H o omateix that can be obtained numerscally by a
nn can he converted to systems of cegular
integrdi equations o the expansion coefhicients which can then be solved by numericai iterations.

Siewert and Zweife on 4 specal case of the mulbgroun me

that these probiems were solved in a concise manner.

rapidly converging rterative scheme and siah problems

Problems involving two medta, however, have remaned ynsolved in twoyroup theory, though in
the onegroup maodei some problems have been solved using the two-media orthogonality retations! 13
and by other methods‘z"s’, The difficulty is o that the use of the full-range and haif-range
orttwgonality relations does not remove all sinqularities, that are inherent in the Case method and that
the numerical solution of the resuiting singular integeai equations involves numericai differentiations.
Further, two-media orthogorality relations havz not heen found in two-group theory. Jauho and
Rajamé'k»“m studied two-media problems in mu'ti-group thoory but they did not report any numerical
results and it appears rather difficu!t to obtain numericsi results based on their analysis. The first
numerical resuits for two-media problems were reparted by Ishiguro and Maiorino'®} using @ method
based on the haif-range orthooconality relations arid invariance principles. Their method, noweve, i
applicable only to twon-half-space problems. Thus, a_general systernatic metnod 16 sDlve various two- o
muiti-slab problems has been lacking and many modei problems in transport theory hiJe remsined
unsolved,

8)

In a recent paper Ishiqurc proposed a8 methiod of this kind and reported same numerical

solutions in one-group theory.

The purpose of this paper is to show thai two-media problems in two-group neutron transpor.
theory tor isctropic scattering can be converiedd, using the method of Pef. 8, to a set of regular integral
gquations for the coefficients of the Cace exnansigns anag soiverd numerically by a standard iterative
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méthiid and to repurt numerical results for syme modet problems hased on exact theory. We shall
consider three problems, two slabs with an incident flux, the critical problem for reflected siab reactors,
and the cell problem, but we would like first to summarize the method of regularization and the basic
theory.

THE METHOD OF REGULARIZATION

The method to derive a set of reguiar integral equations for the sxpansion coefficients from the
set of singular integral equations that results from boundary and intes face conditions can be surmmarized
in the following steps‘a :

1 At an interface separate the continuity condition into two equations, one for uel(0,1), the
other for uel-1,0).

23 To the ;iel0,1) equation apply the helf-range orthogonslity relstions for the right-side
medium.

b In the uel-1,0) equation change i to -y and then apply the orthogonality relations for
the lett-side medium.

3a If any singularity remains in step 2a, consider the intesface (or boundary) condition for
4 > 0 at the left-side boundary of the left-side medium and generate the same singularity,
wbtract the resuit from the equation in step 28 snd remove the singulssity.

b For step Zb consider the right-side imterface of the right-side medium and generate the
same singularity from the u < 0 equation.

4 i sigularities remain in step 3 repest the process, generating the same singularities at
different interfaces.

Although the equation for a discrete coefficient is always found to be regulsr, we apply to this
ayuation the same operations as those applied to the equstion for the corresponding continuum
coefficient, since the convergence of iterations is sometimes faster and the discrete and continuum

coefficients are obtained in the same form.. We not that for 8 symmetric geometry the right and left
interfaces are equivalent.

SOLUTION OF THE TRANSPORT EQUATION

The two-group neutron transport squetion for isotropic scattering can be written ss

0 1
"aT Jlxu 4+ El {xu) = 0 I_' Y dy, m

where the space variable x is messured in units of the mean-free-path for group 2 neutrons. As in
[wevious works"-""", we sssume thet the scattering matrix Q is neither dJisgonal nor triangulsr arv!
that det Q # 0, snd introduce & matrix P defined as

Vazfay, 0

0 1



where q’, are the slements of Q Then the solution ot Ea. 11} 1s given by

Vix) - P b k), (3)

where Wix, 1} 15 the solution of

] ]
FT pgu) b X o) 2 C W bout (4)
- < - 1

Ix ~

with the symmetrized scattering matrix given by C-<PQP Yand the elements of X are ¥,, =0,
1 ' — . A Y - o -~
—“3l 7 ey 0, and <112 - 1.

The general solution of Eq (4) can tw written 17180

k
L AT T [A(x'l) '!'lr",y) exp{oxor) 4 AL eV Y exp (x!x-')]
v 1

{1
1

(R3]

(4] 1) ,
A e e Cxnt e A @ @) o exo Cxi} e

o

!
’ f(; Al?’ (t) o 2 (1) exr { x/vhde, 3]

&

where A’s are expansion coetticients to be determined by the boundary condition once a specific
problem s considered, discrete eigenva'ues t v, are the zeros of de1 Alz) with

1
Alg) =}~ Klzp A 6)

x (either 1 or 2)'78)

is the number of pairs of the discrete eigenvalues, and the aigenfunctions
c€an be written as :

ity p) - v Kyt CU L, (78)
(1 it - -
by v = [vK ) C + & L) 2 1)) U, W, a=1,2

veRegion () = (-V/o. Vo) . (7t
and

. 2y, .
@) = ek C oA N U )

~

yeRagion (2) < (1, Vi ehtin



Hore
P
S 0 P(W"M' 0
ot ~p
5(2.#) = p ) i(v,u) = , (8ab)
0 ——— -
F—u L 0 S(v—u)
H! ! {1) ‘0
;= u, n = {9a,b}
0 - 1
) ) Ay p M) ~ -Agolv)
W) = g(vi) = (Sc,d)
Ay ) Ay )
and
?
Alv) = 1 - vf1 K (v,u) duE {10)

with | being the 2x2 identify matrix.

The full-range amd half-range completeness and orthogunality theorems regarding the solution
given by Eq. (5) have been established'3-17.18.20),

Although the solution has been used in previous works!®1V17) i the form of Eq. (5], we
write the general solution in a more compact form as

k .
Vi = L [AW) Pl ) expl-x/v) + Al-v) $l-v, 1) explx/v)) ]
)

1 1
+ !o f(v,u) é(u) expl-x/v) dv + fo f‘""'“) Al-v) explx/v)dv , (11)

where the discrete eigenfunctions are the same as in Eq. (7a), the continuum eigenfunction is o 2»2
matrix defined as

Plop) = KWW C + Slv M), vel-1, 1), (12)

and A(t ») are two-vector expansian coefficients. We not that the expansion given in Eq. (11) is not the
general solution of Eq. () if Alt ) are arbitrary for veﬁ/o,i) However 8s later equations show, A(t »)
are atways found, in our formalism, to be proportional to U ") tor velt/o 1) and thus, conudermg
Egs. (5), (7), and (D), we can write Eq. (5) in the more compact form of Eq. (11). We shall always
Téparate positive and negative eigenvalues, as in Eq. (11), and use the symbols », §, and 7 to denote
pasitive eigenvalises.



THE H MATRIX
The H matrnix introduced in Ref. 17 plays a principal role in the half-range orthogonality
theorem and has been discussed in detait in Ref. 20. We list some of the equations it satisties for use in

our problems.

The H matrix satisties the integral equations

-~ 1~
Hi2)Alz) = | + 2 [ H{u) Olu) C . z€(0,1), {13a)
~ ~ ~ 0o~ T p-z ~
and
1 ~ du
v, f H) Ol Culy) = Uy} , i=1""" k%, {13b}
o~ ~ vl ~
where
Olu) 0
Cly = , Olu) = 1for e (0,1/0) and O(u) = 0 otherwise. (14)
0 1

To calculate the H matrix numerically we can use equation
1 ~ du
Hiz) = |+ zH@IC [ HG O ——— 2§10 . (18)
~ ~ ~ '~ "o~ ~ u+z
The dispersion matrix A(z) can be factored in terms of the H matrix as
HedCH A =C |,z / 1,0 . (16)
Ifweletz—»vt0inEq. (13a) we can find

~ 1~ P
HP)A(p) = 1 + fo H{uw) Oly) ——— duC , v e (0,1) . 17
~ o~ ~ ~ X u-v <

Since the existence of a unique solution of, thess equations has been mablished“"“’ we shali
use them freely in our problem: for example, we have from Eq. (15}

' - du -1 1yt
2 f HpOWp — k=C'k-C'H 2tk , ze(-10 {18a)
0o ~ ~ utz ~ ~ o~ -~ o~ ~
and from Eq. (17)
i~ P ~
v [ Hip) o) — duk = CPk ~HIHAMC Kk , »elidh {
0 ~ -~ y-“ s ~ ~ P~ ~ ~ ~

for an arbitrary 2x2 matrix k. We shail cali these equations collectively the H enuoations,
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" HALF-RANGE ORTHOGONALITY AND RELATED INTEGRALS

Half-range orthogonality relations of the eigenfunctions are given in Ref. 17. However, since we
use a different form to write the solution, we redefine the adjoint functions.

The discrete adjoint vector is the same as in Ref. 17:
Oty = v, Kiw,u) hiz) E“'(u,) CUW) , » > tory =ilyl . (19a)
We define the continuum adjoint matrix as

O, = [ v KW,u) i) H'B)IC + 5ol M) J W), »e (0, (190)

where the symmetric matrix
sz(") - N21 (V’
- 2), ., ~12)
W) = oW + U U [1-00 ) (20)
Ny, ) Ny, )

is the same matrix as was used in Ref. 11 and

H, /o) H,,lulo)
hip) = pe (0,1 , {21)
Hyq (1) H,, )

with H-i being the elements of the H matrix.

With these adjoint functions, the orthognnality relations can be written as

1 ~ .

S Ol ph b u)pdu = Niv) b, {220)
0o ~ -~

1 ~

Io Ot uh Pv g pdu = 0, (22b)

1 ~
[ O b ud = 0,



1~

Io Qo) * v ) Alv) pdp = N A Blv - (229)
where Alr) in the last formuls is an arbitrary two-vector and the N functions in Eqs. (20) and (22a,d)
are given explicitly in Refs. 11 and 17.

Since we shall need various half-range integrals of the product of eigenfunction and adjoint
function, we summarize some of these forinulas heve. To simplify the notation we let

X() = Up) CH™' ) C™* (23a)
and
Xt - Wi CH ' CY 1230)

When the eigenfunction and adjoint belong to the same medium, we can evaluate the following integrals,
using the H equations, 1o obtain

1 ~ [N A -
SO, bl - - Xiw) M ) CUWY (24a)
o -~ ~ vty ~ U vt
1 -~ bWl
I Otv, . Slv)pdp = ——— XpIH ' (MC , {24b)
o ~ ~ vty ~ '~ ~
1 - Sonvy
SO, (-y.pdp = —= Xw)H ' w)CUW,) , (24¢)
0o ~ ~ u*ui ~ o~ ~~

and
1~ w o~ .
f Ol ® -y ) pdu = = X{H ) C . (24d)
0o~ ~ vy~ ~ ~

If the eigenfunction and adjoint belong to different media the integral of their product is more
involved. All integrals can be performed, however, if we decompose the K matrix as

L4
Kt} = -- ky ¢ k, (258)
- uf - p - E-u



with

k, = and ky = . (25b.¢)

and use the H equations, e.g., Eqgs. (18). Since these formulas are rather lengthy and since the later
equations for the thwee problems show most of them clessly, we report heve only one, the simplest, of
them:

1T -~
f Oy, pG b lon p) du
o < el

- "rﬂi 'l,
S X l) | et i o) Ky 4 o= H ) JG G Vs i) 1289
]

0 + oy, n 4y

where G is a diagonal 2x2 matrix and the subscrints are used to reer to the media.

We not that, among the various integrals involving eigenfunction and adjoint, only the fnllowing
two are singular after integration over u:

| 1

!, pOMW) S0 Amhdndp v e (O0) 8 # 2n
and

1T =~ 1

j’o HO, v, p) E(v\ fo DAV AGIdde v € (00, (28)

where E(v) is @ 2x2 matrix.

Here we notice s difference between one-group and two-group theories in that in one-group theory the
integral corresponding to Eq. (28) is reguiar since it reduces 1o one corresponding to Eq. (22d). Finally
the following integral is of interest:

1~ ~ ~
S, QUmudu = EXWB) {1-CHg)} Z , (29)

vihere H, is a moment of the H matrix

1
EO = fo Q(yl Higdu . (30)



2 - THE TWOSSLAB PROBLEM

We consider a slab of thickness a; of medium 1 (0 < x & a,) adjacent 10 another of thickness
ay; of medium 2 (0, £ x €9, 7= a, +a,) irradiated on the x =0 surface by a flux of neutrons RIFTIR
u€(0,1).

We write the solutions of Eq. (4) as

k;
1’1 )= 2 [Alr) T' (v, .u) exp{-x/v,)

i =

+ A -p) by (-vi.u) exp { - {ay '—x)/v..} ]
1
+ Io (Dyto,u) Ay (V) expl-xiv) + &, (-0 u)l Ay (-v) exp {-(ay ~x}/pldy

0<x<a , (31)

and
ky
Yalxpw = X [A;{n) ®;(n, 1) exp {~tx~e)n}

i=1

+ AI “"Ii) 532 ‘-‘ni "“) exp {—(7 - ")/n,} l

1
+ Io [$2in.p Aytn) exp (-(x~ar)/n}

+ bat-nu Arl-n) exp {-ty=-x/n}ldn , oy Kx <y , (32)
subject to the conditions
¥, Oou = P, i(u) , ueon , (33a)
¥ily,-u =0 , mel(0n , - (33b)
and
‘!1 lay ) = G¥ylar ) , pel-11) . (33c)

We assume, considering the data sets for our calcuiations, that tlhe groups are similarly ordered
for both media and thus the matrix G is diagonal and given by G =P, P, .
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The conditions at outer boundaries, Eqs. (33a,b), result in the equations

ky

1
I A, ‘Vi",!:'(”i'”' + fo b, (v,u)ﬁ.(v) dy = g, 1(;4)
=1
ky 1
= T Aly) L'.)' (-v,.u) Ey (v) - jo Pitv Ay By de
i=1 ’ ~
Bel0y) (34)
and
Ky 1
I Arbm)®alnp) + [0 By ins) Art-n) dn
i=1
k3 1
=< Am)Patmu Exln) = S alnu) Axn) Exinhdn
i=1
pelon ., (35)

and we write the interface condition, Eq. (33c), in two equations

K, ;
T ARGy ¢+ Io By w.u) Ay (1) dy
=1
ky 1
== I AW v uE ) - Io Ps o) Ay (0 Ey () dv
i=1
ky
+ T G[AIn) dylm.p) + Arl-m) Paln.p) Exin) |
=1
1
+ ;o G[Pal-nu) Arln) + By(n,u) Ay (-n) Ex () Jdn ,
pel0) , (38)
and
k; '
L Apin)d; nu + fo $3 (n.u) A (n) dn
i=1
ky
= I E" [A ()il W) Ey () + A, (‘l’.)‘zl t-v,,1) |
X

1
+ IO g_' [Py v, i\l WE, M + '}v’l (‘l’,ﬂ)i\l (-¥) 1 dv



L3}
oAy ~_|>, { 0. E, in)
[N |

1
- _(O i A nE nidn . uoeion),

~ ~

whete t'(ib ©expl ul/E)A

hn

(37

Ow ar , to denve a set of regular nteygral equations tor the expansion coefficients so that the

coeftizients can «  found numerically by a standard itecative method.

If we appiy the half-range orthogonality theorem to Eq. (34), ie, muitiply Eqg. (34) by

HEV (L, ), £ = v, or vel0,1), we obtain

Ay ) = AT ) = v NPT ) X, () Y, )
anvd

A = AT W) = o N ol X, () Yy ()
and in the same way we ohitain from Eqg. (35)

Ay Um) = N7t ) Xy (m) Y5 ()
and

Az (-n) = -n N in) g; (n) Y (n)
where

1~
AL i) = NGt ) O W) Pyt G b

"

1 ~
A ) = N7 () _fo 0y (e Py, i)y,

] I‘i
"‘“"E‘ t‘hl (V|) E| 91 ("') A, “l’i) E' ‘l")

y +

k
ML b3
=1 %

i

1 [
vl o W WG AN E, e
oyl ~ s

(38a)

(38b)

(39a)

(39b)

(40!

(40b)
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"
Vi = T = M ) €, Uy )AL ) E s ()
~ =1 MmrES T
1 n -1 42)
0 n+t~ -

Next we apply the orthogonality theorem for medium 1 to Eq. (36) to isolate the coefficients
on the left side. After integrating over u, the A;( -n) term remains to be principal-value integrals for
£ = v. Following the method of regularization summarized in Section 1, we mulitiply Eq. {35) by

- E) (0] E/a;) 0
u0, )G (43)
- - 0 E,(8)

and integrate over wel(0,1). We find on the left side the same singuiar integrals, but with different
exponential functions, as from Eq. (36). Then subtracting this result from the previous equation, we
obtain equations with removable singularities

Aiv) = N i) X, ) Yaln) 144a)
an
A i o) = N W X )Yy () (44h)
where
ky Vi 1 v "
FE) L == ') C U W) Ar) Eqlr) = f —— HT ) CLA, (k) By () e
A R ovrg~
k) Uiﬂi

+

- H}l (Ujﬂi/ﬂl’ k, "1"51 (0;¢/0,) &, (ﬂ’) }
y=q MMtk > ~

)
+ —:—G H;! )k, 1-E; (B)E, lv:,',}] GC; U; tn) A; ()
n ~ ~ Ny

k; o1,
b [ WYY O oo kG By () ~ By (o) kl0s) )
[ 017 ayk - ~

n
- ’—F Hi' (n)by F. b By (111G Cy Ugn) Ayl m)



n
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n
+ ""“é EI_‘ “7) E‘.’. {‘ —EZ (E) Ez (n)}l GC; A; (n) d'n

1 on ~ Sy
tf O h (Uzﬂfﬂn)gl lx (Ozﬂlax,_‘f_l {E2 M —-E, ‘015/02)}

0o~ o,n—0

n ~ Y
b= Hy () €y Ay )k, TE; ) -
n-E~ >~ o

E; (811] 99_1 e: (-n) dn

1 oM ~ .
+ fo E| [ —— t'l ‘Uzﬂfﬂtl':n {€, tn) ~ €3 (o }0oy)}

o t-o,n

n ~
t oy ik {E2 () -E; (01}] 02 MGy ) Ag -midn . (45)

-n

In the saine way we first multiply Eq. {37) by u0; (£, u), £ = n, or nel0,1), and integrate over

uel0,1), next multiply Eq. (34} by

- E\lo,t/0)) o
1Oz {§,G ™"
~ 0 E, D

andd antegrate over i, and then subtract between the two results to obtain

Asln) = Alln) + nN;' (n) 81 (n) Yq in)

and
Astn) = Almb + aNG' (n) Ly (n) Ya (),
whrrp .
- E losn/oy)
AL - N )0y i G
] 7 t ~. ' ~
0 0
L.
. Etoynioy)
Afty = NV ) 6
- “ 0 0

3

E,(n)

L

Eylni

{46)

(47a)

(47b)

Pyt pady (48a)

Py Sl udn
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kK, N - 1 -
Yold) = <X~ R (n)C, Uy tn) Ay Cnd Ex ()~ f —— H;' () €3 Az (-1E; n)dn
i=g MrE S ~ o 0 ntE~ ~
k o,
LI A SRR H, (U,ui/();)t. {1-E, w)E, {oat/0y)}

i1 u,u, +nz£

V.

+—— H;' Wik, (1=, W) E, (011G, C\U, ) A, ( p)
vi+§ ~ ~ ~ o~ o~ i

k| UIV'

v X e ny lewwduy) ky (B () -, (028/0,) )
] "IViHUIE = h

oy Hy' )k {Ey ) —E' ) HG™' €y Uy v) Ay )

1 ¥
+f [ — H, (o.v/o,)k {(1-E, (nE, (02¢/0,)}
0 oywtot ~

b ;Y W kg (1-Ey (D}]G™ €y Ay (-8) O
v i~ ~ -~

1

+[ G| e Hz (0|V/01)C2 M {o,v/01) ky {E, ) —~E, (0,t/0,)}
0o ~ oW o.E ~
Voo~ ~
+ —_E Hy () C5' A2 W ky {E, W) —E, (B1}1G™' Cy A, (M) dv
vt ~ bE ~ ~ ~' A

1 o

+ f C, l —— H, ‘ﬂ|l’/01) k {EI (V) | (015/0])}

0o ~ 015 [ XY Jiid

+ E-—"- Hy (W) ky {€; W)€, (0110, WG~ Ay W) A, hdy . (49)
PSR WIZ WL

Equations (38), (39), (44), and (47) are our final equations for the coefficients. All
singularities are removed in terms of the exponential function and, therefore, numerical iterations can
he peiemed i a standard manner. It is clear from these equations that, as was mentioned before,
the continuum coefficients for Hegion ‘2) ara proportional to u'2,

We note that if we fet a; »0 all terms in Y, except the first two vanish am! Fo. (44),
together with Eq. (38), reduces 1o the case of a single stab. Simiuly, in the limit a, -« 0 Ens, (39)
andd {4]) raduce to the casa of a single slah of medum 2
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3 — THE CRITICAL PROBLEM

The critical problem for bare reactors has been solved by Kriese, Siewert, and Yener"". We
consider here the critical problem for reflected slab reactors, a typical textbook pioblem in diffusion
theory. The core of multiplying medium 1 extends from -a to +a swrounded by infinite reflectors of
non-multiplying medium 2. We assume that both media are specified and, thus, our aim is to determine
the value of a such that non-trivial solutions exist.

We mnate the ralutions of Eq. (4) as

k)
¥,xp = 2' Ay )@, (v, ) exp {-tx + aMv,}
~ i = ~

kg
+ I A ), v, exp {-la=xMp}

1
+ fo &, (v,um) A, () exp {~(x + a)iv}dy

1
+ fo @, (-v,u) A, (W) exp {-la~x}/v}dv . (50)
and
k2
Valxp)= I A;in) @, in,ul exp (-(x~al/n;}
=1
\]
+ Io %31 (n,0) Ay (n) exp {-(x ~alin}dn . (51

The symmetry condition snd the condition for | x | > = are already incorporated in the solutions and
we consider heresfter only x 0. The remaining continuity condition st x =a can be written in two
equations for uel0,1},

Ky '
Z Ay @vu+ IOT' .l Ay () dv
P=1

. )
ST A (b)) v W Elv) = [ By Uri Ay BIEWY O

=9

ky 1
+ L Am)GPs () ¢ S Gty Unud Ar (i dn 16
=1

and
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LT

\l
L Alm) &atmam ¢ Io +2 tn.ut A; tn) dn
=1
.. .I
= X AW:G (v ER Y T A, )Gy ()
i - =1 -
1 \
$L ST R A MIE My 4§ G Er A I (53

where E{E) = expl- 2a/F). For the moment we assume that a is » given constant and multiply Eq. (52)
by p0a tE, 1), k=, or pe(0,1), and integrate over pel0,1) to obtain equations for the cosfficients

1 ~
A.h’.) {1+ “2“ L 4 N." ‘l’l,X| ‘V|,H|-' ‘Vl,gl El ‘Vl,El ‘”|,}

~ 4
=N ) X ) (Y ) -k =) :” Hi' 1) € Uy ) Ea) Ay 2)),
~ ~ oty ~ -
(54)
- hy vi
Av et = oNP W X, ) (Y = 2 = Hi' B)C Uy ) EW) A, ()}, (S50)
~ ~ ~ P (A -~

and, K, = 2,

1 ~
Ay lv) {1+ 5 v, Ny "’1’5! 1) Hi' () El E] (r2) E (v;)}

~ [ 4
=y Ny ) Xy (o) (Y (vg) - _‘,‘_— H' ) Cy Uy ) E(vy) A, (1)),
b ~ vy by ~ e
(55b}

e

3 o, n
Yitt) = B [ ———— Hi' lo3n/0,) ks + = — Hi' In) ks } GC2 U; Im) A; ()
h i=1 01"5’”!5‘\' -~ Tl;’z ~
+ _[1 { o -1 L
0o | — Hi! (ogn/oy) k, + —— H7' (M k3] GC,; Ay In) dn
o F~ AR T -

1
- L H wIC, A W E W dr . {56)
o v’E ~ ~ A
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Similatly, we multiply Eq. (53) by uE),(E,p), t=n, or nel0,1), and integrate over pto isolate
the couthcients in the left-side expansion. The A, {r) term on the right side remains to be singular. Next

we naitply Eq. 1H2) by

—
E{o,t/0,) 0

10 e G {57

0 E(t)

it inmeyrate over ue{0,1), Or the left side we find the same singular integrals, with different
exponential functions, as in the previous equation. All other terms -re regular. Then, subtracting the last
erpiranion from the previous one, we obtain equations with remwvable singularities

' ~
Azin) - 5 5Ny ) X, ) M ) E ) €2 Us n)}

- kr W
- n,N7' (m) Xz (n;) {!z n)+ 2 L -8 [_01" mi)gm.,) CyU; ()
p= "; T'j
A, lr;,)) {58a)
arv}
~ ka3 T
Arimd - AN ) X ) (Yo (m) 4 L - ) E ) C;Us i) A n))  (58b)
- ~ ~ =y MmN~ o~
[ IS ¥
where
Elo,b/0,) ()} ‘]
Ew - (59)
’ 0 E(t)
and
h| ":”i
Y. = L |- == Hi' oy fog) ky {1 -E () E (038/0,)}
A 0y k ~
l"
+ =4 H' ik, (1 EW)IEEIG ' C Uy A, ()
¥4 L -~
R
L] "y,
, Lo M, s i)y (Efr) ~E {n,8/0,)}

vk
g (r]l‘ SR
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|
* T M ) (BB EmIIG G Uy ) A )

Yy

1 o,v
+f | ———-H:' {o,vlo) ky (1~E (») E (0;8/0,))
0 owtot ~ ~

14
Yo Hi' Wk, {1-EWEE}]G' C A, v
pag o Wk (R

1
s f T w e C: A; (n)dn
on+i~ ~ v~

1 [/ )4 -~ ~
tf C | — H,{o,v/03) C3' Ay (o,v/0y) &y {E (¥) - E (0, }/0)))
o~ o v-0;%t ~ ~ o~ ~

+ ——Ha ) C3' A )k, (E) —E (516! CL A ) v

1 ~
+ f C, ' “'L H; ‘0.”/0;)k| {E ‘U) —E‘UQE/(,])}
0~  ot-qp ~ ~

b~
+ E-— Hy (kg (E() —EE)}] G Oy WA, (A (Mdv .
—p A < vwmawme

(60)

The condition of criticality can be incorporated as the condition of non-trivislity of the
solution. If we normalize the solution by taking A, (v,) = expla/v,), the critical half-thickness of the

core s given by

9
n

where

r 4
[

o
i

= T=p N o) Xy v exp afvg) (Y 2y) = (xy = 1)

o+ 2 iNmy
5 4] 2 oy

' "~
; v N;! ‘"1)51 ‘l’l)‘Hj' ‘"l)El El (v}

&

t'.'-' h’j,

vy +vy

E, g, (va) Elvy) Ay 1)} 0

(61

(62a)

iG2h)
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Equations {55}, (58), and) (61) are our final equations to be solved by numerical iterations.

THE CASE OF FINITE REFLECTOR

It the thickness of the reflector is tinite, the core solution, Eq. {50), is the same but the
reflector solution is written as

ka

Wolx,p = 2 Azin) b, In,u exp {1 x = al/n,}
P=1
ky

* X Arbm) by (om,u exp {-ly+a-x/n}
=1

1
+ fo Py m.u) Ay n) exp { -(x~aln}dn

1
+ fo 200, mA; (-n) exp {~ty+a-xim}dn , (63)

where v is the reflector thickness (given) and a is the critical half-thickness to be determined.

We write the interface condition, symbolically, as
\f, fa,-u) = E!, fa,-p) , u e {0,1), {649)
and
¥ila,p =G Wy la,p , 4 01, (64b)
and the boundsry conditionatx = a + vy 8

VYylaty,-p) =0 , u ¢ (0). (64c)

~

While in the case of infinite reflector we obtain immediately a regular integral equation for
A, (v) and need only one step of regularization for the A;(n) equation, here the A. (v) equation must be
reqularized once and that for Az {n) in two steps, due 10 the existence of s boundary st X =a + 7,

The procedure csn be summarized as follows. First, we apply to Eq. (64a) the orthogonality
reistions for modium 1, and obtain eguations with the coefficients A, (v) and A. {») nolisted on tha left
sde. In the A ,{¥) equation the A,( n) term remains singuisr, To umon this singulsrity we multiply
Eq. (B4c; by



Ez(U.l’/Uz 0
uWO v, G {65)
0 E;(V,

where E, (£) = expl-7/£), and integrate over p €(0,1). On the left side we find the same singular integrals,
with different exponential functions, as in the previous equation. Subtracting the last equation from the
previous one, we obtain equations with removable singularities

1 ~
Aed {14 S v NPT ) X0 ) HEF () Cy Uy 1) By ()

k| ».
= v, N7t () X. Wiy, ) - Z (-8 )H" W) Cy Uy W) E, )
A, (l’b)} , {66a)
and
~ ki
A lv) = N7 (V) X, W) {Z. W -z o g."(v') CiUy () Eiv) A iv)} {66b)
i

where E, (}) = expl-2a/E) and Y, (}) is given in Ap, ~dix A,

Similarly, we apply to Eq. (64b) the orthogonslity relstions for medium 2, snd obtsin
squations with the costficients A;(n;) and Az(n) isolated on the left side. In the A, (n) equation the
.M term is singular. Next we mumply Eq. 84a) by

u -
E)lo:n/0;) 0
¥ 9 na 6! L))
0 E,im
e

and integrate over u ¢(0,1), On the left side we find m same singular integrels in the A.(v) term.
MHowsever, we obtain new singuisrities on the right side. Finally multiplying Eq. (64) by

E.(am/on) 1]

M §a na) E; (n) (68)
0 E, n

and imegrating over u (0,1}, we obtsin siguisrities 10 remove the last ones. The following qumom we
_abtsined
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1 ~
Aatn) (1= N ) Xa (n) Hi' [1- €S m)] E in) C; s tn))}

~ k3 "'
= ’?; N;l "’.) 51 '",, {!1 '"‘) + T — 1 -6“, ";' ‘"i) l' —El "") Ej ‘"‘)]
=1 W *n -~
LT "i
E(ﬂi) Ez Ez ‘ﬂi)Az (ﬂj) + z . (- 5n) E;' ('ﬂl’ [Ea 1'),"‘52 "l;”
i=1 "l ,
Ein) C Uy () A, & m) {69a)
and
- i, ’,' .
A =qaN'in) X, (Y, () + & —— H;! (i)')“-Eg (i)') E; in))
~ - ~ IR T
k3 "i
EMC Ui DA in) + I 'n—j; 55' -0) [E; (n) ~ Eain)) EM G U,y (n)
=19
A’ “ "i’} ‘m’
E|‘01f/0|’ 1]
where E@) = ond !, (t) is given in Appendix A,
0 E, (})

Finslly, we spply to Eq. {64c) the orthogonality relations for medium 2, snd obtsin equstions
for the costficients A;{-1,) snd A (-n)

A t-n) = a NG’ () xa () Y5 in), (700}
At =N () X Yy m0 700)

where !,(ﬂ is given in Appendix A,

Using the normalization A, (v =exp (a/v;), the criticsl heif-thickness of the core b
obtained from E€q.(08e) in the form of Eq.(61). Final equstions e solved by numericel
iterstions,
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! VHE CELL PROBLEM

We consider here an infinitely repeating array of two slabs of dissimilar media ss a symplitied
model of fat-plate fuel assemblies and analyse a unit call consisting of » half-sisb of medium ¥
(-a, <K x<0) and a haif-slab of medium 2 (0 < x < a;) with the condition of symmetry with respect to

the boundary surfaces. We assume uniform sources of neutrons in medium 2.

The symmetric solutions can be written as

Do) =P ), cey S x<0,
and
bt = g;" (W2l + ¥y e} , 0<x<a;,
where
ky
!. (x,u) = T A, (vi)lf.(vi,u) exp { - (x+2a, )Ivi} *f.(—r‘,u) exp (x/v))
=1
1
+ Io[fu(l'.ul exp {-(x+2a,).v} + ®; (-v,p) exp (xW)] A, W) O,
ka
Valx, ) = T A;in)[Paln,.u) exp-x/n) + ®2(- 0,0 exp{-(2a,x)/n; } )
R
1
+ Jol @3 np)exp (-xin) + ;3 -n.u) exp {-(20-x)/n}] Az Ind dn ,
and

Yap ou) = {2-26, 17" Py S,
with S being a constant two-vector.

We write the continuity condition in two equations for ue(0,1),

I A (l’i)‘Pn (l'i.ll) + ]’0 'j’l () ‘}1 ()dv = E‘!:, (0,u)
(B |

k, 1
- L Al e ) Ey () - [o Py v Ay V) Ey 14X 4

[ |

77)

(72)

(73)

(74)

(78)



ke

LA h).) ("»l'l', ("n',m v ok, (ni,m t, tn')l
i T )

!
SO G U by ) By ()]A, )l 76)

1
LA )P, Io P 0. Ay () dn = Wap (0,p)

ky
+ X oA (u,)g' [ ) By lw) 4 by Gy )
=9

1
+ Io G [y W WE, W) + Py -V A W)

L
- A (n)'b,(n.,n)E: n) - I ‘l',( n. y)A, (n') E; (n') o’ n

=1

where E {}) = expl 2a,/§).

in this problem, because we are actually dealing with an infinite array, a8 straightforward
application of the method of regularization requires an infinite number of steps. This is due to the facts
thet at each step we multiply an equation not only by the adjoint function but also by s matrix of
exponentisl functions, s in Eqgs. (43), (46), and (57), and that the integrais of the type that appear in
Eq. (28) sre singular sfter integration over u. In one-group theory, integrals of this type are reguler and
the regulsrization is accomplished after @ finite number of steps even for an infinite srrey of multi-slab
cells.

However, the series of operstions required for our proble cen be summed up nicely and we
can Jderive 8 regulsrized equation for A, (v) by the following steps:

1) Multiply Eq. (768) by uO.(u, #) and integrate over u, On the left side A (v} is isoisted. On
the right side the q; 20", u) term remains siguler.

2) Multiply Eq. (76) by

— -
€\ WIEs 0, v/0;) 0
~E ME {0y vivy)
] Sy v (78)
) , _EWEs )
~Ey(vIEs )
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"and integrate over p. The &, (W', u) and ¢, (n’, u) terms remain singular.

3) Multiply Eq. {77) by

_ —
_ E,lo\v/0;) L 0
t-E,(vE;lo,v/0,)
#0106 (19
0 Ez(l‘)
1-E,(ME;(»)

and integrate over u. Again the &, (v', u) and 4y (0, p) terms remain singular.

If we now add three resulting equations on each side we find an equation for Q.M in which
all singulsrities sre removed in terms of exponential functions. Obviously the equation é;(v) can be
regularized similarly:

1) Multiply Eq. (77) by 4O; (n, ) and integrate over .

2) Multiply Eq. {77) by the following and integrate over y:

- - ]
E; (0;7]/0;)51(7]) 0
1-E, ‘017]/0] JE; (n
b §; n.u (80)
, B
i Rt E| (ﬂ)E)(’"
L . —

3) Multiply Eq. (76) by the following and integraie ox3r u:

e

E|(0;ﬂ/0|’
1~ E,(o,n/o,)E;(fl)

4B tn,u G (81)
Eiln)

" ol

As 1n previous problems we apply these operations to -he equations for the discrete coefficients, too. We
nhtain the following equations:

' s
A lv) {1- 5 v, N;! ) 5. ) ff." v,) 3. ) E. 9; (v‘)}

-~ .'
= A9 tv) 4 v N W)X, ) { £ 01 -5”) Yi v.y) Ay v}
" 1= 2
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1 by 1
' ro Y W A e v Y Y, Em) Ar ) +f Yalr ) A; ) dn'}, (82a)
: < o 0" 2
[ ]
- ky [
Acn) = AT () ¢ oNJY X L} 2 Y, wrd Ay w) b [ Y ') Ay V)
A < < N o~ 2
y -1
k; 1
X Yalen) Ay i) + fo Yalen) A, () dy'} (82b)

1 ~
Ay in) {1~ 5 ™ N3t in) X, in) Pj;' tn} Js {n;;m) C; Uz In) }

CATI) ¢ N )Xo i)l T 11 -8 Y dn.n) A; (n)
i=1
1 k1 '
A Yo tn ) Al dn’ 4 X Yo dnup) Al ¢S Y ingw) Ay 0 e 18R
i=1
and
~ k3 1
Ayl = AT () 4 N i Xa ) { Z Y5 (nm) A, ) 41 Yo tn') Ay tn) o’
=
LT 1
+ 2 Z? (77."" Al (V’, + fo Yl ‘73-"") Al (v’) d‘(} ’ (m,

where A'i’ and A? are constant terms due to the source, JI's are 2x2 matrices of exponential functions,
and Y's are known vectors and matrices involving the H matrices and exponential functions, similsr to
the expressions that appear in Eqs. {45} and (48); we list these functions in Appendix B.

5 — NUMERICAL RESULTS

Computations were performed on an IBM 370/155 computer in double-precision arithmetic
using standard Gaussian quadrature sets to represent integrals. Our results reported here are obtained
using a 20-point and 3 40-point set in the intervals (0, 1/0) and (1/0, 1), respectively, The sccuracy of
iterative solutions depends nn the quadrature sets used. Because of long computation times, we did not
use any higher order quadrature sets and the accuracy of our results is generally five or six significant
tigures, as verified by calculating moments of various order of the equations for the boudary and
interface conditions.

CROSS SECTION SETS

Several cross section sels for two group calculations sre available in the lit atureltV137),
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‘However, since in two-media problems the group energies must be compstible, we have generated the
cross section sets given in Tables| and H using the XSDRN code'?). The entire energy range
{0 <E <15MeV) is divided at 0.3 eV (0.2994 eV in the code) to give thermal and fast energy groups:

goup1: E<03eV

goup2: E 203eV

This dividing energy may be considered 100 low for a conventions! divisior. of thermal and fast groups.
We have selected this value to keep the matrix Q from becoming trisnguisr, since for higher dividing
energies the up-scattering cross section becomes quite small. Sets 14 sre calculated for infinite media.
To calculate Set5 we took from the calculaticn of Set5 we took from the calculation of Set 3 the
microscopic cross sections for U235 and multiplied them by the normal density of ursnium. The fission
cross sections are taken to be zero for use in the cel! problem.

The elements of the matrices L and Q are calculated from the data sets as follows:

o = 0,/0, . qQ; = {o“ + Xiﬂa,i}ﬂa, .

THE TWO-SLAB PROBLEM

We consider three cases of incident flux

F-o-'

101)=2 . Case 1,
L1
o ] |

o = 3 . Cme2,
Y

S = 42 . Case 3 ,

and use Sets 1 end 2 for sample calculations.

The scaler fluxes sre defined by

¢y (x)
= !_1 1 e du

&, (%)
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Weo teport an Table HE the geonp 1 scatar Thax tor Cases 1 and 2 i Figure 1 the scalar fluxes for Case 3.
Al results are for oy a3 and we use the notation (Seti, Setj) to denote that Seti is used for
medium 1 and Set) tor medium 2. The yroup 2 scalar Hux is unchanged to the third digits with the
reversal of the media. The number of iterations is about 35 and the computation time for one case is
around 12 mnutes.

THE CRITICAL PROBLEM

We consider two cases:

Case Core Refletor
1 Set 3 Set 1
2 Set 4 Set 1

For Case 2 we considered only the case of infinite reflector, but for Case 1 several reflector thicknesses
are considered. Our resuits for the case of infinite reflector are shown in Table IV together with percent
errors of PN-appvoximation results. The P, approximation gives slightly larger critical sizes but the Py
approximation is quite good for the cases considered here. We report in Table V our resuits for finite
reflectors, where vy is the reflector thickness in mean-free-path. Figures 2 and 3 show the scalar fluxes
for the cases of infinite reflector and Figures 4 and 5 show those for various reflector thicknesses. In
Figures 6 through 9 we show angular fluxes at three places, inside the core, at the interface, and in the
reflector, for both Cases 1 and 2 with infinite reflector.

The number of iterations is 51 and 39 and the computation time is about 61 and 53 minutes
for Cases 1 and 2, respectively, with infinite reflector. The long computation time is due, partly, to the
fact that most of the caiculation must be performed in complex mode.

We have also considered two cases of fast reactor model using the cruss section sets for Us,
V3" and Pu??® given in Ref. 21. The convergence is quite slow and we have not pursued to obtain
resuits of reportable accuracy.

THE CELL PROBLEM
We use Set 5 for the fuel and Set 1 for the moderator to calculate the thermal dissdvantage

tactor defined as

[+ 21 4]
$ 7 (ay/ay) [ @y xidx / f @y (x) dx
0 ~ay

where ¢" is the thermal group scalar flux in medium i.

in the fuel region we take Eo, =0 and in the moderator we consider uniform sources of therral
neytrong:

/iy

L. d
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Figure 10 shows the thermal flux tor thiee fuel thicknesses with a; = 0.2. We report in
Table VI thermal disadvantage tactor for several cell sizes and in Figure 11 a comparison between the
exact and S-N results of the thermal flux is presented. The S results were obtained by the ANISN
code's’ For the exact calculation the number of iterations and the computation time are of the same
order as for the two-slab problem. For the SN calculation the computation time is from 12 seconds (Sz)
to 30 seconds (s, 6' with 20 spatial mesh points in each of the fuel and moderator regions. All SN
results for the disadvantage factor are smaller than our results.

For smaller cell sizes the convergence is faster if the equations for the discrete coetficients sre
derived simply by applying the orthogonality theorem to Egs. (76) and (77), i.e., without the steps 2
and 3 anplied to the equations for the continuum coefficients. This seems to be due to the factors that
appear in the denominator in Eqgs. (78-81). The computer program based on Eqs. (82) and (83) can be
modified to include this case with an addition of a few statements.

6 - COMMENTS AND CONCLUSIONS

We have shown that problems involving dissimilar media can be asnalysed numerically in
two-group transport theory for isotropic scattering using the exact singular-eigenfunction-expansion
method. In principle the method used here can be applied to any multiregion and multimedis problems
in plane geometry. However, the computation time (and/or memory requirements) is quite long
compared with the P, and SN approximations. The computation time can be reduced if single-precision
arithmetic and low-order quadrature sets are used. Further reduction is possible if, for example, the Y
functionals in the cell problem are stored, since they are independent of the coefficients and can be
calculated once and for all: in our calculation they were calculated in every iterative step due to large
memory requirements 1o store them. Further, as was mentioned previously, in some cases the
convergence of our solution is quite slow,

Our solution is not practical for routine calculations or paiametric surveys. However, since one
of the purposes of exact transport theory analysis is to supply standards of comparison of various
approximate methods, we believe that our numerical results can serve for this purpose and that our
nlution and the method of regularization used here are of value in that they facilitate exact analyses of
‘wo- or multi-media problems for the first time.



APPENDIX A

The Y functionals that appear in Eqs. (68), (60) and (70) are as follows:
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APPENDIX B

The Y functionals that appesr in Eqs. (82) and (B3) are as follows:

[ A |
MLBARS ' Hi' ) 3 E.0)CU, ) d Hi! (-} 4y Er) CU )
~ E“’i~ [ (e ,,j-E.v [ <~
Yalk. v = ‘-!*H"(v’).l (£ C
~1E"-E+l/~l hd] EJ"\_I

,

> CiHy ) (A ) Ci* 33 (B0) €y = 43 (E4) Oy WA, 1)),
v - ~ ~ -~ ~ ~ ~ -~ ~

aln‘ N
I:(E.ﬂ', = { ——— H;! (017?/01) 3 (&n) _‘5} +

Hi® (m) 33 () ks }GCa U5 (n))

g t ok~ "j"
olﬂi ﬂ‘
= { == Hi' oanj/o) Js (Em) Ky + — H-"(-n,) da (En) k2 }GCyUsim) ,
ol"“-olz ~ -~ ~ n‘.—E ~ ~ ~ ~— ~
o 7

Yalkn') = { ﬂ;' {o2n'/0,4) he) {&n) ky + Hi' (n) ‘{: (&) _‘:1 } GC,

on +o) n+E~

on ~ - ,
= C) { ——— W, (oan’/o)) A, {0370,V €' da ') K,
o ‘71'7 -0|E ~ ~ -~ -~ -~

—’—'LE Hy () 71 Ci Jg (671 K3 } GGy
n Eaad ~r fad d -~ g oy

+

,

o ’ v n v ’ g
+ C _‘j‘g"‘"‘ Hy tman’/o)) Jg (1) Ky + - H, (7)) Jalkn) !1}91('1 }912"7, ’
-~ an’ -, -~ -~ -~ n —E -~ -~



n n.
Yolkn) = — H;'in) Js (£n) C, U, (n) - -2 Hi't-n) S 8n) C U, () ,
~ ". .E ~ | [ EED ] "'..z ~ )~ 1 ]
Yot = Hi' ) & k) G,
‘n ~
T g Gt {2 n1C3" 4 (0" €, — ds (£ ©2 (0) A3 (0]}
OIVi I’
Y1‘E.l’~) = ('_—- H; (0‘”/01) J‘l (!.’" k| + —_ Hg (” ) J,(t"’ k, ‘G-'C|U|(’
~ ) o, 40k ~ vk~
Ojl’i ll‘
- { - “0|ll/01' J.(E ll' kl H;'(-l’" J.‘f,’,'k,)ﬁ"Cﬂh (l") ’
o.vl-o,( -t~ ~ ~~
o3V v
YI(E V) = { —_— H;' (0|l”/01' J'I“.P" k. + -"I") J,(E,l’,’ k) } G-'C|
0||" o’E ~ -~ ~ " -~ -~ -~ ~ m~
01!” ~ N
= C; { ——— H; l0,¥'/0;3) A3 (0,V/03) C5' 3y (8) K,
ATl /Y B ~ ~ ~
vV o~ 1
+ = H ) G B (k) k)67 €y
o v -1
+C, { - H; (o,v'/0,) J. ;) k] 4 —— H; ) J.‘t,l") k) }0| ‘V”G A](ll'
~ Y 01‘ V-t~
where
Ej‘ﬂgl/ﬂ))"EﬂV’ 0 —1
Jy tay) = 3 ix),
L 0 E,ix)~-E)ly)
Filoyxfuy) 0
3wy - [Eiix) ~Eyiy)] ' (x),
0 Eq(x)




V= Ealo,x/v,) Eyly) 0
Iy beyd = S,
0 1- € (x)E;ty)
L .
— ]
E;lo,x/0,) ~ E,ly) 0
datxy) = ;l' (x),
0 E;(x) - Eyly)
Lo
Eyloyx/uy) ~ Eqly) 0
ds tey) = P x,
0 E; (x) - E;ly)
E\loyx/0y) 0
ds (xy) = E,(x)—Ez(VEIJ’ ),
0 E; (x) N
1~E,lo,x/0,) E,ly) 0
da boy) = 3’ (x),
0 1-E ix) E)ly)
- : -
— —
E;{o;x/0y) ~E, ly) 0
ds ) = S,
0 E,(x) - E,ly)
- -
with
-
[1~Eyix) Ezloyx/o)) ! 0
S ix) = .
- 0 [1-Eilx) Eslx]"
L. 4
Wi—E,(n,:/a,)E,lx)]" 0 7
S -
) 0 06 00 F, ()




table |
Definition of the cross section scts

Set Material
1 H,0
2 H,0 + B, B/H = 3/2000
3 H,0 + U, U/H = 11000
4 H0 + U5, UM = 1/500
5 y?s

Table 11

Macroscopic cross sections and the discrete eigenvalues

Set 1 Set 2 Set 3 Set 4 St 5
o 2.9865 20664 29727 2.9628 25.826
0 088798  0.88731  0.88721 0.88655 1.2782
0, 29676 28876 29183 2.876 0.50234
oy3 004749 004588  0.04635 0.04538 0.00001421
05:  000033¢ 000108  0.000767 0.00116 0.000003357
0;3 083976 083912  0.83892 0.83807 0.41677
v0 0.0 0.0 0.07391 0.14324 0.0
v;0, 00 0.0 0.00209 0.00412 0.0
Xs 00 0.0 00 0.0 00
Xxa 00 0.0 1.0 1.0 0.0

Discrete eigenvsiues

2.604020 2651909 4.721088 i3.437681 1.0044668
2122979 1.070095  1.152128 - -




Table IV
Critical halt tinckness ot the core and percent errors of Py
approximation for the case of intinite retlector

Exact Percent errors
Case - - -
o P, PJ
b —————— | e a— e e -
1 4.15767 1.0 < 0.1
2 2.1826 1.9 < 0.1
Table 18
The group 1 scalar flux in two slabs with an incident flux
x o b ® oyix ® o1ix © oslx) 9
0.0 0.16816 0.14545 0.16266 0.14054
0.2 0.36402 0.31225 0.35678 0.30612
0.4 0.46469 0.39937 0.46118 0.39702
0.6 0.51356 0.44804 0.51434 0.44991
0.8 0.52003 0.46878 0.52444 0.47433
1.0 0.48805 0.47039 0.49492 0.47875
1.2 0.43200 0.44800 0.44108 0.45801
1.4 0.36714 0.38637 0.37541 0.40663
1.6 0.28974 0.32158 0.20158 0.33078
1.8 0.20071 0.22618 0.20833 0.23313
20 0.08688 0.08781 0.08039 0.10089
o Cose ), (Set1, Set2)
b Cese i, (Set2 Set1)
¢ Case il, (Set1, Set2)
d Case ll, (Set2 Set 1

.
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Table V
Critical half-thickness for Case 1 with tinite reflector

Reflector thickness y (1]

Core half-thickness a

6.85725

594147

5.22752 4.75065

4.31485

Table V)

Thermal disadvantege factor for two-slab celis and percent errors of S" results

exact percent errors

a, a ¢ Sy Ss S» Sis
0.28 05 20.079 15.8 29 0.08 0.3
0.1% 05 12.055 158 29 0.88 0.32
0.05 05 4.2010 18.6 31 0.9 0.36
0.15 0.2 9.7457 26.3 8.0 2.3 0.76
0.05 0.2 3.4757 279 8.4 2.3 0.78
0.02% 0.2 2.1489 27.0 104 28 0.84
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Figporad The «calar fluxes for Case 3 of the two sisb problem with ay = ag = 1
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RESUMG

Frec croblemas emvolvendn dins mews em geoinenia plana séu 1e30lvidos na teoria de transporte de nlutrons

o mudelo o o nupos e espalhamento 1501r0pico. duas placas com um fluxo incideme, o problems da criticalideds
pora raatores g phaca refintida e 0 problema da céiula. Cada probleme ¢ reduzido a um tonjunto de equacles
integrais requiares para os coehcintes das expansdes de Case, que ¢ resolvido iterativamente. Slo publicados resultados
PUMEtICos pata todos us problemas.
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