ISSN 0101-3084

CNEN/SP

MARCAÇÃO DE N-ISOPROPIL-p-I-ANFETAMINA (IMP-131I) E BIODISTRIBUIÇÃO EM RATOS

Marycel Figols de Barboza, Ródza da Silva V. Gonçalves, Emiko Muramoto, Setsuko Sato Achando, Diana Yolanda Freire Martinez, Maria Tereza Colturato, Constância Pagano Gonçalves da Silva, e Jochen Knust

PUBLICAÇÃO IPEN 208

SETEMBRO/1988

MARCAÇÃO DE N-ISOPROPIL-p-I-ANFETAMINA (IMP-131) E BIODISTRIBUIÇÃO EM RATOS

Marycel Figols de Barboza, Ródza da Silva V. Gonçalves, Emiko Muramoto, Setsuko Sato Achando, Diana Yolanda Freire Martinez, Maria Tereza Colturato, Constância Pagano Gonçalves da Silva, e Jochen Knust

DEPARTAMENTO DE PROCESSAMENTO

CNEM/SP
INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES
SÃO PAULO — BRASIL

Série PUBLICAÇÃO IPEN

INIS Categories and Descriptors

B13.30 C21.20

BENZEDRINE LABELLING IODINE 131 RADIONUCLIDE KINETICS

IPEN - Doc - 3054

Aprovado para publicação em 30/06/87.

Nota: A redação, ortografia, conceitos e revisão final são de responsabilidade do(s) autor(es).

MARCAÇÃO DE N-ISOPROPIL-p-I-ANFETAMINA (IMP-131) E BIODISTRIBUIÇÃO EM RATOS*

Marycel Figols de Barboza, Ródza da S.V. Gonçalves, Emiko Muramoto, Setsuko Sato Achando, Diana Yolanda Freire Martinez¹, Maria Tereza Colturato, Constância Pagano Gonçalves da Silva e Jochen Knust²

RESUMO

A marcação e o procedimento de purificação da N-Isopropil-p-I-Anfetamina (131 I-IMP) descritos neste trabalho representa um método rápido e eficiente para obter um composto com todas as características de pureza para sua aplicação "in vivo". O rendimento de marcação variou de 68-78%' e a pureza radioquímica foi de 97-99%. Os estudos de distribuição biológica realizados em ratos demonstraram sua afinidade pelo cérebro, possibilitando o estudo clínico das doenças cerebrais quando marcada futura - mente com 123 I.

LABELING OF N-ISOPROPIL-p-I-ANPHETAMINE (IMP-¹³¹I) AND ITS BIOLOGICAL DISTRIBUTION IN RATS

ABSTRACT

The described labeling and purification preparation of N-Isopropil-p- I-anphetamine (I-IMP) represents a fast and efficient method to obtains a compound that fullfills all criterions of purity for its application "IN VTVO". The labeling yield was 68-78% and the radiochemical purity performed by paper chromatography and electrophorese was 97-99%. As demonstrated in animal experiments, the cerebral affinity offers a possibility to study brain diseases in clinical studies when the product will be labelled with I-23 I.

INTRODUÇÃO

As aminas são os principais mediadores químicos da função cerebrai⁽¹⁾. Apesar de um número limitado de aminas estarem envolvidas normalmente na função do cérebro, qualquer alteração no seu metabolismo neurohumoral ma nifesta-se na maioria dos estados patológicos, inclusive nas disfunções tais como esquizofrenia e psicose maníaco-depressivo.

^(*) Trabalho apresentado no "XI Congreso de la Asociación Latino America na de Sociedade de Biologia y Medicina Nuclear" - Cidade do México - México, de 16 a 21 de novembro de 1987.

⁽¹⁾ Bolsista da IAEA - Dirección General de Energia Nuclear - Guatemala.

⁽²⁾ Perito da IAEA - Universidade de Essen - Alemanha.

Vários pesquisadores (2,3) estudaram diversas aminas análogas as an fetaminas em macaco e encontraram um rápido clareamento sanguíneo e alta captação da radioatividede pela retina.

Winchell e col. (1) testaram vários derivados des iodofenilaminas ' em ratos: as iodoanilinas, as iodobenzilaminas e as iodofenilaminas. Para derivados N-alquilaminas, a iodação na posição "pera" (p) geralmente re sulta numa maior captação pelo cérebro em relação a posição "orto" (0), ' num intervalo de tempo de 5 a 60 min. após administração do traçador. No caso de N-isopropilbenzilaminas, a iodação na posição "meta" (m) foi ' melhor para se obter uma maior captação pelo cérebro. Nos derivados iodo fenilaminas, a substituição pelo grupo "propil ou isopropil" favorece localização no cérebro.

Em 1980, Winchell e col.(1) demonstraram a estrutura quimiga e a distribuição biológica des iodofenilalquilaminas marcadas com levaram a selecionar a N-isopropil-p-I-anfetamina (IMP) como um radiofármaco ideal para o estudo da função cerebral.

A IMP é uma substância lipofílica clareada do sangue com 90% de ' eficiência, com um lento "washout", captada pela retina animais (4). Esta alta radiação nos olhos poderia limitar seu uso em humanos. Holman e ccl. (6) verificaram essa captação em retina de macacos. porém não foi confirmada em humanos.

Em virtude de não dispormos do I, radionuclídeo ideal para em Medicina Nuclear e baseados nas publicações de Knust e col. (5) nos 'propusemos marcar a N-isopropil-p-I-anfetaminas com I e avaliar os controles de qualidade (radioquímico, biológico e estabilidade do produ to) para futuras marcações com

MATERIAL E MÉTODO

A N-isopropil-p-I-anfetamina (IMP), foi cedida pela Universidade de Essen, Alemanha.

1. Marcação

- Colocer num fresco de marcação: 20 μ l de uma solução de Na 131 I em: NaOH O,OlN e 20 μ l Na $_2$ SO $_3$ (4mg/ml H₀0).
- evaporar a vácuo em banho maria (70°C).
- adicionar 200 µg IMP em 100 µl ácido acético glacial.
- aquecer a solução a 170°C em banho de óleo, durante 20 minutos.
- evaporar a vácuo em banho maria (70°C).
- adicionar ao frasco de marcação 2 ml de H₂O destilada e agitar.

2. Purificação

- preparar, inicialmente, a columa com a resina em fase reversa RP-C,
- lavar com lml de metanol, 2ml de NaOH 0,01N, 3ml de H₂O, lml de mêta nol, 4ml de éter etilico, lml de metancl e 2ml de H₂O.
- passar através da columa o produto marcado diluido em H_O.

- adicionar à columa 1ml de uma sol. NaI (0,5 mg/ml NaOH 0,01) e 3 ml

de H₂O, que elujirá a I (livre). - elujír a IMP- II, fixada na columa, com 100 μl de etanol e 3 ml de éter etilico, coletando-se em um frasco que contém 100 µl de acido acético glacial.

- evaporar o éter e o etanol à vácuo e o ácido acético em banho maria
- dissolver a IMP- 131 ccm uma solução salina 0,9%.
- filtrar essa solução por meio de filtro Millipore de 0,22μ, em frasco estéril.

3. Controle Radioquímico.

Foram realizados ensaios cromatográficos a fim de determinar a pureza radioquímica. Os sistemas utilizados foram:

a. Eletroforese em tampão acetato-ácido acético, pH 4,5, 300V durante 4C minutos; b. cromatografias ascendentes em papel Whatman nº 1 e 3MM em diferentes solventes: metanol 75%; clorofórmio: metanol: ' ácido acético (85:15:1), etanol—acetato de etila (1:1).

Determinou-se o Rf do I (iodeto) utilizando uma solução de ' 131 I nos mesmos cromatogramas.

4. Controle Biológico.

O contrele da distribuição biológica da IMP-131 nes diferentes órgãos foi avaliado em um grupo de ratos machos da raça Wistar com pe se médio de 250g, mentides no biotério de IPEN-CNEN/SP.

Cada animal, foi previamente anestesiado com uma solução de ure tana (100 mg/100g de peso corporal) por via intraperitoneal e sacrifi cado acs 5, 15, 30, 60, 240 minutos e 24 horas após administração endovenosa de 80 μ Ci de IMP- 131 I.

O sangue foi coletado por punção cardíaca, e os seguintes órgãos retirados: coração, cérebro, região ocular, rins, pulmão e fígado, que posteriormente foram lavados, pesados e a radioatividade de terminada. Os resultados foram expressos em % de dose/g de tecido e ' % das contagens totais/g de tecido.

5. Resultados

- a. Rendimento de marcação: determinou-se o rendimento de marcação relacionando-se a atividade final com a inicial. O rendimento variou de 67 a 87% em 8 ersaios.
- b. Controle radioquímico:

Eletroforese: no controle radioquímico realizado por eletroforese obtiveram-se os seguintes resultados, IMP- I = 96,8%; I=1,0%; $IO_2^- = 0.09\%$. Os Rf determinados neste sistema cromatográfico são:

IMP = 0,21;
$$I = 0.7 e IO_3 = 0.5$$
.

.4.
Pureza Radioquímica.

DP- ¹³¹ 1	I (Iodeto)	10 ₃ (Iocato)	
97,6	2,2	0,2	
96,1	1,7	0,2	
99,1	0,8	0,1	
99,4	0,6	0,03	
99,3	0,6	0,1	
99,6	0,3	0,1	
$\bar{X} = 98,8$	1,0	0,09	

Cromatografia ascendente em papel.

Nos ensaios realizados em papel Whatman nº 1 e 3MM (2 x 25cm) a migração da IMP, I e 10°_3 coincidiram, obtendo a mesma resolução em diferentes solventes. Os resultados expressos em porcentagem observam-se na se $\bar{-}$ guinte tabela.

solvente	metanol 75%		acet. etila-etanol (1:1)		clorof.metlac.acet. (85:15:1)	
Papel	What.1	What.3MM	What.1	What. 34M	What.1	What. 3MM
IMP- ¹³¹ I	98,7	99,0	98,0	98,0	96,4	96,9
ī	0,96	0,87	1,9	1,4	0,9	0,5
103	0,32	0,13	0,09	0,58	0,61	0,59

 $\bar{X} = 6$ ensaios

Os Rf determinados em papel Whatman nº 1 e 399 (2 x 25cm) foram:

solvente	metanol 75%		acet.et	lla-etanol	clorof.met.ac.acet.		
Papel	What.I	What.3MM	What.1	What.3MM	What.1	What. 3MM	
IMF- 131 _I	0,87	0,93	1,0	0,91	0,96	1,0	
1 -	0,76	0,76	0,08	0,11	0,07	0,06	
103	0,4	0,4	0,5	0,48	0,55	0,50	

Estabeleceu-se para o controle radioquímico da IMP- 131 I a cromato - grafia ascendente en papel Whatman nº 1 (2 x 25cm) desenvolvida no solven te; clorofórmio: metanol: ac. acético, na proporção de 85:15:1 durante $^{-1}$ 1h.10 minutos Rf IMP = 1,0; I = 0,06; $I0_3^- = 0,55$.

Controle Biológico.

A tabela I ilustra a distribuição biológica da IMP- 11 em ratos '(n=7), expressa em % da contagem total/g de tecido nos diferentes órgãos, 5, 15, 30, 60, 240 min. e 24 horas após a administração do traçador (80µCi). Observa-se uma captação elevada de 12,9, 13,6 e 13,9% de atividade total/g de tecido aos 30,60 e 240 min. respectivamente no cérebro. No pulmão a captação é de 51,9% aos 5 min. e 37,1% às 24 horas. No entanto, a região ocular apresentou uma variação significante de 1,88% aos '5 min. até 15,9% às 24 horas. A captação média no sangue foi de 1,5 a '2,9% no decorrer do experimento.

A tabela II apresenta a distribuição biológica da IMP- ¹³¹I em ra - tos (n=7), expressa em % dose/g de tecido. Observa-se uma captação eleva-da no pulmão de 5,5 a 1,24% dose/g, no intervalo de 5 min. a 24 horas e uma captação de 1,06, 1,08 e 1,05% no cérebro aos 15, 30 e 60 min., após a administração da dose.

As figuras I e II ilustram graficamente a distribuição biológica da IMP- I em ratos (n=7), referente às tabelas I e II supra citadas.

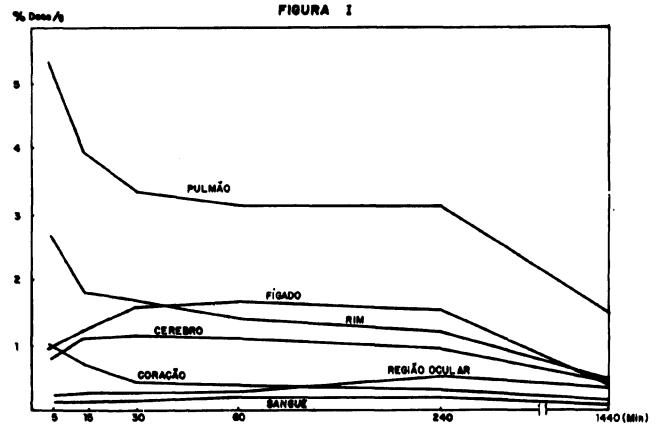
CONCLUSÃO.

A técnica da marcação, assim como o uso da coluna em fase reversa 'RP-C₁₈ na purificação, mostraram-se eficientes na obtenção do radiofárma-co com todas as qualidades requeridas para seu uso "in vivo". O produto 'obtido, com uma pureza radioquímica de 98%, apresenta afinidade biológica pelo cérebro em animais de experimentação (ratos).

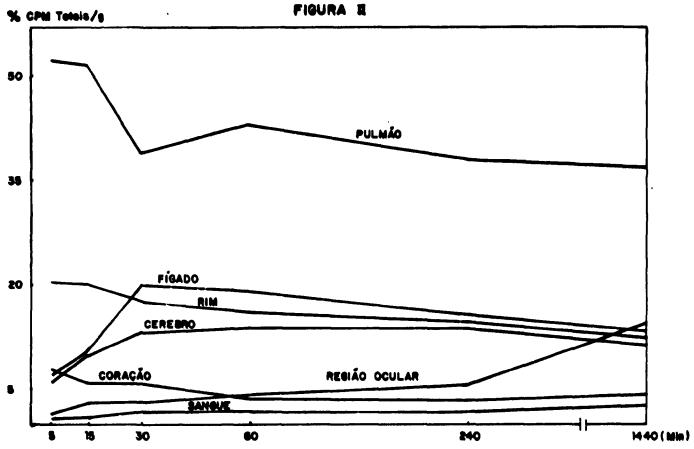
AGRADECIMENTO.

Os autores agradecem a colaboração técnica de Marina Leonel da Silva e Alfredo dos Santos.

TABELA I


DISTRIBUIÇÃO BIOLÓGICA DA IMP 131 I EM RATOS, EXPRESSO EM % DAS CONTAGENS TOTAIS/g DE TECIDO EM FUNÇÃO DO TEMPO (min.) APÓS ADMINISTRAÇÃO DA DOSE (n=7).

Tempo (min.)	5	15	30	60	240	1440
CORAÇÃO	7,61	6,01	5,85	3,89	3,37	3,94
	± 1,27	± 0,97	¥ 1,13	± 0,57	± 0,45	± 0,34
CÉREBRO	6,87	10,18	12,95	13, 6 6	13,93	11,51
	± 0,75	± 2,80	± 1,45	± 0,93	± 1,76	± 0,83
REGIÃO OCULAR	1,88	2,89	3,31	3,75	5,57	15,19
	± 0,49	± 0,25	± 1,07	± 0,48	± 0,63	± 3,14
RINS	20,50	20,12	18,00	15,90	14,97	11,83
	± 1,75	± 2,23	± 3,99	± 1,17	± 1,60	± 0,59
PULMÃO	51,97	51,56	39,12	43,24	38,71	37,16
	± 3,20	± 8,63	± 5,75	± 6,67	± 6,04	± 3,52
FÍGADO	7,53	10,35	20,22	19,38	16,26	13,63
	± 1,78	± 3,56	± 4,69	± 3,69	± 6,65	± 1,62
SANGUE	1,53	1,19	2,24	1,84	1,88	2,99
	± 0,33	± 0,33	± 1.20	± 0.79	± 0,56	± 0,80


T A B E L A II

DISTRIBUIÇÃO BIOLÓGICA DA IMP- 131 EM RATOS, EXPRESSSO EM % DOSE/g DE TECIDO EM FUNÇÃO DO TEMPO (min.) APÓS ADMINISTRAÇÃO DA DOSE (n=7).

Tempo (min.) Órgãos	5	15	30	60	240	1440	
CORAÇÃO	0,99 ± 0,21	0,72 ± 0,25	0,45 ± 0,12	0,34 ± 0,08	0,27 ± 0,11	0,13 ± 0,04	
CÉREBRO	0,81 ± 0,13	1,06 ± 0,22	1,08 ± 0,20	1,05 ± 0,14	0,92 ± 0,15	0,33 ± 0,06	
REGIÃO OCULAR	0,22 ± 0,04	0,24 ± 0,04	0,25 ± 0,05	0,29 ± 0,03	0,41 ± 0,07	0,39 ± 0,11	
RINS	2,63 + 0,38	1,72 ± 0,21	1,61 ± 0,20	1,37 ± 0,35	1,17 + 0,53	0,34 ± 0,05	
PULMÃO	5,52 ± 2,71	3,93 ± 0,94	3,38 ± 1,0	3,11 + 0,29	3,10 0,60	1,24 ± 0,33	
FÍGADO	0,94 ± 0,14	1,23 ± 0,49	1,57 ± 0,29	1,59 ± 0,32	1,55 ± 0,61	0,38 ± 0,44	
SANGLE	0,19 ± 0,03	0,14 ± 0,04	0,13 ± 0,03	0,16 ± 0,05	0,16 ± 0,07	0,07 ± 0,02	- :

DISTRIBUIÇÃO BIOLÓGICA DA IMP-¹³¹ I EM RATOS (n=7) EXPRESSO EM % Dose/g EM FUNÇÃO DO TEMPO APÓS ADMINISTRAÇÃO DO TRAÇADOR.

DISTRIBUIÇÃO BIOLOGICA DE IMP-¹³¹(EM RATOS, EXPRESSO EM % DAS CONTAGENS TOTAIS/9 DE TECIDO EM FUNÇÃO DO TEMPO (Min.) APÓS ADMINISTRAÇÃO DO TRAÇADOR.

BIBLIOGRAFIA

- 1. WINCHELL, H.S.; BALDWIN, R.M.; LIN, T.H. Development of ¹²³I labaled amines for brain studies: localization of ¹²³I iodofenylalkyl amines in rats brain. <u>Med.</u> 21:940-946, 1980.
- SARGENT, T.; BRAUN, U.; BRAUN, G. Brain and retina uptake of radioiodine labeled psychotomimetic in dog and monkey. J.Nucl.Med. 19: 72, 1978.
- 3. WINCHELL, H.S.; HORST, W.D.; BRAUN, L.; OLDENDORF, W.D.; HATTNER,R.; PARKER, H. N-isopropyl- I-p-iodoamphetamine: single-pass brain uptake and washout, binding to brain synaptosomes, and localization in dog and monkey brain. J.Nucl.Med. 21: 947-952,1980.
- 4. COHEN, M.B.; GRAHAM, L.S.; YAMADA, L.S. 123 I iodoamphetamine spect imaging. Appl.Radiat.Isot., 17 (8): 749-763, 1986.
- 5. KNUST, E.J.; MACHULLA, H.J.; BALDWIN, R.M.; CHEN, T.; FEINENDEGEN, L. E. Synthesis of, and animal experiments with N-isopropyl-p- I-iodoamphetamine (IMP) and F-3-Deoxi-3-Fluoro-D-glucose (3-FDG) as tracers in brain and heart diagnostic studies. Nuklearmedizin, 23: 31-34, 1984.
- 6. HOMAN, B.L.; HILL, T.C.; LEE, R.G.; ZIMMERMAN, R.E.; MOORE, S.C.; ROYAL, H.D. Brain imaging with radiolabeled amines. In: FREEMAN, L. M.(ed.) Nuclear medicine anual. New York, 1983. p. 131-164.