BR 3814

DETERMINAÇÃO L'E URÂNIO E TÓRIO EM PIROCLORO POR ANÁLISE POR ATIVAÇÃO COM NÊUTRONS EPITÉRMICOS. SEPARAÇÃO RADIOQUÍMICA DE ²³⁹Np E ²³³Pa

Célia S. Requejo

PUBLICAÇÃO IEA 530 IEA - Pub - 530

AGOSTO/1979

CONSELHO DELIBERATIVO

MEMBROS

Klaus Reinach --- Presidente Roberto D'Utra Vaz Helcio Modesto da Costa Ivano Humbert Marchesi Admar Cervellini

PARTICIPANTES

Regina Elisabete Azevedo Beretta Flávio Gori

٠,

SUPERINTENDENTE

Rômulo Ribeiro Pieroni

PUBLICAÇÃO IEA 530 IEA - Pub - 530

.

AGOSTO/1979

•

DETERMINAÇÃO DE URÂNIO E TÓRIO EM PIROCLORO POR ANÁLISE POR ATIVAÇÃO COM NEUTRONS EPITERMICOS. SEPARAÇÃO RADIOQUÍMICA DE ²³⁹Np E ²³³Pa

•

Célia S. Requejo

CENTED DE OPERAÇÃO E UTILIZAÇÃO DO REATOR DE PESQUISAS COURP - ARQ - 075

INSTITUTO DE ENERGIA ATÔMICA SÃO PAULO - BRASIL

Série PUBLICAÇÃO IEA

INIS Categories and Descriptors B11 B12 Uranium Thorium Niobium ores Activation analysis Neptunium 239 Protactinium 233 Ion exchange chromatography Coprecipitation

NOTA: A redação, ortografia, conceitos e revisão final são de responsabilidade dos autores.

DETERMINAÇÃO DE URÂNIO E TÓRIO EM PIROCLORO POR ANÁLISE POR ATIVAÇÃO COM NEUTRONS EPITERMICOS. SEPARAÇÃO RADIOQUÍMICA DE ²³⁹Np E ²³³Pa

Célia S. Requejo*

RESUMO

Foram feitas determinações de urânio e tòrio em amostras de pirocloro, por análise por ativação com neutrons epitêrmicos, utilizando-se mátodos destrutivos e não destrutivos,

C. Em ambos os casos foram feitas irradiações de 8 horas e foram medidas as atividades correspondentes aos radioisótopos ²³⁹Np e ²³³Pa.

As análises não destrutivas foram feitas depois de vários tempos de resfriamento sendo o mínimo de 3 dias, utilizando-se detectores de Ge-Li e também de Nal(TI) acoplados a analisadores multicanais.

⁶ As análises destrutivas foram iniciadas após 60 horas de resfriamento, tendo usado para es medides apenes o detector de Nel(TI) acopiado a um analisador multicanal.

A separação radioquímica foi feita após fundir a emostra do mineral com KF e KHSO₄. O ²³⁹Np foi coprecipitado com LaF₃ permanecendo o ²³³Pa em solução. O precipitado de LaF₃ foi dissolvido com H₃BO₃ e desta solução foi eliminado o ¹⁴⁰La. A solução foi concentrada e uma alíquota foi tornada para medide de atividade do ²³⁹Np. O ²³³Pa foi coprecipitado com fosfato de zircônio após eliminação de interferentes presentes na solução, por meio de troca iônica.

Os valores médios obtidos na recuperação dos traçadores adicionados foram, em seis repetições, 95,6% \pm 3,7 para o ²³⁹Np, e em cinco repetições, 86,6% \pm 1,8 para o ²³⁹Na.

Os resultados encontrados para tório são de mesma ordem de grandeza, tanto quando foram feitas as enálises destrutives como as não destrutivas. Os resultados obtidos para o urânio por análise destrutiva são meis altos do que os encontrados pelo método não destrutivo.

INTRODUÇÃO

O mineral denominado pirocloro⁽⁶⁾ é um fluorniobato de sódio e cálcio (NaCeNb₂O₆F), que contém sinda Ce, La e outros lantanídios ao lado de Sn, Ta, Ti, U e Th.

Trata-se de um mineral de composição química complexa e que devido à presença de urânio e tório apresenta interesse estratégico: do ponto de vista do campo nuclear. Justamente, devido ao fato de apresentar natureza química complexe, a análise não destrutiva de urânio e tório por ativação com

^(*) Área de Radioquímica — Centro de Operação e Utilização do Restor de Pesquisa. Aprovada para publicação em Fevereiro/1979.

nêutrons epitérmicos, utilizando-se os radioisótopos ²³⁹U e ²³³Th, com meias vidas de apenas 23,5 minutos e 23,3 minutos, respectivamente, sofre interferências grandes. Entretanto, irradiando-se a amostra durante 8 horas com nêutrons epitérmicos, é possível medir a atividade dos radioisótopos ²³⁹Np (2,33 dias) e ²³³Pa (27,4 dias) formados por decaimento do ²³⁹U e do ²³³Th, respectivamente.

Foram feitas determinações de urânio e tório em algumas amostras de pirocloro, por análise não destrutiva, e também por análise destrutiva com separação radioquímica do ²³⁹Np e do ²³³Pa.

PARTE EXPERIMENTAL

Prepararam-se as amostras para análise fazendo quartação, secagem a 110°C e pulverização em almofariz de ágata. Alíquotas convenientes de soluções padrão de nitrato de uranilo e de nitrato de tório foram secadas em papel de filtro, com lâmpada de raios infravermelhos. Em alguns casos foi usado como padrão o U₃O₈ irradiado sob a forma de pó, que foi dissolvido, após a irradiação, com solução de ácido nítrico.

Para irradiação, as amostras e os padrões foram acondicionados em folha de alumínio, e colocados juntos no interior de cápsulas cilíndricas de cádmio. Essas cápsulas tinham 0,8 cm de diâmetro interno e 2 cm de comprimento, sendo de 1 mm a espessura da parede e das tampes das duas extremidades do cilindro. As cápsulas de cádmio foram colocadas dentro de recipientes de alumínio e irradiadas com fluxo de nêutrons térmicos da ordem de 10¹² n.cm⁻² seg⁻¹, durante 8 horas.

As medidas das atividades do ²³⁹Np e do ²³³Pa referentes às análises não destrutivas, foram feitas utilizando um detector de Ge-Li acoplado a um analisador de radiação de 4096 canais, e também um detector de Nal(TI) (7 x 7 cm) acoplado a um analisador de 400 canais.

As medidas daqueles radioisótopos, após a separação radioquímica, foram feitas em um detector de Nal (Ti) $(5,1 \times 4,1 \text{ cm})$ acoplado a um analisador de 400 canais.

As atividades foram calculadas pelo método da área integrada proposto por Covell⁽³⁾.

Análise Não Destrutiva

As massas das amostras de pirocloro que foram irradiadas eram da ordem de 60 mg, e os padrões continham 10 μ g de urânio e 200 μ g de tório.

As atividades correspondentes aos fotopicos de 228 keV e 278 keV do ²³⁹Np foram medidas entre o 39 e o 129 dia de resfriamento.

As atividades correspondentes ao fotopico de 312 keV do ²³³ Pa foram medidas entre o 39 e 1009 día de resfriamento usando o detector de Ge-Li, e após o 309 día de resfriamento usando o detector de Nal (TI).

Análise Destrutiva

As masses das amostras de pirocloro que foram irradiades eram de ordem de 60 mg, e os pedrões continham 200 µg de tório e 10 µg de urânio.

Iniciou-se a separação radioquímica de ²³⁹Np e ²³³Pa des emostras irradiades, após resfriamento de 60 horas.

Fundiu-se a amostra com fluoreto de potássio em cadinho de platina, na presença de 1 mg de pentóxido de tantálio. A massa fundida foi tratada com 2 ml de ácido sulfúrico concentrado e aquecida até nova fusão. Esta massa fundida foi transferida para bequer de teflori com ácido sulfúrico concentrado, ácido fluorídrico e água, até perfazer o volume de 40 ml de solução cuja composição final era: ácido sulfúrico 10% v/v e ácido fluorídrico 10N.

Adicionaram-se 2 mg de carregador de lantânio a esta mistura, a qual foi aquecida durante 15 minutos e deixada à temperatura ambiente por 2 horas. O precipitado de fluoreto de lantânio, onde ficou retido o ²³⁹Np, foi separado da solução por centrifugação, sendo lavado duas vezes com solução de ácido sultúrico 10% v/v em mistura com ácido fluorídrico 10N. A solução sobrenadante e as lavagens foram reservadas para a determinação do ²³³Pa.

O precipitado de fluoreto de lantânio foi dissolvido com ácido bórico e ácido clorídrico conforme Smith⁽⁸⁾. A solução de ^{2,3,9}Np foi evaporada até resíduo seco, eliminando-se o ácido clorídrico por meio de várias secagens com algumas gotas de ácido nítrico concentrado.

O resíduo foi dissolvido com ácido nítrico e o neptúnio foi levado ao estado de oxidação hexavalente usando-se permanganato de potássio, de acordo com Smith⁽⁸⁾. Desta solução eliminou-se o ¹⁴⁰ La precipitando o fluoreto de lantânio e lavando o precipitado com mistura de ácido fluorídrico e acido nítrico contorme o procedimento de Smith⁽⁸⁾. O permanganato de potássio presente em excesso na solução foi reduzido com hidroxilamina e a solução foi concentrada e transferida para balão volumétrico de 10 ml com água. Foi tomada uma alíquota de 1 ml para medida da atividade do ²³⁹ Np.

A solução sobrenadante que continha o ²³³Pa foi percolada através de 2 ml de Amberlite CG 400, 200 "mesh" na forma R-F, contidos em coluna de polietileno de 0,8 cm de diâmetro, com vazão de 1 ml por minuto. Lavou-se a resina iônica com mistura de ácido sulfúrico 10% v/v e ácido fluorídrico 10N mantendo a mesma vazão.

A solução efluente foi concentrada por aquecimento, eliminando-se o ácido fluorídrico. O ¹³³Pa presente na solução foi coletado por arraste na precipitação de fosfato de zircônio que foi feita conforme Vogel⁽⁹⁾, e contado.

O processo de separação radioquímica foi estudado usando traçadores radioativos. A solução de traçador de ²³⁹Np foi preparada dissolvendo, com HNO₃ diluido, U₃O₈ irradiado durante 8 horas com neutrons epitérmicos. A solução de traçador de ²³³Pa foi obtida por dissolução com ácido sulfúrico diluido, de oxalato de tório irradiado durante 8 horas com neutrons epitérmicos.

Alíquotas dos traçadores foram adicionadas à amostra de pirocloro não ativada e, a seguir, foi feita a separação radioquímica.

RESULTADOS

Os valores obtidos para a recuperação dos traçadores adicionados encontram-se na Tabela I. Analisados do ponto de vista estatístico, pelo critério "r", os resultados podem ser considerados homogêneos no nível de confiança de 95%, segundo Nalimov⁽⁷⁾. A aplicação do teste "t" mostrou que as diferenças entre o valor real e as médias obtidas são significativas no nível de confiança da 95%. Por este motivo, os resultados obtidos para o urânio e o tório após a separação radioquímice, devem ser corrigidos pelos fatores 0,956 e 0,866, respectivamente.

As Tabelas II, III e IV apresentam os resultados das análises não destrutivas do urânio e do tório em pirocloro, e os endectivos tempos de restriamento.

Tabela I

Recuperação dos Traçadores Após Separação Radioquímica

Traçador		
N ⁰ do Experimento	2 3 9 Np (%)	²³³ Pa (%)
		(14)
1	89,9	85,9
2	93,7	86,2
3	95,8	34,4
4	100,9	⊎6 ,9
5	9 7,6	89,6
6	95,6	-
Média e desvio padrão	95,6 ± 3,7	86, 6 ± 1,8
Coeficiente de variação	3,9%	2,1%

Tabela II

Determinação de Urânio em Pirocloro (pelo ²³⁹Np) sem Separação Radioquímica e Usando Detector de Ge-Li

Amostra	N ^o do Experimento	ppm U	Tempo de Resfriamento
	1	37	8 dies
	2	30	7 dias
	1	31	8 dias
8	2	32	7 dies
	3	32	5 dies
	1	40	7 dias
C	2	36	8 dias
n (*)	1	343	7 dias
	2	355	7 dias
E(*)	1	336	10 dias
5()	2	333	14 dies

(*) Concentrados de pirocloro.

Tabela III

Determinação de Tório em Pirocloro (pelo 233Pa) sem Seperação

Radioquímica e Usando Detector de Ge-Li

		ד	rempo de Resfriam	mto		
Amostra	N ^o do Experimento	3 a 10 dias	11 a 30 dias	31 a 100 dias	Média dos resultados obtidos entre 31 e 100 dias de resfriamento	Média entre experimentos referentes ao resfriamento de 31 a 100 días
			ppm Th			
	١	203	235-195- 236-233	214-219- 202	212	
•	2	209-242	254	231	231	225 ± 11
	3	215	-	238-226	232	V = 4,8%
	1	218-236	237	237	237	210 + 25
B	2	226	214-218	218-193	206	210 ± 25
	3	-	234-209	199-176	188	V - 11,870

continua...

continuação . . .

		۲	lempo de Resfriamo	ento		4119-455 - 499-199 - 499-199 - 499-199 - 499-199 - 499-199 - 499-199 - 499-199 - 499-199 - 499-199 - 499-199 -
					Média dos resultados	Média entre
	_				obtidos	experimentos
Amestra	N ^o do Experimento	3 a 10 dias	11 a 30 dias	31 a 100 dias	entre 31 e 100	referentes ao
					dias de resfriamento	resfriamento de 31 a 100 dias
			ppm Th			
	1	111	121-120-	127-135-	127	
1			122-138-	113-132		
			138			
	••••••••••••••••••••••••••••••••••••••					129 ± 3
С	2	- 119	120-1 32	129-1 35	132	
						V = 2,3%
	Э	126	-	138 124-	128	
				129		
	1	393	650-685-	700-682-	678	
			690-706	646-685		
						745 ± 62
D ^(*)	2	701-626	708-819	757	757	
	······					V = 8,3%
	3		831-818	82 0-782	801	

6

continua...

continuação . . .

	-	1	Fempo de Resfriam	into	Média dos resultados	Média entre
Amostra	N ^o do Experimento	3 a 10 dias	11 a 30 dias	31 a 100 dias	obtidos entre 31 e 100 dias de resfriamento	experimentos referentes ao resfriamento de 31 a 100 días
			ppm Th			
	١	213	435-494 - 513-537	49 5-55 3- 491-562	520	
-(*)	2	354	4 85 [,] 510	4 59-4 71	465	478 ± 28
E, ,	3	407	-	503-457- 442	467	V = 5, 9%
	4	_	47 9-468	440-479	460	

(*) Concentrados de Pirociora

(**) Coeficiente de verieção.

VI sledeT

Amostra	Nº Experimento	Tempo de Resfriemento (dies)	ppm Th	Média
	1	47	248	242 ± 6
A	2	43	236	V ^(***) = 2,4%
	3	32	242	
	1	43	247	22 2 ± 24
B	2	43	221	V=10,8%
	3	63	199	
	1	48		
C(**)	2	44	-	
·	3	32	-	
	1	47	737	737 ± 24
D ⁽⁺⁾	2	43	713	
	3	63	761	V=3,3%
	1	47	508 .	
=(*)	2	43	463	465 ± 29
C' '	3	32	445	V = 6,2%
	. 4	63	452	

Determinação de Tório em Pirocloro (pelo ²³³Pa) sem Separação Radioquímica e Usando Detector de Nel(TI)

(*) Concentrados de pirocloro.

(**) Interferentes não permitiram a medida desta amostra.

. '

(***) Coeficiente de variação.

As Tabelas V e VI mostram os valores obtidos para o urânio e o tório em pirocloro, com separação radioquímica, devidamente corrigidos.

A Tabela VII apresenta os valores obtidos para a recuperação de traçador de ²³³Pa adicionado, por arraste pelo precipitado de fosfato de zircônio.

Tabela V

Determinação de Urânio em Pirocloro (pelo ²³⁹Np) com Separação Radioquímica e Usando Detector de Nal(Ti)

Amostra	N ⁹ do Experimento	ppm U	Média
•	1	47	F0.0+ 4.0
A	2	53	5U,UI 4,2
	1	45	18 E + 0 1
В	2	48	40,DI 2,I
	1	63	85 6 A 0 1
С	2	68	00,0I 2,1
D ^(*)	1	602	577 R ± 94 R
, ,	2	553	5//,0I34,0
E ^(*)	1	616	204 E + 20 E
	2	587	601,5 ± 20,5

(*) Concentrados de pirocioro.

Tabela VI

Amostra	Nº do Experimento	ppm Th	Média
	1	252	242 ± 15
A	2	231	∨ ^(**) = 6,2%
B	1	221	221
	1	116	109 ± 11
Ľ	2	101	V = 10,1%
	1	728	
ط *)	2	785	747 ± 27
U' '	3	728	V = 3,6%
	4	746	
- (*)	1	448	433 ± 22
E' '	2	417	V=5,1%

Determinação de Tório em Pirocloro (pelo ²³³Pe) com Separação Radioquímica e Usando Detector de Nal(TI)

(*) Concentrados de pirocloro.

(**) Coeficiente de variação.

Tabele VII

Arreste de 233 Pa pelo Precipitado de Fosfato de Zircônio

Nº do Experimento	Recuperação de 233 Pa adicionado (%)	
1	97,0	
2	98,7	
3	98,1	
4	97,6	
5	97,4	
6	98,0	
7	98,4	
Média e Desvio Padrão	97,9% ± 0,6	
Coeficiente de Variação	V = 0,6%	

DISCUSSÃO

Comparando-se os valcres obtidos para o urânio nas várias amostras, sem e com separação radioquímica do ²³⁹Np (Tabelas II e V, respectivamente), nota-se que ca resultados obtidos com separação radioquímica são mais altos do que os obtidos por análise não destrutiva.

Ao acompanhar o decaimento do ²³⁹Np contido na amostra irradiada e não processada quimicamente verificou-se que depois de 8 días de resfriamento o valor da meia vida começava a se modificar tornando-se mais longo do que o correspondente à meia vida do ²³⁹Np. Pode-se concluir que, devido à complexidade da composição química do mineral, houve interferência nos fotopicos do ²³⁹Np. Removidas as impurezas interferentes, pela separação radioquímica, foi possível medir a atividade do ²³⁹Np usando o detector de Nal (TI).

Comparando-se os resultados da análise não destrutiva do tório, apresentados nas Tabelas III e IV, com os resultados obtidos com separação radioquímica (Tabela VI), verifica-se que os valores são da macina ordem de grandeza e que a maior parte dos coeficientes de variação estão abaixo de 10%, e portanto, dentro dos erros normais de análise por ativação. Os valores das repetições de contagem da mesma amostra apresentados na Tabela III, mostram resultados dispersos, apesar de que, em média, os resultados são da mesma ordem de grandeza daqueles obtidos por análise destrutiva.

O número de experimentos realizados, tanto quando foi usada análise instrumental direta como a análise destrutiva, foi pequeno, o que conduziu a desvios padrão grandes.

A anàlise destrutiva permite obter resultados em tempo menor do que o tempo de resfriamento necessário para que seja possível realizar a análise não destrutiva. A separação radioquímica usada consiste de operações químicas comuns de laboratório analítico de radioquímica e o processamento de uma amostra pode ser completado em 4 períodos de 8 horas de trabalho.

A contagem do ²³⁹Np foi feita em uma alíquota correspondente à décima parte da amostra que foi irradiada, o que diminuiu a sensibilidade do método. Para atingir uma sensibilidade maior seria necessário reter o radioisótopo em um precipitado o qual seria contado.

Pode-se reter o ²³⁹Np, quando no seu estado de oxidação tetravalente, em precipitados tais como fluoreto de lantânio, sulfato de bário, sulfato de lantânio, iodato de tório, sílica e outros. Com o fluoreto de lantânio, coprecipita o composto insolúvel La₂NpF_{10-x} H₂O. Quando precipitado de solução saturada de sulfato de potássio, à qual é adicionado ácido sulfurico suficiente para torná-la 10% v/v o Np IV adapta-se à estrutura cristalina do sulfato de bário.

A Tabela I apresenta os resultados obtidos para a recuperação de ²³⁹Np adicionado, cuja média é 95,6% ± 3,7.

No método que foi usado, o ²³⁹Np foi separado por retenção no fluoreto de lantânio. O resultado apresentado na Tabela I indica que o ²³⁹Np formado por irradiação de U₃O₈ com nêutrons epitérmicos, encontra-se quase todo no estado de oxidação tatravalente. Segundo Burney e Harbour⁽²⁾, quando o ²³⁹Np é preparado por irradiação neutrônica de sais de uranilo, de 80 a 90% do neptúnio formado encontra-se no estado tetravalente. O resultado obtido neste trabelho é superior ao mencionado na literatura.

Durante o processo de separação radioquímica há necessidade de oxidar o neptúnio até o estado de oxidação hexavalante a fim de eliminar o ¹⁴⁰ La da solução. Para coletá-lo em precipitado de fluoreto de lantânio ou de sulfato de bário, para contagem, é precido reduzir novamente o neptúnio até o estado de oxidação tetravalente.

No presente trabalho, vários experimentos foram feitos para determinar a recuperação de traçador de ²³⁹Np adicionado, por coprecipiteção com sulfato de bário. Obteve-se o valor de 94,5% ± 0,8 para a retenção do Np IV pelo sulfato de bário, portanto com boa reprodutibilidade. No entanto, quando a solução foi oxidada e depois reduzida não foi possívei obter resultados reprodutíveis, porque a operação de redução de neptúnio IV não leva facilmente ao estado de oxidação tetravalente. Segundo Magnusson e outros⁽⁵⁾, a redução de neptúnio ocorre rapidamente do estado VI para V, mas é extremamente vagarosa do estado V para IV, seja qual for o redutor usado. Por esta razão, não tendo sido encontrada a condição necessária para reduzir quantitativamente o neptúnio ao estado tetravalente, passou-se a medir a atividade de uma alíquota da solução de neptúnio em seus estados de oxidação V e VI.

Sendo o pirocloro um mineral que contém de 40 a 65% de pentóxido de nióbio⁽⁴⁾ e valores menores do que 2% de pentóxido de tantálio, torna-se necessário evitar que o ²³⁹Np e o ²³³Pa presentes na solução, sejam arrastados, quando na ausência dos respectivos carregadores, pelos produtos insolúveis formados na hidrólise do nióbio e do tantálio. Por este motivo a dissolução da massa fundida da amostra com KF e KHSO₄ foi feita com ácido fluorídrico e ácido sulfúrico em presença de carregador de lantânio. Desta maneira formaram-se (ons complexos de flúor contando os elementos nióbio, tantálio e protoactínio, solúveis, e fluoretos de lantânio e de neptúnio e lantánio, insolúveis.

Quando o ²³³Pa encontra-se em solução na mistura formada por ácido sulfúrico 10% v/v e ácido fluorídrico 10N, obtém-se, de acordo com Bautista⁽¹⁾, a retenção total de nióbio e tantálio na resina iônica enquanto que o ²³³Pa passa para o efluente, livre destes e de outros contaminantes. Segundo Bautista⁽¹⁾, a presença de ácido sulfúrico impede a retenção de protoactínio devido à competição do fon sulfato o qual possui maior afinidade pela resina do que o fon fluoreto.

Foi feito, neste trabalho, um estudo do comportamento dos radioisótopos ²³⁹Np e ²³³Pa em separações químicas, quanto ao rendimento e a reprodutibilidade, para aplicação na determinação de urânio e de tório em rochas, quando não for possível a análise pela medida das atividades dos radioisótopos ²³⁹U e ²³³Th.

ABSTRACT

Pyrochlore samples were analyzed to determine uranium and thorium by epithermal neutron activation analysis. A using destructive and non-destructive methods,

The samples were irradiated during 8 hours and the activities of the radioisotopes ²³⁹Np and ²³³Pa were measured.

After various cooling times, the shortest being of 3 days, the non-destructive analyses were made by using multichannel analyzers coupled to Ge(Li) and NaI(Ti) detectors.

 \sim After a cooling time of 60 hours the destructive analyses were started and the measurements were carried out by means of a multichannel analyzer coupled to a NaI(TI) detector.

Fusion of the mineral sample with KF and KHSO₄ was carried out before the radiochemical separation. ²³⁹Np was separated from the irradiated matrix by coprecipitation with LaF₃, leaving ²³³Pa in solution. LaF₃ was dissolved with H₃BO₃ and after a scavenging step, the solution was concentrated and counted. After elimination of interfering elements by anion exchange, ²³³Pa was coprecipitated with zirconium phosphate and counted.

The mean value for the recovery of added tracer found for six replicate analyses, was 95,6% \pm 3,7 for ²³⁹Np, and for five replicates was 86,6% \pm 1,8 for ²³³Pa.

The results obtained for thorium by destructive and non-destructive analysis were on the same level, and the results obtained for uranium by destructive analysis were higher than shoe obtained by using non-destructive method.

12

REFERÊNCIAS BIBLIOGRÁFICAS*

- BAUTISTA BAUTISTA, E. R. Separacion y purificacion de protactinio 233 por intercambio anionico em medio SO₄H₂-FH y extraccion con disobutilcarbinol. Aplicacion al analisis por activation de torio en minerales de uranio. Madrid, 1970. p.46, 54, 118-23. (Tese de doutoramento, Facultad de Giencias – Seccion de Químicas, Universidad de Madrid).
- BURNEY, G. A. & HARBOUR, R. M. Radiolysis of neptunium solutions. In: BURNEY, G. A. & HAEBOUR, R. M. Radiochemistry of neptunium. sem local, U.S. Atomic Energy Commission, 1974. p.29. (NAS-NS-3060).
- 3. COVELL, D. F. Analyt. Chem., <u>31</u>:1785-90, 1959 apud BOWEN, H. J. M. & GIBBONS, D. Radioactivation analysis. Oxford, Clarendon, 1963. p.55.
- KIRK, R. & UTHMER, D. Encyclopedia of chemical technology. v.13: manganese compounds to nitrophenols. 2.ed. New York, N. Y., Interscience, 1967. p.768.
- MAGNUSSON, L. B.; HINDMAN, J. C.; LA CHAPELLET T. J. Chemistry of neptunium. Kinetics and mechanics of aqueous oxidation-reduction reactions of neptunium. In: SEABORG, G. T.; KATZ, J. J.; MANNING, W. M. The transuranium elements. Research papers. New York, N. Y., McGraw-Hill, 1949. p.1134-48. (NNES-4, paper 15.11).
- 6. MEITES, L. Handbook of analytical chemistry. New York, N. Y., McGraw-Hill, 1963. p.108.
- NALIMOV, V. V. The application of methematical statistics to chemical analysis. Reading, Mass., Addison-Wesley, 1963. p.106.
- 8. SMITH, H. L. Determination of ²³⁹Np in samples containing U, Pu, and fission products. In: BURNEY, G. A. & HARVOUR, R. M. *Radiochemistry of neptunium.* sem local, U.S. Atomic Energy Commission, 1974, p.145-9. (NAS-NS-3060).
- 9. VOGEL, A. I. Química analítica cuantitativa, v. 1. Buenos aires, Kapelusz, 1960. p.668.

^(*) As referências bibliográficas relativas a documentos localizados pelo 1EA forem revistas e enquedradas na NB-86 de ABNT.

INSTITUTO DE ENERGIA ATÔMICA Caíxa Postal, 11049 — Pinheiros CEP 05508 01000 — São Paulo — SP

Telefone: 211-6011 Endereço Telegráfico - IEATOMICA Telex - 011-23592 IENA BR