

NUMERICAL SOLUTIONS OF TWO-MEDIA PROBLEMS IN TWO-GROUP NEUTRON TRANSPORT THEORY

Yuji Ishiguro and Roberto D. M. Garcia

NUMERICAL SOLUTIONS OF TWO-MEDIA PROBLEMS IN TWO-GROUP NEUTRON TRANSPORT THEOPY

Yuji Ishiguro and Roberto D. M. Garcia

CENTRO DE ENGENHARIA NUCLEAR
Area de fisica de Reatores
instiruto ok energia atomica
sAO PAULO - BRASIL

CONEELMO DELIEERATIVO

MEMMAROS
Kian Reinech - Presidente
Roterto D'Ulta Vire
Heveio Modento de Copta
Iveno Humbiert Mercheil
Actiner Cervellinit

PAMTICIPANTES
Ragine Eliacibete Azuwado Berefti Fivio Gort

SUPERINTENDENTE

Romulo Ribeivo Pioront

IMETITUTO DE ENEROIA ATOMICA
Colsa Postd 11.040 (Pintwires)
Cidede Unwwriterie "Armende de Salige Oiveirs"
sAO PAULO - BRASH

NUMERICAL SOLUTIONS OF TWO MEDIA PROBLEMS IN TWOGROUP NEUTRON TRANSPORT THEORY

Yaji ishoguro and Rotertu D M. Garcia

ABSIRAC:

1 INTRODUCTION

 reported, soon aftei the intraduction of the me hod by delazay and Kustell ${ }^{(2)}$, but their completeness arguments were not guite conclucive Some vaars later Siewert and Shieh ${ }^{(18) \text {, following the work of }}$
 combeteness and on thogonality thonerns and anaivsed the discrete spectrum. Some attempts were made to solve halt space $\left.{ }^{(12.14} 15\right)$ and stab) ${ }^{19.61}$ problems bit it was mot until the half-range completeness and orthogenality theorems where establisied ${ }^{13,17.201}$ that these pobiems were solved in a concise manner. Half space publems ${ }^{(17)}$ are soived in terms of aml H matix that cen be obtained numerically by a rapidly converging iterative scheme aikt shai) probimins ${ }^{111}$ can be converted o systems af regular integral equations i, if the expansion cosflicients which san then be sulved by numerical iterations.

Problems involving two media, however, have remained unsolved in twoyroup theory, though in the one group modei some problerns have been solvid using the two media orthogonality relations ${ }^{(13)}$ and by other methods ${ }^{(2,16)}$. The difficulty is in that the use of the fulf-range and half-range orthogonality relations does not remove all sinjularites, that are inherent in the case method and that the numerical solution of the resulting singular integ ai equations involves numerical differentiations. Further, two-media orthogorality relations have not heen found in twogroup theory. Jauho and Rajamäk ${ }^{110)}$ studied iwo-media problems in multigroup theory bui they did not report any numerical results and it appears rather difficuli to obtain numericil results based or their analysis. The first numerical results for two media problems we:e reported by lshiguris and Mainrino ${ }^{(9)}$ using a method based on the half-range orthogonality relations and invariancif principies. Theii merhod, nowevci, is applicable only to two-half-space probiems. Thus, a, general systernatic method to solve various iwo or multi-slab problems has been lacking and many model problems in transport theory hide remained unsolved.

In o recent paper ${ }^{(B)}$ Ishigurc pr cosed a mettiod ot this kind and reported some aumerical solutions in onegroup theory.

The purpose of this paper is 10 show that iwo media problems in twogroup neutron pransport theory tor isctropic scattering can be cinveriex, usinic the method of Ref. 8, to a set of regular integral

meilluid and to report numerical reucls for mene model problems based on exect theory. Wh shall consider three problems, two slabs with an incident thux, the critical problem for reflected slab reactors, and the cell problem, but we would like finst to summerize the method of regilarization and the basic theory.

THE METHOD OF REGULARIZATION

The method to derive a set of regular integral equations for the expansion coefficients from the set of singular integral equations that results from boundary and inta fece conditions can be summarized in the following steps ${ }^{(8)}$:

1 At an imterface seperate the continuity condition into two equations, one for $\mu \mathrm{E}(0,1)$, the othe for $\mu \mathrm{E}(-1,0)$.

2a To the $\mu(0,1)$ equation apply the half-ange orthogonality retations for the right-side medium.
b In the $\mu \in(1,0)$ equation change μ to - μ and then apply the orthogonality retations for the lett-side medium.

3a If any singulaxity remains in step 2a, consider the interface (or boundary) condition for $\mu>0$ at the left-side boundery of the heft-side medium and generate the seme singulerity, subtract the result from the equation in step 20 and remove the singularity.
b For step 2b consider the right-side interface of the right-ide mediun and generate the same singularity from the $\mu<0$ equation.

4 If sigularities remain in step 3 repeat the process, generating the seme singularities at different inter faces.

Although the equation for a discrete coefficient is ahwas found to be reguler, we apply to this eyuation the same operations as those applied to the equation for the corresponding continuum coefficient, since the convergence of iterations is sometimes faster and the discrete and continuum coeflicients are obtained in the some form. We not thet for a symmetric geometry the right and left interfaces are equivalent.

SOLUTION OF THE TRANGORT EOUATION

The twogroup neutron transport equetion for isotropic scattering can be witten es

$$
\begin{equation*}
\mu \frac{\partial}{\partial x} i(x, \mu)+\sum 1(x \mu)=0 \int_{-1}^{1} 1\left(x, \mu^{\prime}\right) d \mu^{\prime} \tag{11}
\end{equation*}
$$

where the spece variable x is mewurnd in units of the menn-freepeth for group 2 neutrons. As in irevious works ${ }^{(9,11,17) \text {, we estume that the scattering matrix } Q} \mathbf{Q}$ is naither disgonal nor eriangutar and that $\operatorname{det} \mathbf{Q} \neq 0$, and introduce a matrix P defined as

$$
P=\left[\begin{array}{cc}
\sqrt{a_{21} / a_{12}} & 0 \\
0 & 1
\end{array}\right]
$$

where q_{1} are the elements of \mathbf{Q}. Then the solution of Eq. (1) is given by

$$
\begin{equation*}
I(x, \mu)-P \Psi^{\prime} \Psi(x, \mu) \tag{3}
\end{equation*}
$$

where $\boldsymbol{W}(x .1$) is the solution of

$$
\begin{equation*}
\mu{ }_{A x}^{a} v(x, \mu)+\Sigma \forall(x, a)-C i_{1}^{1} \psi(x, \mu)(!\mu \tag{4}
\end{equation*}
$$

with the symmetrizen siattering matrix quen by $C: P Q P$ 'and the elements of $\underset{\sim}{2}$ are $\Sigma_{11}=0$, $\dot{\Sigma}_{12} \dot{y}_{21}-0$, aारi $\Sigma_{22}=1$.

The general solutwon of Eq(4) can tre writen(1).18) as

$$
\begin{align*}
& \left.+\int_{(3)} A^{(2)}(b)!!^{(2)}(u, \mu) \text { extic } x / v\right) d v . \tag{5}
\end{align*}
$$

where A's are expansion coefficients to be determined by the bundary condition once a specific protblem is considered, discrete eigenvoltes ${ }^{t} v$, are the zpros of del $\Delta(a)$ with

$$
\begin{equation*}
\Lambda(2)=1-z \int_{-1}^{1} K(2, \mu) d \mu C \tag{6}
\end{equation*}
$$

$\times(\text { erther } 1 \text { or } 2)^{(: 8)}$ is the number of pairs of the discrete eigenvalues, and the eigenfunctions can the written as

$$
\begin{align*}
& \left.\left.\underline{\Phi}!\pm v_{i}, \mu\right)=v_{i} K\left(v_{i}, \pm \mu\right) C!\right\}\left\{v_{1}\right) \tag{7s}\\
& {\underset{\sim}{1}}_{(1)}^{(\nu, \mu)=\left\{\nu K(\nu, \mu) C+\delta\left(v^{\prime}, \mu\right) \lambda\left(v^{\prime}\right)\right\} U_{a}^{i i)}(\nu), \quad o=1,2 .}
\end{align*}
$$

171.1
ark

$$
\begin{aligned}
& \sim^{(2)}(\nu, \mu)=\{v K(\nu, \mu) C \text { in }(: \mu) \lambda(\mu)\} U^{(2)}(\nu) \\
& \text { LC Region }(2)=(1, \text { in! \{intin ! }
\end{aligned}
$$

Here

$$
\begin{align*}
& \left.\underset{\sim}{K}(\xi, \mu)=\left[\begin{array}{cc}
P & 0 \\
0 \xi-\mu & \underline{P} \\
0 & \xi-\mu
\end{array}\right] \quad \underset{\sim}{\nu}, \mu\right)=\left[\begin{array}{cc}
\delta(\sigma \nu-\mu) & 0 \\
0 & \delta(\nu-\mu)
\end{array}\right] \text {, } \tag{8a,b}\\
& u_{1}^{(1)}(1)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {\underset{\sim}{2}}_{(1)}(\nu)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& \underline{U}^{(2)}(v)=\left[\begin{array}{c}
\lambda_{12}(\nu) \\
\lambda_{11}(\nu)
\end{array}\right] \quad U\left(\nu_{i}\right)=\left[\begin{array}{c}
-\Lambda_{12}\left(\nu_{i}\right) \\
\Lambda_{11}\left(\nu_{i}\right)
\end{array}\right] \tag{9c,d}
\end{align*}
$$

and

$$
\begin{equation*}
\lambda(\nu)=\underline{\sim}-\nu \int_{-1}^{1} \underset{\sim}{K}(\nu, \mu) d \mu \underset{\sim}{C} \tag{10}
\end{equation*}
$$

with! being the 2×2 identify matrix.
The full-range and hall-range completeness and orthogunality theorems regarding the solution given by Eq. (5) have been established $(3,17,18,20)$.

Although the solution has been used in previous works ${ }^{(9,11.17)}$ in the form of Eq. (5), we write the general solution in a more compect form as

$$
\begin{align*}
\Psi(x, \mu) & =\sum_{i=1}^{k}\left[A\left(\nu_{i}\right) \underset{\sim}{\|}\left(\nu_{i}, \mu\right) \exp \left(-x / \nu_{i}\right)+A\left(-\nu_{i}\right) \underset{\sim}{\Phi}\left(-\nu_{i}, \mu\right) \exp \left(x / \nu_{i}\right)\right] \\
& +\int_{0}^{1} \Psi(\nu, \mu) \underset{\sim}{A}(\nu) \exp (-x / \nu) d \nu+\int_{0}^{1} \Psi(-\nu, \mu) \underset{\sim}{A}(-\nu) \exp (x / \nu) d \nu . \tag{11}
\end{align*}
$$

where the discrete eigenfunctions are the same as in Eq. (7a), the continuum eigenfunction is a 2×2 matrix defined as

$$
\begin{equation*}
\underset{\sim}{\Phi}(\nu, \mu)=\nu K(\nu, \mu) \underset{\sim}{C}+\underset{\sim}{\delta}(\nu, \mu) \underset{\sim}{\lambda}(\nu), \nu \in(-1,1) . \tag{12}
\end{equation*}
$$

and $A(\pm \nu)$ are two-vector expansion coefficients. We not that the expansion given in Eq. (11) is not the general solution of Eq. (4) if $A(\pm i)$ are arbitrary for $v e(1 / \sigma, 1)$. However, os later equations show, $A(\pm \nu)$ are always found, in our formalism, to be proportional to $\underline{\underline{u}}^{(2)}(\nu)$ for $v c(1 / \sigma, 1)$ and thus, considering Eqs. (5), (7), and (9), we can write Eq. (5) in the more compect form of Eq. (11). We shall always Eparate positive and negative eigenvalues, as in Eq. (11), and use the symbols ν, ξ, and η to denote positive eigenvalues.

THE H MATRIX

The H matrix introduced in Ref. 17 plays a principal role in the half-range orthogonality theorem and has been discussed in detail in Ref. 20. We list some of the equations it satisfies for use in our problems.

The $\underset{\sim}{H}$ matrix satisfies the integral equations

$$
\begin{equation*}
\tilde{H}(z) \wedge(z)=1+z \int_{0}^{1} \tilde{H}(\mu) \underset{\sim}{O}(\mu) \frac{d \mu}{\mu-z} ¢, \quad z \in(0,1) . \tag{13a}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{i} \int_{0}^{1} \underset{\sim}{\tilde{H}}(\mu) \underset{\sim}{Q}(\mu) \frac{d \mu}{\nu_{i}-\mu} \underset{\sim}{C U\left(\nu_{i}\right)}=\underline{U}\left(\nu_{i}\right), \quad i=1, \cdots, k, \tag{13b}
\end{equation*}
$$

where

$$
\varrho(\mu)=\left[\begin{array}{cc}
O(\mu) & 0 \\
0 & 1
\end{array}\right], O(\mu)=1 \text { for } \mu \epsilon(0,1 / 0) \text { and } O(\mu)=0 \text { otherwise. (14) }
$$

To calculate the $\underset{\sim}{H}$ matrix numerically we can use equation

$$
\begin{equation*}
H(z)=1+z H(z) C \int_{0}^{1} \underset{\sim}{\tilde{H}}(\mu) Q(\mu)-\frac{d \mu}{\mu+z} . \quad z \notin(-1,0) \tag{15}
\end{equation*}
$$

The dispersion matrix $\underset{\sim}{\wedge}(z)$ can be factored in terms of the $\underset{\sim}{H}$ matrix as

$$
\begin{equation*}
\underset{\sim}{H}(-z) \underset{\sim}{\underset{\sim}{H}}(z) \underset{\sim}{\Lambda}(z)=\underset{\sim}{C} \quad \quad z \&(-1,1) \tag{16}
\end{equation*}
$$

If we let $z \rightarrow \nu \pm 0$ in Eq. (13a) we can find

$$
\begin{equation*}
\underset{\sim}{H}(\nu) \underset{\sim}{\lambda}(\nu)=1+\nu \int_{0}^{1} \tilde{H}(\mu) \underset{\sim}{Q}(\mu) \frac{P}{\mu-\nu} d \mu C, \nu \in(0,1) . \tag{17}
\end{equation*}
$$

Since the existence of a unique colution of, these equations has been eatablished ${ }^{(3,20)}$ wo shall use them freely in our problem: for example, we have from Eq. (15)

$$
\begin{equation*}
z \int_{0}^{1} \tilde{H}(\mu) Q(\mu) \frac{d \mu}{\mu+z} \underline{\sim}=\underline{C}^{-1} k-C^{-1}{\underset{\sim}{H}}^{-1}(z) \underline{k}, \quad 2 e(-1,0) \tag{18a}
\end{equation*}
$$

and from Eq (17)

$$
\begin{equation*}
\nu \int_{0}^{1} \tilde{H}(\mu) \theta(\mu) \frac{P}{\nu-\mu} d \mu k=C^{-1} k-\tilde{H}(\nu) \lambda(\nu) C^{-1} k, \quad \nu \in(0,1) \tag{1}
\end{equation*}
$$

tor an arbitrary 2×2 matrix k. We shall call these equations collectively the l! manimes.

HALF.RANGE ORTHOGONALITY AND RELATED INTEGRALS

Half-range or thogonality relations of the eigenfunctions are given in Ref. 17. However, since we use a different form to write the solution, we redefine the adjoint functions.

The discrete adjoint vector is the same as in Ref. 17:

$$
\begin{equation*}
\underset{\sim}{\ominus}\left(\nu_{i}, \mu\right)=\nu_{i} \underset{\sim}{K}\left(\nu_{j}, \mu\right) \underset{\sim}{h(\mu)} \underset{\sim}{\underset{H}{-1}}\left(\nu_{i}\right) \underset{\sim}{\operatorname{CU}}\left(\nu_{j}\right), \nu_{i}>1 \text { or } \nu_{j}=i\left|\nu_{i}\right| \tag{19a}
\end{equation*}
$$

We define the continuum adjoint matrix as

$$
\begin{equation*}
\underset{\sim}{\theta}(\nu, \mu)=\left[\nu \underset{\sim}{K}(\nu, \mu) \underset{\sim}{h}(\mu) \underset{\sim}{\boldsymbol{H}^{-1}}(\nu) \underset{\sim}{C}+\underset{\sim}{\delta}(\nu, \mu) \underset{\sim}{\lambda}(\nu) \mid \underset{\sim}{W}(\nu), \nu \in(0,1) .\right. \tag{19b}
\end{equation*}
$$

where the symmetric matrix

$$
W(\nu)=\left[\begin{array}{cc}
N_{22}(\nu) & -N_{21}(\nu) \tag{20}\\
-N_{12}(\nu) & N_{11}(\nu)
\end{array}\right] \quad \theta(\nu)+{\underset{\sim}{u}}^{(2)}(\nu){\underset{\sim}{u}}^{(2)}(\nu)[1-\theta(\nu)\}
$$

is the same matrix as was used in Ref. 11 and

$$
\underset{\sim}{h}(\mu)=\left[\begin{array}{ll}
H_{11}(\mu / \sigma) & H_{12}(\mu / \sigma) \tag{21}\\
H_{21}(\mu) & H_{22}(\mu)
\end{array}\right] \quad \mu \in(0,1)
$$

With these adjoint functions, the orthogonality relations can be written as

$$
\begin{align*}
& \int_{0}^{1} \tilde{\theta}\left(\nu_{i}, \mu\right) \underset{\sim}{p}\left(\nu_{i}, \mu\right) \mu d \mu=N\left(\nu_{i}\right) \delta_{i j}, \tag{22e}\\
& \int_{0}^{1} \tilde{\partial}\left(\nu_{i}, \mu\right) \underset{\sim}{p}(\nu, \mu) \mu d \mu=\underset{\sim}{0} . \tag{22b}\\
& \int_{n}^{1} \tilde{O}(\nu, \mu) \underline{\sim}\left(v_{i}, \mu\right) \mu d \mu=\underset{\sim}{0} .
\end{align*}
$$

$$
\begin{equation*}
\int_{0}^{1} \tilde{O}(\nu, \mu) \underline{\sim}\left(v^{\circ}, \mu\right) \underset{\sim}{A}\left(\nu^{\prime}\right) \mu d \mu=N(\nu) \underset{\sim}{A}(\nu) \delta\left(\nu-v^{\prime}\right) \tag{22d}
\end{equation*}
$$

where $A(v)$ in the last formula is an abitrany iwo-vector and the N functions in Eqs. (20) and (22ad) are given explicitly in Refs. 11 and 17.

Since we shall need various half-range integrals of the product of cigenfunction and adjoint linction, we summarize some of these formulas here. To simplify the notation we let

$$
\begin{equation*}
\underline{X}\left(v_{i}\right)=\tilde{U}\left(\nu_{i}\right) \underset{\sim}{\underset{H}{H}} \tilde{\sim}^{-1}\left(v_{i}\right) \underline{C}^{-1} \tag{23a}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{X}(n)-\dot{w}(v) C_{H^{-1}}(v){\underset{\sim}{C}}^{-1} \tag{233}
\end{equation*}
$$

When the eigenfunction and adjoint belong to the same medium, we can evaluate the following integrals, using the H equations, in obtain

$$
\begin{align*}
& \int_{0}^{1} \tilde{O}\left(\nu_{1}, \mu\right) \underset{\sim}{\left.-1-\nu_{i}, \mu\right) \mu d \mu} \underset{\nu_{i}+\nu_{i}}{\nu_{i} \nu_{i}} \check{X}\left(\nu_{i}\right) H^{-1}\left(\nu_{i}\right) C U\left(\nu_{i}\right), \tag{24a}\\
& \int_{0}^{1} \tilde{\sim}\left(\nu_{i}, \mu\right) \underset{\sim}{(-\nu, \mu) \mu d \mu=\frac{\nu_{i} \nu}{\nu_{i}+\nu} \bar{X}\left(\nu_{i}\right) H^{-1}(\nu) \underset{\sim}{C} .} \tag{24b}\\
& \int_{0}^{1} \tilde{O}(\nu, \mu) \underset{\sim}{f}\left(-\nu_{i}, \mu\right) \mu d \mu=\frac{\nu_{i} \nu}{\nu+\nu_{i}} \underset{X}{ }(\nu){\underset{\sim}{H}}^{-1}\left(\nu_{i}\right) \underset{\sim}{\mathcal{C}}\left(\nu_{i}\right) . \tag{24c}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \tilde{D}(\nu, \mu) \underset{\sim}{\dot{N}}\left(-\nu^{\prime}, \mu\right) \mu \mathrm{d} \mu=\frac{\nu \nu^{\prime}}{\nu+\nu^{\prime}} \underset{\sim}{X}(\nu){\underset{\sim}{H}}^{-1}\left(\nu^{\prime}\right) \underset{\sim}{C} . \tag{24d}
\end{equation*}
$$

If the eigenfunction and adjoint belong to different media the integral of their product is more involved. All integrals can be performed, nowever, if we decompose the K matrix as

जrith

$$
k_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad k_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

and use the H equations, e.g., Eqr. (18). Since these formutas we rather lengthy and since the liner equations for the three problems show most of them clearly, we report here only one, the simplest, of them:

$$
\begin{aligned}
& \int_{0}^{1} \mu \tilde{n}_{1}(\nu, \mu) G \cdot v_{i}\left(-\eta_{i}, \mu\right) d \mu
\end{aligned}
$$

where \mathbf{G} is a diagonal 2×2 matrix and the subscrints are used to reier to the media.
We not that, armong the various integrals involving eigenfunction and adjoint, only the following iwo are singular after inregration over μ :

$$
\begin{equation*}
\int_{0}^{1} \mu \tilde{O}_{1}(\nu, \mu) \int_{0}^{1} \Psi_{i}(\eta, \mu) A_{i}(\eta) d \eta d \mu, \nu, \eta \in(0,1), i \neq i \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \mu \tilde{Q}_{i}(\nu, \mu) \underset{\sim}{E}(\nu) \int_{0}^{1}{\underset{-}{i}}_{i}\left(v^{\prime}, \mu\right){\underset{\sim}{A}}_{i}\left(\nu^{\prime}\right) d v^{0} d \mu, v, y^{\prime} \in(0,1) \tag{28}
\end{equation*}
$$

where $E(\nu)$ is a 2×2 matrix.
Here we notice a difference between onegroup and iwo-group theories in thet in one-group theory the integral corresponding to Eq. (28) is reguiar since it reduces to one corresponding to Eq. (22d). Finally the following integral is of interest:

$$
\begin{equation*}
\int_{0}^{1} \tilde{\theta}(\xi, \mu) \mu d \mu=\underset{\sim}{\tilde{X}}(\xi)\{1-\underset{\sim}{\underset{\sim}{\underset{H}{\sim}}} \mathbf{0}\} \underset{\sim}{\Sigma} \tag{29}
\end{equation*}
$$

where ${\underset{\sim}{0}}$ is a moment of the $\underset{\sim}{\boldsymbol{H}}$ matrix

$$
\begin{equation*}
{\underset{\sim}{H}}_{0}=\int_{0}^{1} \underset{\sim}{\theta}(\mu) \underset{\sim}{H}(\mu) d \mu . \tag{30}
\end{equation*}
$$

i- THE TWOSLAB PROBLEM

We consider a slab of thickness α_{1} of medium $1\left(0 \leqslant x \leqslant \alpha_{1}\right)$ adjacent to another of thickness α_{2} of merdium $2\left(\alpha_{1} \leqslant x \leqslant \gamma, \gamma=\alpha_{1}+\alpha_{2}\right)$ irradiated on the $x=0$ surface by a flux of neutrons $f(\mu)$. $\mu(0,1)$.

We write the solutions of Eq. (4) as

$$
\begin{aligned}
& \Psi_{1}(x, \mu)=\sum_{i=1}^{k_{2}}\left(A_{1}\left(v_{i}\right){\underset{\sim}{w}}^{\prime}\left(\nu_{i}, \mu\right) \exp \left(-x / v_{i}\right)\right. \\
& +A_{1}\left(-\nu_{i}\right) \underbrace{}_{1}\left(-\nu_{i}, \mu\right) \exp \left\{-\left(a_{1}-x\right) / \nu_{i}\right\}]
\end{aligned}
$$

$$
\begin{align*}
& 0<x<\alpha_{1}, \tag{31}
\end{align*}
$$

and

$$
\begin{align*}
& \Psi_{2}(x, \mu)=\sum_{i=1}^{k_{2}}\left[A_{1}\left(\eta_{i}\right) \Phi_{2}\left(\eta_{i}, \mu\right) \exp \left\{-\left(x-\alpha_{1}\right) / \eta_{i}\right\}\right. \\
& \left.+A_{2}\left(-\eta_{i}\right){\underset{\sim}{2}}_{2}\left(\neg \eta_{i}, \mu\right) \exp \left\{-(\gamma-x) / \eta_{i}\right\}\right\} \\
& +\int_{0}^{1}\left\{\underset{\sim}{\Psi_{2}(\eta, \mu)} \underset{\sim}{A}(\eta) \exp \left\{-\left(x-\alpha_{1}\right) / \eta\right\}\right. \\
& \left.+{\underset{\sim}{2}}_{2}(-\eta, \mu){\underset{\sim}{2}}(-\eta) \exp \{-(\gamma-x) / \eta\}\right] d \eta, \alpha_{1} \leqslant x<\gamma, \tag{32}
\end{align*}
$$

subject to the conditions

$$
\begin{align*}
& {\underset{\sim}{1}}(0, \mu)={\underset{\sim}{p}}_{1} f(\mu) \quad, \mu \in(0,1) . \tag{33a}\\
& {\underset{\sim}{\Psi}}_{1}(\gamma,-\mu)=0 \quad, \mu \in(0,1) \tag{33b}
\end{align*}
$$

and

$$
\begin{equation*}
{\underset{\sim}{\Psi}}_{1}\left(\alpha_{1}, \mu\right)=\underset{\sim}{G}{\underset{\Psi}{\Psi}}_{2}\left(\alpha_{1}, \mu\right) \quad, \mu \in(-1,1) \tag{33c}
\end{equation*}
$$

We assume, considering the data sets for our calculations, that the groups are similorly ordered for both media and thus the matrix \underline{G} is diagonal and given by $\underline{G}=P_{1} P_{2}{ }^{-1}$.

The conditions at outer boundaries, Eqs. (33a,b), result in the equations

$$
\begin{align*}
& \underset{i=1}{k_{1}} A_{1}\left(\nu_{i}\right) \underset{\sim}{d_{1}}\left(\nu_{i}, \mu\right)+\int_{0}^{1} \psi_{1}(\nu, \mu) \underset{\sim}{A_{1}}(\nu) d \nu={\underset{\sim}{p}}^{P_{i}(\mu)} \\
& -\underset{i=1}{k_{2}} A_{1}\left(-\nu_{i}\right) \underset{\sim}{P_{1}\left(-\nu_{i}, \mu\right) E_{1}\left(\nu_{i}\right)-\int_{0}^{1} \Psi_{1}(-\nu, \mu ;}{\underset{\sim}{1}}^{(-i} ; E_{1}(\nu) d \nu . \\
& \mu \in(0,1) . \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{i=1}^{k_{2}} A_{2}\left(-\eta_{i}\right){\underset{\sim}{D}}_{2}\left(\eta_{i}, \mu\right)+\int_{0}^{1}{\underset{1}{1}}^{(\eta, \mu)} \underset{\sim}{A_{2}(-\eta) d \eta} \\
& =-\sum_{i=1}^{k_{2}} A_{2}\left(\eta_{i}\right){\underset{\sim}{2}}_{2}\left(-\eta_{i}, \mu\right) E_{2}\left(\eta_{i}\right)-\int_{0}^{1} \Phi_{2}(-\eta, \mu){\underset{\sim}{A}}_{2}(\eta) E_{2}(\eta) d \eta . \\
& \mu \in(0,1) . \tag{35}
\end{align*}
$$

and we write the interface condition, Eq. (33c), in two equations

$$
\begin{align*}
& \underset{i=i}{k_{1}} A_{1}\left(-\nu_{i}\right){\underset{\sim}{\mid}}_{1}\left(\nu_{i}, \mu\right)+\int_{0}^{1}{\underset{i}{1}}^{(\nu, \mu)} \underset{\sim}{A}(-\nu) d \nu \\
& =-\sum_{i=1}^{k_{1}} A_{1}\left(\nu_{i}\right){\underset{\sim}{1}}\left(-\nu_{i}, \mu\right) E_{1}\left(\nu_{i}\right)-\int_{0}^{1}{\underset{\sim}{1}}_{1}\left(-\nu_{0}, \mu\right){\underset{\sim}{1}}^{(\nu)} E_{1}(\nu) d \nu \\
& +\sum_{i=1}^{k_{2}} \underset{\sim}{G}\left[A_{2}\left(\eta_{i}\right){\underset{\sim}{\underset{2}{2}}}_{2}\left(-\eta_{i}, \mu\right)+A_{2}\left(-\eta_{i}\right){\underset{\sim}{2}}_{2}\left(\eta_{i}, \mu\right) E_{2}\left(\eta_{i}\right)\right] \\
& +\int_{0}^{1} \underset{\sim}{G}\left[\underset{\sim}{\Phi}(-\eta, \mu) \underset{\sim}{A}(\eta)+{\underset{\sim}{x}}_{2}(\eta, \mu) \underset{\sim}{A}(-\eta) E,(\eta) \mid d \eta .\right. \\
& \mu \in(0,1) . \tag{36}
\end{align*}
$$

and

$$
\begin{aligned}
& \underset{i=1}{\sum_{2}} A_{2}\left(\eta_{i}\right) \Phi_{2}\left(\eta_{i}, \mu\right)+\int_{0}^{1} \Phi_{2}(\eta, \mu) A_{2}(\eta) d \eta \\
& =\sum_{i=1}^{k_{1}}{\underset{\sim}{1}}^{-1}\left[A_{1}\left(\nu_{i}\right){\underset{\sim}{1}}_{1}\left(\nu_{i}, \mu\right) E_{1}\left(\nu_{i}\right)+A_{1}\left(-\nu_{i}\right){\underset{\sim}{\mid}}_{1}\left(-\nu_{1}, \mu\right)\right] \\
& +\int_{0}^{1} G^{-1}\left[\underset{\sim}{\underset{1}{1}}(\nu, \mu) \underset{\sim}{A_{1}}(\nu) E_{1}(\nu)+\underset{\sim}{\psi}(-\nu, \mu){\underset{\sim}{1}}(-\nu)\right] d \nu
\end{aligned}
$$

$$
\begin{align*}
& \text { 4; } \\
& \therefore A_{1}\left(n_{1}\right\} \ddots_{2}\left(n_{1}, \mu\right) E,\left(\eta_{i}\right) \\
& -\int_{0}^{1} \underline{U}_{2}(\eta, \mu) \underline{A}_{2}(\eta) E_{2}(\eta) d \eta \quad, \mu \in(0,1) . \tag{37}
\end{align*}
$$

whetre $E_{1}(\xi)$: expl $\alpha_{1}(\xi)$.
 roeftrients cant found numerically by a stankard ifenative method.

If we apply the half-range orthogonatity theoretr to Eq. (34). i.e., multiply Eq. (34) by $\mu \rightarrow)_{1}(\xi, \mu), \xi=\nu_{j}$ of $v \in(0,1)$, we obtain

$$
\begin{equation*}
A_{1}\left(v_{i}\right)=A_{i}^{0}\left(v_{i}\right)-v_{i} N_{i}^{-1}\left(v_{i}\right) \bar{X}_{1}\left(w_{i}\right) Y_{i}\left(w_{i}\right) \tag{38a}
\end{equation*}
$$

aixi

$$
\begin{equation*}
{\underset{\sim}{A}}(v)-A_{1}^{0}(v)-v N_{1}^{\prime}(v) \dot{X}_{1}(v) Y_{1}(v) \tag{38b}
\end{equation*}
$$

and in the same way we ohtarn from Ea. (35)

$$
\begin{equation*}
A_{2}\left(\cdot \eta_{i}\right)=\eta_{i} N_{2}^{-1}\left(\eta_{1}\right) \tilde{X}_{2}\left(\eta_{i}\right) Y_{2}\left(r_{i}\right) \tag{39a}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{2}(\eta)=-\eta N_{2}^{-1}(\eta) \bar{X}_{2}(\eta){\underset{Y}{2}}(\eta) \tag{39b}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{i}^{0}\left(\nu_{i}\right)=N_{i}^{-1}\left(\nu_{i}\right) \int_{0}^{1} \tilde{O}_{1}\left(v_{i}, \mu\right) P_{1} \quad(\mu) \mu d \mu . \\
& {\underset{\sim}{A}}_{1}^{0}(\nu)=N_{1}^{-1}(v) \int_{0}^{1} \tilde{O}_{1}(\nu, \mu) P_{1} f(\mu) / \mu f \mu, \\
& Y_{1}(\xi)=\sum_{i=1}^{k_{1}} \frac{\nu_{i}}{\nu_{i}+\xi} H_{i}^{\prime}\left(w_{i}\right) C_{i} U_{1}\left(w_{i}\right) A_{1}\left(v_{i}\right) E_{1}\left(v_{i}\right) \\
& \left.+\int_{0}^{1}-\nu+\xi H_{1}^{-1}(\nu\rangle C_{1} A_{1} \mid v\right) E_{1}(v) \mathrm{H} v,
\end{aligned}
$$

(40n:
(40b)

$$
\begin{align*}
\underline{Y}_{2}(\xi) & =\sum_{i=1}^{k_{2}} \frac{\eta_{i}}{\eta_{1}+\xi}{\underset{H}{2}}^{-1}\left(\eta_{i}\right){\underset{\sim}{C}}_{2} \underline{U}_{2}\left(\eta_{i}\right) A_{2}\left(\eta_{i}\right) E_{2}\left(\eta_{i}\right) \\
& +\int_{0}^{1} \underset{\eta+\xi}{\eta}{\underset{\sim}{H}}_{2}^{-1}(\eta) \underset{\sim}{C_{2}}{\underset{\sim}{A}}_{2}(\eta) E_{2}(\eta) d \eta \tag{42}
\end{align*}
$$

Next we apply the orthogonality theorem for medium 1 to Eq. (36) to isolate the coefficients on the left side. After integrating over μ, the $A_{2}(-\eta)$ term remains to be principal-value integrals for $\xi=\nu$. Following the method of regularization summarized in Section 1, we multiply Eq. (35) by

$$
\underset{\sim}{\mu},(\xi, \mu) \underline{\sim}\left[\begin{array}{cc}
E_{2}\left(\sigma_{1} \xi / \sigma_{2}\right) & 0 \tag{43}\\
0 & E_{2}(\xi)
\end{array}\right]
$$

and integrate over $\mu \in(0,1)$. We find on the left side the same singuiar integrals, but with different exponential functions, as from Eq. (36). Then subtracting this result from the previous equation, we ohtain equations with removable singularities

$$
\begin{equation*}
A_{1}\left(\nu_{i}\right)=\nu_{i} N_{i}^{-1}\left(\nu_{1}\right){\underset{\sim}{X}}_{1}\left(\nu_{i}\right){\underset{\sim}{3}}_{3}\left(\nu_{i}\right), \tag{44a}
\end{equation*}
$$

and

$$
\begin{equation*}
{\underset{1}{1}}^{(v)}=\tilde{N}_{1}^{-1}(\nu){\underset{\sim}{X}}_{1}(\nu){\underset{\sim}{Y}}_{3}(\nu) \tag{44h}
\end{equation*}
$$

$2,10.16$

$$
\begin{aligned}
& \left.+\sum_{i=1}^{k_{2}} \left\lvert\, \frac{\sigma_{1} \eta_{i}}{\sigma_{2} \eta_{i}+\nu_{1} \xi} H_{1}^{-1}\left(\sigma_{2} \eta_{i} / \sigma_{1}\right) k_{1}\right.: 1-E_{2}\left(\sigma_{1} \xi / \sigma_{2}\right) E_{2}\left(\eta_{i}\right)\right\} \\
& \cdot \frac{\eta_{i}}{\eta_{i}+\xi} \mathrm{Hi}^{\prime}\left(\eta_{i}\right) \mathrm{k}_{2}\left\{1-E_{1}(\xi) \mathrm{E}_{2}\left(\eta_{i} ;\right\}\right) \mathrm{G}_{2} \mathrm{U}_{2}\left(\eta_{i}\right) \mathrm{A}_{1}\left(\eta_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \frac{\eta_{1}}{\eta_{1}-\xi} H_{1}^{-1}\left(\eta_{1}\right) H_{2} \quad F_{:}\left(\eta_{1}\right)-E_{2}(\xi) \|\left(i C_{2} U_{A}\left(\eta_{1}\right) A_{2} \mid \eta_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{1} 1 \frac{\sigma_{1} \eta}{\sigma_{2} \eta+\sigma_{1} \xi} H_{1}^{-1}\left(\sigma_{2} \eta / \sigma_{1}\right) k_{1}\left[1-E_{2}\left(\sigma_{1} \xi / \sigma_{2}\right) E_{2}(\eta)\right] \\
& \left.+\underset{\eta+\xi}{\eta}{\underset{\sim}{1}}^{-1}(\eta) k_{2}\left\{1-E_{2}(\xi) E_{2}(\eta)\right\}\right] \underset{\sim}{C_{2}}{\underset{\sim}{2}}(\eta) d \eta \\
& +\int_{0}^{1}{\underset{\sim}{2}}_{1} \backslash \frac{a_{1} \eta}{\sigma_{2} \eta-\sigma_{1} \xi} \underset{\sim}{H_{1}}\left(\sigma_{2} \eta / \sigma_{1}\right) \underset{\sim}{C_{1}^{-1}} \tilde{\sim}_{1}\left(\sigma_{2} \eta / o_{1}\right){\underset{\sim}{k}}^{\sim}\left\{E_{2}(\eta)-E_{2}\left(\sigma_{1} \xi / \sigma_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{1}{\underset{C}{1}} \left\lvert\, \frac{\sigma_{2} \eta}{\sigma_{1} \xi-\sigma_{2} \eta} \tilde{H}_{1}\left(\sigma_{2} \eta / \sigma_{1}\right) k_{1}\left\{E_{2}(\eta)-E_{2}\left(\sigma_{1} \xi / \sigma_{2}\right)\right\}\right.
\end{aligned}
$$

In the sampe way we first multiply Eq. (37) by $\mu \eta_{2}\{\xi, \mu), \xi=\eta_{i}$ or $\eta \epsilon(0,1)$, and integrate over $\mu \mathrm{t}$ (0,1), next multiply Eq. (34) by
thel intenjate over μ, and then subtract between the iwo results to obtain

$$
\begin{equation*}
A_{2}\left(\eta_{i}\right)-A_{2}^{\prime \prime}\left(\eta_{i}\right)+\eta_{1} N_{2}^{-1}\left(\eta_{1}\right) \bar{X}_{2}\left(\eta_{i}\right){\underset{\sim}{Y}}_{4}\left(\eta_{i}\right) \tag{47a}
\end{equation*}
$$

ตnก

$$
\begin{equation*}
A_{2}(\eta)-A_{2}^{\prime \prime}(\eta)+\eta N_{2}^{-1}(\eta) \underset{\underset{2}{{\underset{C}{2}}_{2}^{2}}}{ }(\eta) \underset{\sim}{Y_{4}}(\eta), \tag{47b}
\end{equation*}
$$

whirip

$$
\begin{align*}
& A_{2}^{u}\left(\eta_{1}\right) \cdot N_{2}^{-1}\left(\eta_{1}\right){ }_{0}^{1} \bar{\eta}_{2}\left(\eta_{i}, \mu\right) G^{\prime} \cdot\left[\begin{array}{cc}
E_{1}\left(\sigma_{2} \eta_{i} / \sigma_{1}\right) & 0 \\
0 & E_{1}\left(\eta_{i}\right)
\end{array}\right] \begin{array}{c}
P_{1} f(\mu) \mu \mathrm{d} \mu
\end{array}, \tag{48a}
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{k_{1}} \underset{\sigma_{1} v_{1}+\sigma_{2} \xi}{\sigma_{2} v_{i}^{\prime}}{ }_{\sim}^{(1)}\left(\sigma_{1} v_{i}^{\prime} / \sigma_{2}\right) k_{1}\left\{1-E_{1}\left(v_{i}\right) E_{1}\left(\sigma_{2} \xi / \sigma_{1}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i=1}^{k_{1}} 1 \stackrel{\omega_{2} \nu_{1}}{\omega_{1} \nu_{i}-\sigma_{2} \xi} H_{2}^{-1}\left(\sigma_{1} \nu_{i} / \nu_{2}\right) k_{1}\left\{E_{1}\left(\nu_{i}\right)-E_{1}\left(\sigma_{2} \xi / \sigma_{1}\right)\right] \\
& \left.+\frac{\nu_{i}}{\nu_{i}-\xi} \underset{\sim}{\underset{\sim}{-1}}\left(\nu_{i}\right){\underset{\sim}{k}}_{2}\left\{E_{1}\left(\nu_{i}\right)-E^{\prime}(\xi)\right] \right\rvert\,{\underset{\sim}{G}}^{-1} \underset{\sim}{\underset{\sim}{\mathbf{C}_{1}}} \underset{\sim}{\underset{\sim}{U}}\left(\nu_{i}\right) A_{1}\left(\nu_{1}\right) \\
& +\int_{0}^{1}\left\{\frac{\sigma_{2} \nu}{\sigma_{1} \nu+\sigma_{2} \xi} \underset{\sim}{H_{2}^{-1}\left(\sigma_{1} \nu / \sigma_{2}\right){\underset{\sim}{2}}^{\sim}\left\{1-E_{1}(\nu) E_{1}\left(\sigma_{2} \xi / \sigma_{1}\right)\right]}\right. \\
& +\underset{\nu+\xi}{\nu}{\underset{\sim}{\mathcal{H}}}_{2}^{-1}(\nu) \underset{\sim}{k_{2}}\{1-E,(\xi)\} \mid{\underset{\sim}{G}}^{-1} \underset{\sim}{\underset{\sim}{c}} \underset{\sim}{A}(-\nu) d \nu
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{1} \underset{\sim}{C_{2}} \left\lvert\, \frac{\sigma_{1} \nu}{\sigma_{1} \xi-\sigma_{1} \nu}{\tilde{\underset{H}{\sim}}}_{2}\left(\sigma_{1} \nu / \sigma_{2}\right) \underset{\sim}{k}\left\{E_{1}(\nu)-E_{1}\left(\sigma_{2} \xi / \sigma_{1}\right)\right\}\right.
\end{aligned}
$$

Equations (38), (39), (44), and (47) are our final equations for the coefficients. All singularities are removed in terms of the exponential function and, therefore, numerical iterations can be pen'wimen in a standart manner, it is clear from these equations that, as was mentioned before,

We note that if we let $a_{2} \rightarrow 0$ all terms in Y_{3} except the first two vanish amt $F_{4}(44)$, together with Eq. (38), reducrs to the case of a single stat. Simit.ily, in the limit $n_{1} \cdot 11$ ins. (39) nixt (47), mduce to the casn of a simple slab of medum 2

3-THE CRITICAL PROBLEM

The critical problem for bare reactors has been solved by Kriese, Siewert, and Yener ${ }^{111}$. We consider here the critical problem for reflected slab reactors, a typical textbook problem in diffusion theory. The core of multiplying medium 1 extends from - a to $+\alpha$ surrounded by infinite reflectors of non-multiplying medium 2. We assume that both media are specified and, thus, our aim is to determine the value of a such that non-trivial solutions exist.
W. :n, ", The rolltions of Ea. (4) as

$$
\begin{align*}
& \underset{\sim}{\Psi}(x, \mu)=\sum_{i=1}^{k_{1}} A_{1}\left(\nu_{1}\right){\underset{\sim}{\mid}}_{1}\left(\nu_{1}, \mu\right) \exp \left\{-(x+\alpha) / \nu_{1}\right\} \\
& k_{1} \\
& +\sum_{i=1} A_{i}\left(\nu_{1}\right){\underset{\sim}{1}}_{i}\left(-\nu_{i}, \mu\right) \exp \left\{-(\alpha-x) / \nu_{i}\right\} \\
& +\int_{0}^{1} \Phi_{1}(\nu, \mu){\underset{\sim}{A}}^{A_{1}}(\nu) \exp \{-(x+a) / \nu\} d \nu \\
& +\int_{0}^{1} \Phi_{1}(-\nu, \mu) A_{3}(\nu) \exp \{-(a-x) / \nu\} d \nu . \tag{50}
\end{align*}
$$

and

$$
\begin{align*}
{\underset{\sim}{y}}_{2}(x, \mu)= & \sum_{i=1}^{k_{2}} A_{2}\left(\eta_{i}\right) \Phi_{2}\left(\eta_{i}, \mu\right) \exp \left\{-(x-\alpha) / \eta_{i}\right\} \\
& +\int_{0}^{1} \phi_{2}(\eta, \mu) A_{2}(\eta) \exp \{-(x-\alpha) / \eta\} d \eta \tag{51}
\end{align*}
$$

The symmetry condition and the condition for $|x| \rightarrow \infty$ are already incorporated in the solutions and we consider herester only $x \geqslant 0$. The remaining continuity condition at $x=a$ can be written in two equations for $\mu e(0,1)$,

$$
\begin{aligned}
& \sum_{i=1}^{k_{1}} A_{1}\left(\nu_{1}\right) \Phi_{1}\left(\nu_{i} \mu\right)+\int_{0}^{1} \Phi_{1}(\nu, \mu){\underset{\sim}{1}}^{(\nu) d \nu} \\
& =\underset{i=1}{\sum_{1}} A_{1}\left(\nu_{i}\right) \Phi_{1}\left(-\nu_{1}, \mu\right) E\left(\nu_{i}\right)-\int_{0}^{1} \underset{\sim}{(1-\nu, \mu)} \underset{\sim}{A_{1}}(\nu) E(\nu) d \nu \\
& +\sum_{i=1}^{k_{2}} A_{2}\left(\eta_{i}\right) G_{2}\left(\eta_{i}, \mu\right)+\int_{0}^{1} G 小_{2}(\eta, \mu) A_{2}(\eta) d \eta .
\end{aligned}
$$

$$
\begin{align*}
& \sum_{i=1}^{k_{2}} A_{2}\left(\eta_{i}\right) \Phi_{2}\left(\eta_{i}, \mu\right)+\int_{0}^{1} \Psi_{2}(\eta, \mu){\underset{\sim}{A}}_{2}(\eta) d \eta \\
& =\sum_{i=1}^{k_{1}} A_{1}\left(v_{i}: G^{-1} 中_{i}\left(v_{i}, \mu\right) E(\nu)+\sum_{i=1}^{k_{1}} A_{i}\left(v_{i}\right) G^{-1} \Psi_{i}\left(\nu_{i}, \mu\right)\right. \\
& +\int_{0}^{1} G^{-1} \Phi_{1}(v, \mu){\underset{\sim}{1}}(\nu) E(\nu) d v+\int_{0}^{1} G^{-1} \Phi_{1}(v, \mu){\underset{\sim}{1}}(\nu) d p . \tag{53}
\end{align*}
$$

where $E(\xi)=\exp (-2 \alpha / \xi)$. For the moment we assume that a is a given constant and multiply Eq. (52) by $\mu\left(\underline{i},(\xi, \mu), \xi=\nu_{i}\right.$ or $\nu \in(0,1)$, and integrate over $\mu \in(0,1)$ to obtain equations for the coefficients

$$
\begin{aligned}
& A_{1}\left(v_{1}\right) \left\lvert\, 1+\frac{1}{2} \nu_{1} N_{i}^{-1}\left(v_{1}\right) \underset{\sim}{X_{1}}\left(v_{1}\right) \underset{\sim}{H_{1}^{-1}}\left(v_{1}\right) C_{1}{\underset{\sim}{1}}^{\left.\left(v_{1}\right) E_{1}\left(v_{1}\right)\right\}}\right.
\end{aligned}
$$

and, if $K_{1}=2$.

$$
\begin{aligned}
& A_{1}\left(\nu_{2}\right)\left\{1+\frac{1}{2} \nu_{2} N_{1}^{-1}\left(\nu_{2}\right) \underset{\sim}{X_{1}}\left(v_{2}\right) \underset{\sim}{H_{1}^{-1}}\left(\nu_{2}\right) \underset{\sim}{\underset{\sim}{C}} \underset{\sim}{U_{1}}\left(\nu_{2}\right) E\left(\nu_{2}\right)\right\}
\end{aligned}
$$

more

$$
\begin{align*}
& -\int_{0}^{1} \frac{\nu}{v+\xi}{\underset{\sim}{H}}_{-1}^{-1}(v) \underset{\sim}{C_{1}} \underset{\sim}{A}(\nu) E(\nu) d v . \tag{56}
\end{align*}
$$

Similarly, we multiply Eq. (53) by $\mu\left(\hat{O},(\xi, \mu), \xi=\eta_{i}\right.$ or $\boldsymbol{\eta} \in(0,1)$, and integrate over μ to isolate the. , w...ttwients in the left-side expansion:. The $A_{1}(n)$ tertil on the right side remains to be singular. Next wt: muinuly Eq. 152) by

$$
\sim_{2} \bar{\sim}_{2}(\xi, \mu){\underset{\sim}{G}}^{-1}\left[\begin{array}{cc}
E\left(\sigma_{2} \xi / n,\right) & 0 \\
0 & E(\xi)
\end{array}\right]
$$

Wid intaprate over $\mu \in(0,1)$. Or the left side we find the same singular integrats, with different evponential functions, as in the previous equation. All other terms re regular. Then, subtracting the last mindtom from the previous one, we obtain equations with remnable singularities

$$
\left.A:\left\{\pi_{i}\right\}\right\}
$$

(58a)
arn!

$$
\begin{equation*}
A_{2}(\eta)-\eta N_{i}^{\prime}(\eta){\underset{X}{2}}_{2}(\eta)\left(\underline{Y}_{2}(\eta)+\underset{i=1}{k_{2}} \bar{\eta}_{i}+\eta H_{i}^{\prime}\left(\eta_{i}\right) E(\eta) \mathcal{C}_{2} U_{2}\left(\eta_{i}\right) A_{2}\left(\eta_{i}\right)\right\} \tag{58b}
\end{equation*}
$$

witrete

$$
E(\xi)=\left[\begin{array}{cc}
E\left(\sigma_{2} \xi / \sigma_{1}\right) & 0 \tag{59}\\
0 & E(\xi)
\end{array}\right]
$$

and

$$
\begin{aligned}
& V_{2}(t)-\sum_{i=1}^{k_{1}} \frac{\sigma_{i} \nu_{i}}{\left.\sigma_{1} v_{i}+\sigma_{2}\right\}} H_{i}^{\prime}\left(\sigma_{1} \nu_{1} / n_{2}\right) k_{1}\left\{1-E\left(v_{i}\right\} E\left(\sigma_{2} \xi / \sigma_{1}\right)\right\} \\
& +\frac{v_{1}}{v_{i}+\xi} H_{2}^{\prime}\left(v\left|k_{2}\right| 1 \text { E }\left(v_{1}\right) E(\xi)| | G^{\prime} \mathrm{C}_{1} U_{1}\left(v_{i}\right) A_{1}\left(v_{i}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.A_{2}\left(\eta_{1}\right): 1-\frac{1}{2} \eta_{i} N_{2}^{\prime}\left(\eta_{i}\right) \underline{X}_{2}\left(\eta_{i}\right) \underset{\sim}{{\underset{\sim}{2}}^{\prime}}\left(\eta_{i}\right) E\left(\eta_{i}\right){\underset{\sim}{C}}_{2}^{U_{2}}\left(\eta_{i}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\nu_{i}}{\nu_{1}-\xi} \mathrm{H}_{2}^{-1}\left(-\nu_{i}\right){\underset{\sim}{2}}\left\{E\left(\nu_{i}\right)-E(\xi)| | G^{-1} \mathrm{C}_{1} \mathrm{U}_{1}\left(\nu_{i}\right) A_{1}\left(x_{i}\right)\right. \\
& +\int_{0}^{1}\left[\frac{\sigma_{2} \nu}{\sigma_{1} \nu+\sigma_{2} \xi} \underset{\sim}{H_{2}^{1}}\left(\sigma_{1} \nu / \sigma_{2}\right) \underset{\sim}{k_{1}}\left(1-E(w) E\left(\sigma_{2} \xi / o_{1}\right)\right)\right. \\
& \left.+\frac{\nu}{\nu+\xi}{\underset{\sim}{H}}^{-1}(\nu) \underset{\sim}{k_{2}}\{1-E(\nu) E(\xi)\} \right\rvert\, \underline{G}^{-1}{\underset{\sim}{C}}_{1}{\underset{1}{1}}(\nu) d \nu \\
& +\int_{0}^{1} \frac{\eta}{\eta+\xi}{\underset{\sim}{2}}_{2}^{-1}(\eta) E(\xi) C_{2}{\underset{\sim}{2}}^{(\eta) d \eta} \\
& +\int_{0}^{1} C_{2}\left[\frac{\sigma_{2} \nu}{\sigma_{1} \nu-\sigma_{2} \xi} \tilde{H}_{2}\left(\sigma_{1} \nu / \sigma_{2}\right){\underset{\sim}{2}}_{-1}^{\lambda_{2}}\left(\sigma_{1} \nu / \sigma_{2}\right) k_{1}\left\{E(\nu)-E\left(\sigma_{2} \xi / \sigma_{1}\right)\right\}\right. \\
& +\frac{\nu}{\nu-\xi}{\underset{\sim}{H}}_{2}(\nu){\underset{\sim}{c}}_{2}^{-2} \tilde{\sim}_{2}(\nu){\underset{\sim}{k}}_{2}(E(\nu)-E(\xi)\} G^{-1} \underset{\sim}{\underset{\sim}{C}} \underset{\sim}{A}(\nu) d \nu \\
& +\int_{0}^{1} C_{2} \left\lvert\, \frac{\sigma_{1} \nu}{\sigma_{2} \xi-\sigma_{1} \nu} \tilde{H}_{2}\left(\sigma_{1} \nu / \sigma_{2}\right) k_{1}\left\{E(\nu)-E\left(\sigma_{2} \xi / \sigma_{1}\right)\right\}\right. \\
& \left.+\frac{\nu}{\xi-\nu} \tilde{H}_{2}(\nu) k_{2}\{E(\nu)-E(\xi)\}\right] G^{-1}{\underset{\sim}{1}}^{(\nu)} \lambda_{1}(\nu){\underset{\sim}{1}}^{(\nu) d \nu} . \tag{60}
\end{align*}
$$

The condition of criticality can be incorporated as the condition of non-trividlity of the solution. If we normalize the solution by taking $A_{1}\left(\nu_{1}\right)=\exp \left(\alpha / \nu_{1}\right)$, the critical helf-thickness of the core is given by

$$
\begin{equation*}
a=\frac{\pi}{2}\left|\nu_{1}\right|+\frac{\nu_{1}}{2} n(N / D) \tag{61}
\end{equation*}
$$

where

$$
\begin{equation*}
N=\frac{1}{2} \nu_{1} N_{1}^{-1}\left(\nu_{1}\right){\underset{X}{X}}^{\prime}\left(\nu_{1}\right){\underset{\sim}{1}}^{-1}\left(\nu_{1}\right){\underset{\sim}{C}}_{1}{\underset{\sim}{U}}\left(\nu_{1}\right) \tag{620}
\end{equation*}
$$

Mr

$$
\begin{array}{r}
0=1-\nu_{1} N_{i}^{\prime}\left(\nu_{1}\right) \tilde{X}_{1}\left(\nu_{1}\right) \exp \left(\sigma a / \nu_{1}\right)\left\{\underset{\sim}{Y_{1}}\left(\nu_{1}\right)-\left(x_{1}-1\right) \frac{\nu_{2}}{\nu_{1}+\nu_{2}}{\underset{\sim}{1}}^{-1}\left(\nu_{2}\right)\right. \\
\underline{C}_{1} U_{1}\left(\nu_{2}\right) E\left(\nu_{2}\right) A_{1}
\end{array}
$$

Equations (55), (58), ant (61) arp out linal equations to be selved by numerical iterations.

THE CASE OF FINITE REFLECTOR

If the thickness of the reflector is finite, the core solution. Eq. (50), is the seme but the reflector solution is written as

$$
\begin{aligned}
& +\sum_{i=1}^{k_{2}} A_{2}\left(-\eta_{i}\right){\underset{2}{2}}\left(-\eta_{i}, \mu\right) \exp \left\{-(\gamma+a-x) / \eta_{i}\right\} \\
& +\int_{0}^{1} \mu_{2}(\eta, \mu) A_{2}(\eta) \exp \{-(x-a) / \eta\} d \eta
\end{aligned}
$$

where $\boldsymbol{\gamma}$ is the reflector thickness (given) and a is the critical half-thickness to be determined.
We write the interface condition, symbolically, as

$$
\begin{equation*}
\Psi_{1}(a,-\mu)=G \Psi_{2}(a,-\mu), \mu \in(0,1) \tag{64a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{2}(a, \mu)=G^{-1} \Psi,(a, \mu), \mu \in(0,1) \tag{64b}
\end{equation*}
$$

and the boundery condition at $\mathrm{x}=\boldsymbol{\alpha}+\boldsymbol{\gamma}$ as

$$
\begin{equation*}
\Psi_{2}(a+\gamma,-\mu)=\underset{\sim}{0}, \mu \in(0,1) \tag{64c}
\end{equation*}
$$

While in the case of infinite reflector we obtain immediately a reqular integral equation for $A_{1}(\nu)$ and need only one step of regularizetion tor the $A_{2}(\eta)$ equation, here the $A_{1}(\nu)$ equation must be regularized once and thet for $A_{2}(\eta)$ in two steps, due to the existence of a boundery of $x=a+\gamma$.

The procedure cen be summarized as follows. First, we apply to Eq. (84a) the orthogonality relations for modium 1 , and obtain qquations with the coefficiems $A_{1}\left(v_{1}\right)$ and $A_{1}(w)$ inolated on the left sde. In the $A_{i}(\nu)$ equetion the $A_{2}(-\eta)$ term remains singuler. To remove this singulerity we multiply Eq. (64c; by

$$
\mu \tilde{O}_{1}(\nu, \mu) \underline{G}\left[\begin{array}{cc}
E_{2}\left(v_{1} \nu / v_{2}\right. & 0 \\
0 & E_{2}(\nu)
\end{array}\right]
$$

where $E_{2}(\xi)=\exp (-\gamma / \xi)$, and integrate over $\mu \in(0,1)$. On the left side we find the same singular integrals, with different exponential functions, as in the previous equation. Subtrecting the lest equation from the previous one, we obtain equations with removable singulerities

$$
\begin{aligned}
& A_{1}\left(\nu_{i}\right)\left\{1+\frac{1}{2} \nu_{i} N_{i}^{-1}\left(\nu_{i}\right) \underset{\sim}{\underset{\sim}{x}}\left(\nu_{i}\right) \underset{i}{\boldsymbol{H}_{i}^{2}}\left(\nu_{i}\right) \underset{\sim}{c} \underset{\sim}{\underset{\sim}{U}}\left(\nu_{i}\right) E_{1}\left(\nu_{i}\right)\right\}
\end{aligned}
$$

$$
\left.A_{1}\left(v_{i}\right)\right\} .
$$

(68)
and
where $E_{1}(\xi)=\exp (-2 \alpha / \xi)$ and $\underline{Y}_{1}(\xi)$ is given in $A p_{1}$ ndix A.

Similaly, we apply to Eq. (64b) the orthogonality relations for medium 2, and obteln cquations with the coefficients $A_{2}\left(\eta_{1}\right)$ and $A_{2}(\eta)$ isolated on the lefi side. In the $A_{2}(\eta)$ equation the $A_{1}(\nu)$ term is sinpuler. Next we multiply Eq. (84)) by

$$
\mu \tilde{\theta}_{2}(\eta, \mu) \underline{G}^{-1}\left[\begin{array}{cc}
E_{1}\left(\sigma_{2} \eta / \sigma_{1}\right) & 0 \tag{1671}\\
0 & E_{1}(\eta)
\end{array}\right]
$$

and integrate over $\mu \mathrm{e}(0,1)$. On the left side we find the seme singular integrals in the $\boldsymbol{A}_{\mathbf{1}}(\boldsymbol{v})$ term. However, we obtain now singularitivs on the right side. Finelly multiplying Eq. (64) by

$$
\mu \tilde{\theta}_{3}(\eta \mu) E_{2}(\eta)\left[\begin{array}{cc}
E_{1}\left(\sigma_{2} \eta / \sigma_{1}\right) & 0 \tag{08}\\
0 & E_{1}(\eta)
\end{array}\right]
$$

and integrating over $\mu \mathrm{e}(0,1)$, wo obtain siqularities so remove the lat ones. The following equations are ohtsined

$$
\begin{aligned}
& =\eta_{i} N_{2}^{-1}\left(\eta_{i}\right) \tilde{X}_{2}\left(\eta_{i}\right)\left\{\underline{Y}_{2}\left(\eta_{i}\right)+\sum_{i=1}^{k_{2}} \frac{\eta_{j}}{\eta_{j}+\eta_{i}}\left(1-\delta_{i j}\right){\underset{\sim}{2}}^{-1}\left(\eta_{j}\right)\left(1-E_{2}\left(\eta_{j}\right) E_{2}\left(\eta_{i}\right)\right]\right. \\
& \underset{\sim}{E}\left(\eta_{i}\right) \underset{\sim}{{\underset{\sim}{2}}^{U}} \underset{2}{ }\left(\eta_{j}\right) A_{2}\left(\eta_{j}\right)+\sum_{j=1}^{k_{2}} \frac{\eta_{i}}{\eta_{i}-\eta_{i}}\left(1-\delta_{i j}\right) \underset{\sim}{H_{2}^{-1}}\left(-\eta_{j}\right)\left[E_{2}\left(\eta_{j}\right)-E_{2}\left(\eta_{i}\right)\right] \\
& \underset{\sim}{E}\left(\eta_{i}\right) \underset{\sim}{\boldsymbol{C}_{2}} \underset{\sim}{\underset{\sim}{U}}\left(\eta_{i}\right) A_{2}\left(-\eta_{j}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& {\underset{\sim}{A}}_{2}(\eta)=\eta N_{2}^{-1}(\eta){\underset{\sim}{X}}_{2}(\eta)\left\{\underline{Y}_{2}(\eta)+\underset{i=1}{\sum_{2}} \frac{\eta_{1}}{\eta+\eta_{i}}{\underset{\sim}{i}}^{-1}\left(\eta_{1}\right)\left[1-E_{2}\left(\eta_{1}\right) E_{2}(\eta)\right]\right. \\
& E(\eta) C_{2} U_{2}\left(\eta_{i}\right) A_{2}\left(\eta_{i}\right)+\sum_{i=1}^{k_{2}} \frac{\eta_{1}}{\eta_{1}-\eta} \mu_{i}^{-1}\left(-\eta_{1}\right)\left[E_{2}\left(\eta_{1}\right)-E_{2}(\eta)\right] E(\eta){\underset{\sim}{C}}_{\sim}^{U_{2}}\left(\eta_{1}\right)
\end{aligned}
$$

$$
\left.A_{2}\left(-\eta_{i}\right)\right\}
$$

where $E(\xi)=\left[\begin{array}{cc}E_{1}\left(\sigma_{2} \xi / \sigma_{1}\right) & 0 \\ 0 & E_{1}(\xi)\end{array}\right] \quad$ and $Y_{2}(\xi)$ is given in Appendix A.

Findly, we apply to Eq. (E4c) the orthogonality relations for medhin 2, and obteln aquations for the coefficients $A_{2}\left(-\eta_{i}\right)$ and $A .(-\eta)$

$$
\begin{align*}
& A_{2}\left(-\eta_{1}\right)=\eta_{1} N_{2}^{-1}\left(\eta_{1}{\underset{\sim}{x}}_{2}\left(\eta_{1}\right){\underset{\sim}{r}}_{3}\left(\eta_{1}\right) .\right. \tag{70a}\\
& {\underset{\sim}{2}}^{(\eta)}=\eta N_{2}^{-1}(\eta){\underset{\sim}{x}}_{2}(\eta) \underset{\sim}{r} \tag{706}\\
& (\eta)
\end{align*}
$$

where $\boldsymbol{Y}_{\mathbf{3}}(\$)$ in ghen in Appendix \mathbf{A}.
 obtained from Eq. (e6) in the form of Eq. (81). Find equetions we colved by numerical iteretions.

1 IHE CELL PROBLEM

We consider here an infinitely repeating array of two slabs of dissimilar media a a symplified model of flat-plate fuel assemblies and analyse a unit cell consisting of adf-siab of medium 1 $\left(\alpha_{1} \leqslant x \leqslant 0\right)$ and a half-slab of medium $2\left(0 \leqslant x \leqslant \alpha_{2}\right)$ with the condition of symmetry with respect to the boundary surfaces. We assume uniform sources of neutrons in medium 2.

The symmetric solutions can be written as
and

$$
\begin{equation*}
{\underset{\sim}{1}}_{2}(x, \mu)={\underset{\sim}{2}}_{-1}\left\{{\underset{\sim}{2}}_{2}(x, \mu)+{\underset{\sim}{2 p}}(x, \mu)\right\} \quad, \quad 0 \leqslant x<a_{2} \tag{72}
\end{equation*}
$$

where

$$
\begin{align*}
& \Psi_{i}(x, \mu)=\sum_{i=1}^{k_{i}} A_{i}\left(v_{i}\right)\left\{\Phi_{i}\left(v_{i}, \mu\right) \exp \left\{-\left(x+2 \alpha_{i}\right) / v_{i}\right\}+\Psi_{i}\left(-v_{i}, \mu\right) \exp \left(x / v_{i}\right)\right\} \\
& +\int_{0}^{1}\left[\Phi_{1}(v, \mu) \exp \left\{-\left(x+2 a_{i}\right) ; v\right\}+\phi_{1}(-v, \mu) \exp (x / v)\right]{\underset{\sim}{1}}(v) \operatorname{dv} \cdot \tag{73}\\
& {\underset{v}{2}}^{\psi_{i}}\left(x_{i} \mu\right)=\sum_{i=1}^{k_{2}} A_{2}\left(\eta_{i}\right)\left\{\underline{\Phi}_{2}\left(\eta_{i}, \mu\right) \exp \left(-x / \eta_{i}\right)+\Phi_{2}\left(-\eta_{1}, \mu\right) \exp \left\{-\left(2 a_{2}-x\right) / \eta_{i}\right\}\right] \\
& +\int_{0}^{1}\left[\Phi_{2}(\eta, \mu) \exp (-x / \eta)+{\underset{\sim}{2}}_{2}(-\eta, \mu) \exp \left\{-\left(2 \alpha_{2}-x\right) / \eta\right\}\right\} \underset{\sim}{A_{2}}(\eta) d \eta, \tag{174}
\end{align*}
$$

and

$$
\begin{equation*}
\Psi_{2 P}(x, \mu)=\left\{{\underset{\sim}{2}}^{\Sigma_{2}}-2 C_{2}\right\}^{-1}{\underset{\sim}{2}}^{S} . \tag{75}
\end{equation*}
$$

with $\underset{\sim}{s}$ being a constent two-vector.

We write the continuity condition in wo equations for $\mu \mathrm{e}(0,1)$,

$$
\begin{aligned}
& \sum_{i=1}^{H_{1}} A_{1}\left(\nu_{i}\right) \Phi_{1}\left(\nu_{i}, \mu\right)+\int_{0}^{1} \Psi_{1}\left(\nu^{\prime}, \mu\right) A_{1}\left(\nu^{\prime}\right) d \nu^{\prime}=\underset{\sim}{G} \Psi_{2 P}(0, \mu) \\
& -\sum_{1-1}^{k_{2}} A_{1}(\nu) \psi_{1}\left(v_{1}, \mu\right) E_{1}\left(v_{1}\right)-\int_{0}^{\prime} N_{1}\left(\nu^{\prime}, \mu\right) A_{1}\left(\nu^{\prime}\right) E_{1}\left(v^{\prime}\right) d v^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& \text { 1: } \\
& +\underset{i}{2} A_{2}\left(\eta_{1}\right) G_{i}\left|w_{2}\left(\eta_{1}, \mu\right)+\xi_{2}\left(\eta_{1}, m\right) E_{2}\left(\eta_{1}\right)\right| \\
& +\int_{0}^{1} G\left(\|_{2}\left(\eta^{*}, \mu\right), \eta_{2}\left(\eta^{*}, \mu\right) E_{2}\left(\eta^{\prime}\right) \mid A_{2}\left(\eta^{\prime}\right) d \eta^{\circ} .\right. \tag{76}
\end{align*}
$$

anm

$$
\begin{align*}
& \sum_{i=1} A_{2}\left(\eta_{1}\right) \psi_{2}\left(\eta_{1}, \mu\right)+\int_{0}^{1} \dot{H}_{2}\left(\eta^{\prime}, \mu\right) A_{2}\left(\eta^{\prime}\right) d \eta=\Psi_{2 p}(0, \mu) \\
& +\sum_{i=1}^{h_{1}} A_{1}\left(\nu_{i}\right) G^{-1}\left\{\|_{i}\left(\nu_{i}, \mu\right) E_{1}\left(\nu_{i}\right)+\psi_{1}\left(\nu_{i}, \mu\right) \mid\right. \\
& +\int_{0}^{1} G^{-1}\left|{\underset{\sim}{x}}\left(\nu^{\prime}, \mu\right) E_{1}\left(\nu^{\prime}\right)+\underline{v}_{1}\left(-\nu^{\prime}, \mu\right)\right| A_{1}\left(\nu^{\prime}\right) d v^{\prime} \\
& -\sum_{i=1}^{k_{2}} A_{2}\left(\eta_{i}\right) \dot{H}_{2}\left(-\eta_{i}, \mu\right) E_{2}\left(\eta_{i}\right)-\int_{0}^{1} \dot{H}_{2}\left(-\eta^{\prime}, \mu\right) A_{2}\left(\eta^{\prime}\right) E_{2}\left(\eta^{\prime}\right) d \eta^{\prime} . \tag{771}
\end{align*}
$$

where $E_{i}(\xi)=\exp \left(2 a_{i} / \xi\right)$.

In this problem, because we are actually dealing with an infinite array, astraightorward application of the method of regularization requires an intinite number of steps. This is dus to the facts that at each step we multiply an equation not only by the adjoint function but also by ematrix of exponential functions, as in Eqs. (43), (46), and (57), and that the integrals of the typa that appear in Eq. (28) are singular after integration over μ. In one-group theory, integrals of this type are reguler and the regularization is accomplished after a finite number of steps even for an infinite array of multi-sab cell.

However, the series of operations required for our proble can be summed up nicely and we can derive a regularized equation for $A_{1}(\nu)$ by the following steps:

1) Multiply Eq. (76) by $\mu \tilde{O}_{1}(\nu, \mu)$ and integrate over μ. On the Ieft side ${\underset{\sim}{1}}^{(\mu)}$ is isoleted. On the right side the $\Psi_{1}\left(\boldsymbol{\eta}^{2}, \mu\right)$ torm remains siguler.
2) Multiply Eq. (76) by

$$
\mu \tilde{O}_{1}(\nu, \mu)\left[\begin{array}{cc}
\frac{E_{1}(\nu) E_{2}\left(\sigma_{1} \nu / o_{2}\right)}{1-E_{1}(\nu) E_{2}\left(o, \nu / \sigma_{2}\right)} & 0 \\
0 & \cdots E_{1}(\nu) E_{2}(\nu) \\
\cdots-E_{1}(\nu) E_{2}(\nu)
\end{array}\right]
$$

and integrate over μ. The $\underline{L}_{1}\left(\nu^{\prime}, \mu\right)$ and $\Psi_{1}\left(\eta^{\circ}, \mu\right)$ terms remain singular.
3) Multiply Eq. (77) by

$$
\mu \tilde{\theta}_{i}(\nu, \mu) \underline{G}\left[\begin{array}{cc}
\frac{E_{2}\left(\sigma_{1} \nu / \sigma_{2}\right)}{1-E_{1}(\nu) E_{2}\left(\sigma_{1} \nu / \sigma_{2}\right)} & 0 \tag{78}\\
0 & \frac{E_{2}(\nu)}{1-E_{1}(\nu) E_{2}(\nu)}
\end{array}\right]
$$

and integrate over μ. Again the ${\underset{\sim}{1}}_{1}\left(\nu^{\prime}, \mu\right)$ and ${\underset{\sim}{2}}_{2}\left(\eta^{\prime}, \mu\right)$ terms remain singular.

If we now add three resulting equations on each side we find an equation for $A_{1}(v)$ in which all singularities are removed in terms of exponential functions. Obviously the equation ${\underset{\sim}{2}}^{-}{\underset{\sim}{2}}^{(\nu)}$ can be regularized similarly:

1) Multiply Eq. (77) by $\mu \tilde{\theta}_{2}(\eta, \mu)$ and integrate over μ.
2) Multiply Eq. (77) by the following and integrate over μ :

$$
\mu \tilde{\theta}_{2}(\eta, \mu)\left[\begin{array}{cc}
\frac{E_{1}\left(\sigma_{2} \eta / o_{1}\right) E_{2}(\eta)}{1-E_{1}\left(\sigma_{2} \eta / \sigma_{1}\right) E_{2}(\eta)} & 0 \\
0 & \frac{E_{1}(\eta) E_{2}(\eta)}{1-E_{1}(\eta) E_{2}(\eta)}
\end{array}\right]
$$

3) Multiply Eq. (76) by the following and integrace on 3r μ :

$$
\mu \tilde{\theta}_{2}(\eta, \mu){\underset{G}{G}}^{-1}\left[\begin{array}{cc}
\frac{E_{1}\left(\sigma_{2} \eta / \sigma_{1}\right)}{1-E_{1}\left(\sigma_{2} \eta / \sigma_{1}\right) E_{2}(\eta)} & 0 \tag{81}\\
0 & -\frac{E_{1}(\eta)}{1-E_{1}(\eta) E_{2}(\eta)}
\end{array}\right]
$$

As in previous problems we epply these operations to the equations for the discrete coefficients, too. We nftain the following equations:

$$
\begin{aligned}
& =A_{i}^{0}\left(\nu_{i}\right)+\nu_{i} N_{i}^{\prime}\left(\nu_{i}\right) \underline{X}_{1}\left(\nu_{i}\right)\left(\sum_{j=1}^{k_{1}}\left(1-\delta_{i j}\right) \underline{Y}_{i}\left(\nu_{i}, \nu_{i}\right) A_{i}\left(\nu_{j}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.A_{1}(v) \therefore \underline{A}_{i}^{0}(v)+w N_{i}^{-1}(v) \bar{X}_{1}(v)!\sum_{1}^{k_{1}} \underline{Y}_{1}\left(v, v_{i}\right) A_{1} \mid v_{i}\right)+\int_{0}^{1} Y_{2}\left(v, v^{\prime}\right) A_{1}\left(v^{\prime}\right) d v^{0} \\
& \left.+\underset{i=1}{\sum_{2}} \underline{Y}_{1}\left(v, \eta_{i}\right) A_{2}\left(\eta_{1}\right)+\int_{0}^{1} \underline{Y}_{4}\left(v, \eta^{\prime}\right) A_{2}\left(\eta^{\circ}\right) d \eta^{\prime}\right) . \tag{82b}\\
& A_{2}\left(\eta_{i}\right)\left\{1-\frac{1}{2} \eta_{i} N_{2}^{-1}\left(\eta_{i}\right) \tilde{X}_{2}\left(\eta_{i}\right){\underset{\sim}{2}}_{2}^{-8}\left(\eta_{i}\right) J_{3}\left(\eta_{i}, \eta_{i}\right) C_{2}{\underset{\sim}{U}}^{\left.\left(\eta_{i}\right)\right\}}\right.
\end{align*}
$$

and

$$
\begin{align*}
& \left.+\sum_{j=1}^{k_{1}} \underline{Y}_{7}\left(\eta, \nu_{i}\right) A_{1}\left(\nu_{j}\right)+\int_{0}^{1} \underline{Y}_{1}\left(\eta, \nu^{\prime}\right){\underset{1}{ }}\left(\nu^{\prime}\right) d v^{\prime}\right\}, \tag{83b}
\end{align*}
$$

where A_{i}^{0} and ${\underset{\sim}{i}}_{0}^{0}$ are constant terms due to the source, J_{\sim} 's are 2×2 matrices of exponential functions, and Y 's are known vectors and matrices involving the $\underset{\sim}{H}$ matrices and exponential functions, similer to the expressions that appear in Eqs. (45) and (49); we list these functions in Appendix 8 .

5 - NUMERICAL RESULTS

Computations were performed on an IBM 370/155 computer in double-precision arithmetic using standard Gaussian quadrature sets to represent integrals. Our results reported here are obtained using a 20 -point and a 40 -point set in the intervals $(0,1 / \sigma)$ and $(1 / 0,1)$, respectively. The sccuracy of iterative solutions depends on the quadrature sets used. Because of long computetion times, we did nor use any higher order quadrature sets and the accuracy of our results is generally tive or six significent fiqures, as verified by calculating moments of various order of the equations for the boudary and interface conditions.

CAOSS SECTION SETS

Sevaral cross section sels for iwo group calculations are available in the lie afure ${ }^{(1, i 1,511}$.

However, since in two-metia problems the group energies must Ne compotible, we have gmerated the cross section sets given in Tables I and II using the XSDRN code ${ }^{(7)}$. The entive enerey renge $(0<E<15 \mathrm{MeV})$ is divided at $0.3 \mathrm{eV}(0.2994 \mathrm{eV}$ in the code) to give thamen and fest ereary groups:

```
group 1: E < 0.3 eV
group 2: E > 0.3 eV
```

This dividing energy may be considered too low for a conventional division, of thermat and fast groups. We have selected this value to keep the matrix \mathbf{Q} from becoming trimgular, since for higher dividing energies the up-scattering cross section becomes quite small. Sets 14 are calculated for infinite media. To calculate Set 5 we took from the calculation of Set 5 we took from the calculation of Set 3 the microscopic cross sections for U^{233} and multiplied them by the normel dersity of uranium. The fistion cross sections are taken to be zero for use in the cell problem.

The elements of the matrices $\underset{\sim}{\boldsymbol{\Sigma}}$ and $\underset{\sim}{\mathbf{Q}}$ are calcutated from the data sets as follows:

$$
0=o_{1} / \sigma_{2} \quad, \quad \mathrm{a}_{i j}=\left\{\sigma_{i j}+X_{i} \bar{\nu}_{i} \sigma_{i j}\right\} / 2 o_{2} .
$$

THE TWO-SLAB PROBLEM

We consider three cases of incident flux

$$
\begin{aligned}
& f(\mu)=2\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { Case } 1 . \\
& f(\mu)=3 \mu\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad, \quad \operatorname{cose} 2 .
\end{aligned}
$$

and

$$
f(\mu)=4 \mu^{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad . \quad \operatorname{case} 3 .
$$

and un Sets 1 and 2 for sample calculations.

The scaler fluxer ere defined by

$$
\left[\begin{array}{l}
\phi_{1}(x) \\
\phi_{2}(x)
\end{array}\right]=\int_{-1}^{1} 1(x, \mu) d \mu
$$

 All iesults ar" for ir, as: I and we use the notation (Seli, Set i) to denote that Sel i is used for mexturn 1 and Set; for medium 2. The yroup 2 scalar llux is unchanged to the third digits with the reversat of the mestia. The number of iterations is about 35 and the computation time for one case is around 12 minutes.

THE CRITICAL PROBLEM

We corisider two cases:

Case	Core	Refletor
1	Set 3	Set 1
2	Set 4	Set 1

For Case 2 we considered only the case of infinite reflector, but for Case 1 several reflector thicknesses are considered. Our results for the case of infinite reflector are shown in Table IV together with percent errors of P_{N}-approximation results. The P_{1} appoximation gives slightly larger critical sizes but the P_{3} approximation is quite good lor the cases considered here. We report in Table V our results for finite reflectors, where γ is the reflector thickness in mean-free-path. Figures 2 and 3 show the scalar fluxes for the cases of infinite reflector and Figures 4 and 5 show those for various reflector thicknesses. In Figures 6 through 9 we show angular fluxes at three places, inside the core, at the interface, and in the reflector, for both Cases 1 and 2 with infinite reflector.

The number of iterations is 51 and 39 and the computation time is about 61 and 53 minutes for Cases 1 and 2, respectively, with infinite reflector. The long computation time is due, partly, to the fact that most of the calculation must be performed in complex mode.

We have also considered two cases of fast reactor model using the cruss section sets for $\mathbf{U}^{\text {as }}$, $\mathrm{U}^{23 \mathrm{n}}$, and Pu^{239} given in Ref. 21. The convergence is quite slow and we have not pursued to obtain results of reportable accuracy.

THE CELL PROBLEM

We use Set 5 for the fuet and Set 1 for the moderator to calculate the thermal disedvantage factor defined as

$$
\xi=\left(\alpha_{1} / \alpha_{2}\right) \int_{0}^{\alpha_{2}} \phi_{21}(x) d x / \int_{-a_{1}}^{0} \phi_{11}(x) d x
$$

where $\phi_{i f}$ is the thermal group scalar flux in medium i.
In the fuet region we take $\overline{\nu \sigma_{1}}:=0$ and in the moderator we consider uniform sources of therral neutrons:

$$
s \cdot\left[\begin{array}{c}
1 / w_{2} \\
0
\end{array}\right]
$$

Fingue 10 sturws the thermal flux for thee fuel thicknesses with $\alpha_{3}=0.2$. We report in Table VI therrial disadvantage factor for several cell sices and in Figure 11 a comparison between the exact and S.N results of the thermal flux is presented. The S_{N} results were obtained by the ANISN code ${ }^{(5)}$. For the exact calculation the number of iterations and the computation time are of the same order as for the two-slab problem. For the S_{N} calculation the computation time is from 12 seconds $\left(\mathrm{S}_{2}\right)$ to 30 seconds $\left(S_{16}\right)$ with 20 spatial mesh points in each of the fuel and moderator regions. All S_{N} results for the disadvantage fartor are smaller than our results.

For smaller cell sizes the convergence is laster if the equations for the discrete coefficients are derived simply by applying the orthogonality theorem to Eqs. (76) and (77), i.e., without the steps 2 and 3 anplied to the equations for the contimum coefficients. This seems to be due to the factors that appear in the denominator in Eqs. (78-81). The computer program based on Eqs. (82) and (83) can be modified to include this case with an addition of a few statements.

6 - COMMENTS ANO CONCLUSIONS

We have shown that problems involving dissimilar media can be analysed numerically in two-group transport theory for isotropic scattering using the exact singular-eigenfunction-expansion method. In principle the method used here can be applied to any multiregion and multimedis problems in plane grometry. However, the computation time (and/or memory requirenents) is quite long compared with the P_{N} and S_{N} approximations. The computation time can be reduced if single-precision arithmetic and low-order quadrature sets are used. Further reduction is possible if, for example, the Y functionals in the cell problem are stored, since they are independent of the coefficients and can be calculated once and for all: in our calculation they were calculated in every iterative step dve to large memory requirements to store them. Further, as was mentioned previously, in some cases the convergence of our solution is quite slow.

Our solution is not practical for routine calculations or patametric surveys. However, since one of the purposes of exact transport theory analysis is to supply standards of comparison af various approximate methods, we believe that our numerical results can serve for this purpose and that our inlution and the method of regularization used here are of value in that they facilitate exact analyses of 'urn or multi-media problems for the first time.
arpendix a

The Y functionals that appear in Eqs. (66), (69) and (70) we as follows:

$$
\begin{aligned}
& +\sum_{i=1}^{k_{2}}\left[\frac{\sigma_{1} \eta_{i}}{\sigma_{2} \eta_{i}-\sigma_{1} \xi} \underset{\sim}{H_{i}^{-1}}\left(-\sigma_{2} \eta_{i} / \sigma_{1}\right) \underset{\sim}{k_{1}}\left\{E_{2}\left(\eta_{i}\right)-E_{2}\left(\sigma_{1} \xi / \sigma_{2}\right)\right\}\right. \\
& +\frac{\eta_{i}}{\eta_{i}-\xi}{\underset{\sim}{-1}}^{-1}\left(-\eta_{i}\right){\underset{\sim}{2}}\left(E_{2}\left(\eta_{i}\right)-E_{2}(\xi)\right\} \underset{\sim}{G}{\underset{\sim}{2}}^{U_{2}\left(\eta_{i}\right) A_{2}\left(-\eta_{i}\right)} \\
& +\int_{0}^{1}\left\{\frac{\sigma_{1} \eta}{\sigma_{2} \eta+\sigma_{1} \xi} \underset{\sim}{H_{i}^{-1}}\left(\sigma_{2} \eta / \sigma_{1}\right){\underset{\sim}{2}}^{k_{1}}\left(1-E_{2}(\eta) E_{2}\left(\sigma_{1} \xi / \sigma_{2}\right)\right\}\right. \\
& \left.+\frac{\eta}{\eta+\xi} \underset{\sim}{\underset{\sim}{H}} \underset{\sim}{-1}(\eta) \underset{\sim}{k_{2}}\left\{1-E_{2}(\eta) E_{2}(\xi)\right\}\right] \underset{\sim}{G} \underset{\sim}{\underset{\sim}{A}} \underset{2}{ }(\eta) d \eta
\end{aligned}
$$

$$
\begin{aligned}
& +{\underset{\sim}{1}} \int_{0}^{1}\left(\frac { \sigma _ { 2 } \eta } { 0 _ { 1 } \xi - \sigma _ { 2 } \eta } \tilde { H } _ { 1 } (\sigma _ { 2 } \eta / \sigma _ { 1 }) k _ { 1 } \left\{E_{2}(\eta)-E_{2}\left(\sigma_{1} \xi / \sigma_{2}\right)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\int_{0}^{1} \frac{\nu}{\nu+\xi} \underset{\sim}{H_{i}^{-1}}(\nu) \underset{\sim}{C_{1}} \underset{\sim}{E}(\nu) \underset{\sim}{A}(\nu) d \nu, \\
& Y_{2}(\xi)=\sum_{i=1}^{k_{1}}\left\{\frac{\sigma_{2} \nu_{1}}{\sigma_{1} \nu_{1}+\sigma_{3} \xi} \mu_{i}^{\prime}\left(\sigma_{1} \nu_{i} / \nu_{2}\right) k_{1}\left\{1-E_{1}\left(\nu_{1}\right) E_{1}\left(\sigma_{3} \xi / o_{1}\right)\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{\nu_{1}}{v_{i}+\xi} H_{2}^{-1}\left(v_{i}\right) k_{2}: 1-E_{1}\left(v_{i}\right) E_{1}(\xi)\right\}\right] \underline{G}^{-1} \underset{\sim}{C_{1}}{\underset{\sim}{U}}\left(v_{i}\right) A_{1}\left(v_{i}\right) \\
& \left.+\sum_{i=1}^{k_{i}}\left|\frac{o_{2} \nu_{i}}{\sigma_{1} \nu_{1}-\sigma_{2} \xi} H_{2}^{-1}\right|-\sigma_{1} \nu_{i} / \sigma_{2}\right\rangle{\underset{\sim}{x}}^{k_{1}}\left\{E_{1}\left(v_{i}\right)-E_{1}\left(\sigma_{2} \xi / \sigma_{1}\right\rangle\right\} \\
& \left.+\frac{\nu_{i}}{\nu_{i}-\xi}{\underset{\sim}{-1}}^{\prime}\left(-\nu_{i}\right) \underline{k}_{2}\left\{E_{1}\left(v_{i}\right)-E_{1}(\xi)\right\}\right] \underline{G}^{-1} \underline{C}_{1}{\underset{\sim}{U}}\left(v_{i}\left|A_{1}\right| v_{i} \mid\right. \\
& +\int_{0}^{1}\left[\frac{\sigma_{2} \nu}{\sigma_{1} \nu+\sigma_{2} \xi}{\underset{\sim}{H}}_{-1}^{\left(\sigma_{1} \nu / o_{2}\right)}{\underset{\sim}{1}}^{\boldsymbol{H}_{1}}\left\{1-E_{1}(\nu) E_{1}\left(\sigma_{2} \xi / \sigma_{1}\right)\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +{\underset{\sim}{2}}_{2} \int_{0}^{1}\left\{\frac{o_{2} \nu}{\sigma_{1} \nu-o_{2} \xi} \tilde{H}_{2}\left(\sigma_{1} \nu i o_{2}\right){\underset{\sim}{2}}_{-1}^{\lambda_{2}}\left(\tilde{\lambda}_{1} \nu / \sigma_{2}\right) \underset{\sim}{k_{1}}\left\{E_{1}(v)-E_{1}\left(\sigma_{2} \xi / \sigma_{1}\right)\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +C_{2} \int_{0}^{1}\left\{\frac{\sigma_{1} \nu}{\sigma_{2} \xi-o_{1} \nu} \tilde{H}_{2}\left(o_{1} \nu / o_{2}\right) k_{1}\left\{E_{1}(\nu)-E_{1}\left\{\sigma_{2} \xi / \sigma_{1}\right)\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{1} \frac{\eta}{\eta+\xi}{\underset{\sim}{H}}_{2}^{\prime}(\eta)\left\{1-E_{2}(\eta) E_{2}(\xi)\right\} \underset{\sim}{E}(\xi) \underset{\sim}{C_{2}} \underset{\sim}{A}(\eta) d \eta \\
& -\sum_{i=1}^{k_{2}} \frac{\eta_{1}}{\eta_{1}+\xi} \mu_{2}^{-1}\left(\eta_{1}\right) E_{2}\left(\eta_{1}\right) C_{2} U_{2}\left(\eta_{1}\right) A_{2}\left(-\eta_{1}\right)-\int_{0}^{1} \frac{\eta_{i}+\xi}{H_{2}^{-1}(\eta) E_{2}(\eta) C_{1} A_{2}(\eta) d \eta}
\end{aligned}
$$

$$
\begin{aligned}
& +C_{2} \int_{0}^{1} \frac{\eta}{\xi-\eta} \tilde{\sim}_{2}(\eta)\left\{E_{1}(\eta)-E_{2}(\xi)\right\} \underset{\sim}{E}(\xi){\underset{\sim}{O}}_{2}(\eta) \lambda_{2}(\eta){\underset{\sim}{2}}^{(f)}(\eta) d \eta . \\
& \underline{Y}_{1}(\xi)-\sum_{i=1}^{k_{2}}{\underset{\eta}{1}}_{\eta_{1}}^{\eta_{k}} H_{2}^{-1}\left(\eta_{1}\right) C_{2} U_{2}\left(\eta_{1}\right) E_{2}\left(\eta_{1}\right) A_{2}\left(\eta_{i}\right)
\end{aligned}
$$

$$
-\int_{0}^{1} \frac{\eta}{\eta+\xi}{\underset{\sim}{2}}^{-1}(\eta){\underset{\sim}{2}}_{2} E_{2}(\eta){\underset{\sim}{A}}_{2}(\eta) d \eta .
$$

APPENDIX B

The \mathbf{Y} functionals that appeor in Eqs. (82) and (83) are as follows:

$$
\begin{aligned}
& {\underset{\sim}{r}}_{2}\left(\xi, \nu^{\prime}\right)=\frac{\nu^{\prime}}{\xi+\nu^{\prime}}{\underset{\sim}{i}}^{-1}\left(\nu^{\prime}\right) \underset{\sim}{J_{1}}\left(\xi, \nu^{\prime}\right) \underset{\sim}{C_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\sim}_{0}\left(\xi, \eta^{\prime}\right)=\frac{\eta^{\circ}}{\eta^{\prime}+\xi}{\underset{\sim}{2}}_{-1}\left(\eta^{\prime}\right) \underline{J}_{3}\left(\xi, \eta^{\prime}\right){\underset{\sim}{2}}^{\mathbf{C}_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -{\underset{\sim}{2}}_{2}\left(\frac{o_{1} \nu^{\prime}}{\sigma_{1} \nu^{\prime}-o_{2} \xi} \tilde{H}_{2}\left(\sigma_{1} \nu^{\prime} / \sigma_{2}\right) \lambda_{2}\left(\sigma_{1} \nu^{\prime} / o_{2}\right){\underset{\sim}{2}}_{C_{2}^{-1}}^{J_{1}}\left(\xi \nu^{\prime}\right){\underset{\sim}{1}}^{k_{1}}\right. \\
& \left.+\frac{v^{\prime}}{v^{\prime}-\xi} \tilde{\sim}_{2}\left(v^{\prime}\right){\underset{\sim}{\lambda}}^{\prime}\left(v^{\prime}\right){\underset{\sim}{C}}_{-1}^{\boldsymbol{J}_{n}}\left(\xi, v^{\prime}\right){\underset{\sim}{k}}_{2}\right\} \underline{G}^{-1}{\underset{\sim}{C}}_{1}
\end{aligned}
$$

where

$$
\begin{aligned}
& J_{\mathcal{I}}(x, v)=\left[\begin{array}{cc}
E_{1}\left(\sigma_{1} x / \sigma_{2}\right)-E_{1}(y) & 0 \\
0 & E_{2}(x)-E_{1}(v)
\end{array}\right] \quad f^{3}(x),
\end{aligned}
$$

$$
\begin{aligned}
& J_{1}(x, y)=\left[\begin{array}{cc}
1-E_{2}\left(t J_{1} x / u_{2}\right) E_{2}(y) \\
0 & 0 \\
1-E_{2}(x) E_{2}(y)
\end{array}\right] J^{\prime}(x) . \\
& J_{4}(x, y)=\left[\begin{array}{cc}
E_{2}\left(0_{1} x / \sigma_{2}\right)-E_{2}(y) & 0 \\
0 & E_{2}(x)-E_{2}(y)
\end{array}\right] \underset{\sim}{J^{\prime}(x) .} \\
& J_{S}(x, y)=\left[\begin{array}{cc}
E_{1}\left(\sigma_{2} x / u_{1}\right)-E_{2}(y) & 0 \\
0 & E_{1}(x)-E_{2}(y)
\end{array}\right] J^{J^{2}(x) .} \\
& J_{6}(x, y)=\left[\begin{array}{cc}
E_{1}\left(\sigma_{2} x / a_{1}\right) & 0 \\
0 & E_{1}(x)
\end{array}\right]\left[E_{2}(x)-E_{2}(y)\right] f^{2}(x), \\
& J_{1}(x, y)=\left[\begin{array}{cc}
1-E_{1}\left(o_{2} x / \sigma_{1}\right) E_{1}(y) & 0 \\
0 & 1-E_{1}(x) E_{1}(y)
\end{array}\right] J^{2}(x) . \\
& J_{g}(x, y)=\left[\begin{array}{cc}
E_{1}\left(0_{2} x / 0_{1}\right)-E_{1}(y) & 0 \\
0 & E_{1}(x)-E_{1}(y)
\end{array}\right] \quad J^{2}(x) .
\end{aligned}
$$

will

$$
\begin{aligned}
& f^{\prime}(x)=\left[\begin{array}{cc}
{\left[1-E_{1}(x) E_{2}\left(\sigma_{1} x /\left.\sigma_{2}\right|^{\prime}\right.\right.} & 0 \\
0 & \|-\left.E_{1}(x) E_{2}(x)\right|^{\prime}
\end{array}\right] . \\
& f^{2}(x)-\left[\begin{array}{cc}
\| 1-\left.E_{1}\left(\sigma_{2} x / a_{1}\right) E_{1}(x)\right|^{\prime} & 0 \\
0 & \|\left. 1 F_{1}(x) F_{2}(x)\right|^{\prime}
\end{array}\right] .
\end{aligned}
$$

I atole 1
Definition of the cross section sets

Set	Material
1	$H_{2} \mathrm{O}$
2	$\mathrm{H}_{2} \mathrm{O}+\mathrm{B}$
3	$\mathrm{H}_{2} \mathrm{O}+\mathrm{U}^{233^{\circ}}, \mathrm{B} / \mathrm{H}=3 / 2000$
4	$\mathrm{H}_{2} \mathrm{O}+\mathrm{U}^{233^{\circ}}, \mathrm{U} / \mathrm{H}=1 / 1000$
5	$U^{233^{\circ}}$

Table II
Macrosconic cross sections and the discrete eigenvalues

	Set 1	Set 2	Set 3	Set 4	Set 5
01	2.9865	2.9664	2.9727	2.9628	25.828
O_{2}	0.88798	0.88731	0.88721	0.88655	1.2782
00_{1}	2.0678	2.8876	2.9183	2.8751	0.50234
012	0.04749	0.04588	0.04635	0.04535	0.00101421
0_{3} :	0.000336	0.00106	0.000767	0.00116	0.000003357
0_{32}	0.83975	0.83912	0.83892	0.83807	0.41677
$v_{1} 0_{11}$	0.0	0.0	0.07391	0.14324	0.0
$\nu_{3} \sigma_{12}$	0.0	0.0	0.00209	0.00412	0.0
x_{1}	0.0	0.0	0.0	0.0	0.0
x_{1}	0.0	0.0	1.0	1.0	0.0
Discrete eigenvalues					
	2.604020	2.551809	i4.721086	13.437681	1.004468
	2.122979	1.070095	1.152128	--	-

Table iV
Crithal hall thrikness of the core and percent errors of $\mathbf{P}_{\mathbf{N}}$ approximation for the case of infinite reflector

Case	Exact	Percent errors	
		1	P_{1}
1	4.15767	1.0	P_{3}
2	2.1826	1.9	<0.1

Tible III
The group 1 scalar flux in two slabs with an incident flux

x	$\varphi_{1}(x)^{b}$	$\phi_{1}(x)^{b}$	$\phi_{1}(x)^{c}$	$\phi_{1}(x)^{d}$
0.0	0.16816	0.14545	0.16266	0.14054
0.2	0.36402	0.31225	0.35678	0.30612
0.4	0.46469	0.39937	0.46118	0.39702
0.6	0.51356	0.44804	0.61434	0.44991
0.8	0.52003	0.46878	0.52444	0.47433
1.0	0.48805	0.47039	0.49492	0.47875
1.2	0.43299	0.44800	0.44108	0.46801
1.4	0.36714	0.38637	0.37641	0.40663
1.6	0.28974	0.32166	0.29168	0.33078
1.8	0.20071	0.22618	0.20633	0.23313
2.0	0.08688	0.09781	0.08939	0.10099

- Cane I, (Set 1, Set 2)
b Case I, (Set 2, Set 1)
c Can II, (Set 1, Set 2)
o Cam II, (Ser 2, Set 1;

Table V
 Critical half thickness for Case 1 with finite reflector

| Reflector thickness γ | 0 | 1 | 2 | 3 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Core half-thickness a | 6.85725 | 5.94147 | 5.22752 | 4.75065 | 4.31486 |

Table VI
Thermal disadvantage factor for two-slab cells and percemt errors of $\mathbf{S}_{\boldsymbol{W}}$ reaults

a_{1}	a_{2}	exact ξ	percemt errors			
			S_{2}	S_{4}	S_{3}	S_{16}
0.25	0.5	20.079	15.8	2.9	0.68	0.33
0.15	0.5	12.055	15.8	2.0	0.68	0.32
0.05	0.5	4.2910	18.6	3.1	0.91	0.36
0.15	0.2	9.7457	26.3	8.0	2.3	0.75
0.05	0.2	3.4757	27.9	8.4	2.3	0.78
0.025	0.2	2.1489	27.0	10.4	2.8	0.84

Fiqure 2 - The celar fluxes for Case 1 of the critical problem with infinite reflector

Figure 3 - The scalar fluxes for Case 2 of the critical problem with infinite reflector

 thichomses.

F kura 5 The fast yroup, walar fluxes for Case iof the critical problem for variows reflector thicknesses

Figure 6 The thermal group angular flux for Case 1 of the critical protblem with infinite reflector

Fiuure 7 Thin last group angular flux for Case I of the critical problem with infinite reflector

44

Fiques 8 The thmmal groups angular flux for Case 2 of the critical problem with infinite reflector

Fhoure 10 . The thetmal group scalar flux for the cell problem

ie 11 A comparison of the nxact and S-N resulis of the thermal group scalar flux for the cell problem.

RESUR:A:

 mumíricos pata ludus of protilernas.

REFERENCES

1. BOFFI, V. C. \& PREMUDA. F. Two group neutron transport theory for a finite critical slab. Nucl. Sci. Engng, New York, 38:205-15, 1969.
2. BOND. G. R. \& SIEWERT, C. E. The effect of linearly anisotropic neutron scattering on disadvantage factor calculations. Nucl. Sci. Engng. New York, 35-277-82, 1900.
3. BURNISTON, E. E. et alii. Steady-state solutions in two-group theory of neutron diftusion. J. math. Phys., Lancaster, Pa., 13:1461-5, 1972.
4. CASE, K. M. Elementary solutions of the transport equation and their applications. Ann. Phys. New York, $9: 1-23,1960$.
5. ENGLE JR., W. E. A users manual for ANISN: a one dimensional discrete ordinates coste with anisotropic scattering. Oak Ridge, Union Carbide Corporation, Mar. 1987. (K-1693).
6. FORSTER, R. A. \& METCALF, D. R. Two-group transport solutions to the one-dimensional criticel slab problem. Trans. Am. nucl. Soc., Hinsdale, III., 12837-8, 1960.
7. GREENE, N. M. \& CRAVEN, C. N. XSORN: d discrete ordinates spectral averaging code. Oak Ridge National Laboratory, July 1969. (ORNL-TM-2500).
8. ISHIGURO, Y. On multi-region problems in plane geometry and the use of half-range orthogondity relations. [To be published in Mucl. Sci. Engeng, New York].
9. \qquad a MAIORINO, J. R. Twohalf-space Milne problem in two-group neutron transport theory. Nucl. Sci. Engng. New York, 63507.9, 1977.
10. JAUHO, P. \& RAJAMAKI, M. Energy-dependent neutron trensport theory in adjecent halfspeces. Nucl. Sci. Engong, New York, 43:145-63, 1971.
11. KRIESE, J. T. ar slii. Two-group critical problem for slabs and spheres in nautron-trampert theory. Nucl. Sci. Engong, Now York, E03-9, 1073.
12. LEONARD, A. \& FERZIGER, J. H. Energy-dependent neutron tremport theory in plane geometry. 3. Half-renge complereness and half-spece probtom. Nucl. Sei. Eneng, New York, 28:181-91, 189.
13. MENDELSON, M. R. A SUMMERFIELD, G. C. Ona-apeed neutron trensport in swo edjacent holf-speces. J. math. Phys, Lancester, Pa., $\mathrm{g} 006-74,104$.
14. METCALF, D. R. AWEIFEL, P.F. Solution of twogroup nautron iransport aquation - I and II. Nucl Sci. Enonn, New York. 33:307.17, 1938.
15. PAHOR, S. \& SHULTIS, J. K. Hattspace genet at multigroun transport theory. J. nucl. Energy. London, 23:477-93, 1969.
16. SIEWERT, C. E. \& BURKART. A. R. On the critical reactor probtern for a reflected slab. Nuct. Sci. Engng. New York. 58 :2535, 1975.
17. _..._ \& ISHIGURO. Y. Two group nevtion tramsport theory: existence and uniqueness of the H matrix. J. nucl. Energy, London, 26:251.69, 1972.
18. _._ \& SHIEH, P. S. Two-group transport theory. J. nucl. Energy, London, $21: 383$ 92, 1967.
19._ \& ZWEIFEL. P. F. An exact solution of equations of radiative transfer for local thermodynamic equilitrium in the nongray case: pichit tence approximation. Ann. Phys. New York. 36.61.85, 1966.

20 \qquad et alii. Two-group neutron transport theory: existence and uniqueness of the H - matrix. J . nucl. Energy, London, 26:469.82 1972.
21. U S ATOMIC ENERGY COMISSION, Washington, D. C. Reacror physics constarts. 2.ed. Argonne. Ill. Argonne National Laboratory, July 1963. (ANL-5800). p. 581.

22 /EIAZNY, A. \& KUSZELL, A. Two group approach in neutron transport theory in plane geometry. Ann. Phys., New York, 16815، 1961.

