BRAZILIAN STRATEGIES TO OVERCOME MOLYBDENUM CRISIS: PRESENT AND FUTURE PERSPECTIVES OF THE MULTIPURPOSE RESEARCH REACTOR

J. A. OSSO JR., R. TEODORO, C. R. B. R. DIAS, R. R. L. BEZERRA, L. A. VILLELA, J. L. CORREIA, J. A. PERROTTA, G. A. PEREIRA, C. L. ZAPPAROLI JR., J. MENGATTI

Diretoria de Radiofarmácia, Instituto de Pesquisas Energéticas e Nucleares (DIRF-IPEN) Avenida Prof. Lineu Prestes 2242, 05508-000 – São Paulo, SP – Brazil

ABSTRACT

Nuclear Medicine applications in Brazil have been widely growing in the past few decades, following the world trends. Procedures in oncology and cardiology can be highlighted among its major contributions. Nowadays more than 80% of diagnosis procedures are performed with ^{99m}Tc, readily available from the elution of ⁹⁹Mo-^{99m}Tc generators. The Brazilian demand, attended solely by IPEN-CNEN/SP, reaches out more than 320 generators per week with a total activity of about 16.7 TBq (450 Ci), which corresponds to 4% of the overall ⁹⁹Mo global demand at an importation cost of US\$20 million/year, most of it from Canada. The recent ⁹ supply crisis deeply affected the distribution of generators in Brazil. A short term solution was achieved with the purchase of ⁹⁹Mo from Argentine and more recently from South Africa and also the distribution of generators produced by IBA and Israel. Mid term and long term projects are under way aiming the nationalization of the production of ⁹⁹Mo. Both solutions will use the recently approved new Brazilian Multipurpose Reactor (BMR) that will be built near Sao Paulo city and will have a 30 MW power. The mid term project consists on the production of (n,) ⁹⁹Mo and distribution of ^{99m}Tc and monodoses of radiopharmaceuticals labelled with ^{99m}Tc to hospitals near Sao Paulo. The long term project deals with the production of ⁹⁹Mo through the fission of ²³⁵U using LEU targets. This work describes the efforts taken by IPEN-CNEN/SP to overcome the recent ⁹⁹Mo supply crisis and an up-to-date on the projects aiming the nationalization of the ⁹⁹Mo production.

1. Introduction

Technetium-99m (^{99m}Tc) is the workhorse of diagnostic nuclear medicine and used for approximately 20–25 million procedures annually, comprising nearly 80% of all diagnostic nuclear medicine procedures⁽¹⁾. Its excellent nuclear and chemical characteristics enable high quality images with low radiation doses to patients and make it very versatile for attaching to different chemical substances. Nuclear Medicine applications in Brazil have been widely growing in the past few decades, following the world trends.

^{99m}Tc (half life: 6 h) is produced by the decay of molybdenum-99 (⁹⁹Mo) (half life: 66 h) and supplied via a ⁹⁹Mo-^{99m}Tc generator.

The Brazilian demand, attended solely by IPEN-CNEN/SP, reaches out more than 320 generators per week with a total activity of about 16.7 TBq (450 Ci), which corresponds to 4% of the overall ⁹⁹Mo global demand at an importation cost of US\$20 million/year, most of it from Nordion, Canada. These figures are representative of the situation up to 2009.

The main route to produce ⁹⁹Mo is by fissioning highly enriched uranium (HEU in ²³⁵U) and today, the world's supply of ⁹⁹Mo is centered on five large research reactor operations. The reactors are aging over 40 years old and, recently, have been unreliable due to closures for repairs of leaks, leading to an unstable supply of this important radionuclide.

In particular, the shutdown of the NRU reactor has triggered a global shortage in nuclear medical isotopes, which has made the situation particularly problematic from a medical standpoint⁽²⁾. This recent ⁹⁹Mo 'crisis' deeply affected the distribution of generators in Brazil. This work describes the efforts taken by IPEN-CNEN/SP to overcome the recent ⁹⁹Mo supply shortage and an up-to-date on the projects aiming the nationalization of the ⁹⁹Mo production.

2. Methods

The Radiopharmacy Center of IPEN-CNEN/SP has an established radioisotope production program to supply radiopharmaceuticals to the Nuclear Medicine community in Brazil. These radiopharmaceuticals are prepared with radioisotopes produced in both a Nuclear Reactor and a Cyclotron accelerator. IPEN has a Research Reactor, so called IEA-R1m, that nowadays operates at 4.0 MW for 64 hours continuously.

The strategies for overcoming the ⁹⁹Mo shortage are splitted in 3 categories: short, mid and long term projects.

Mid term and long term projects are under way aiming the nationalization of the production of ⁹⁹Mo. Both solutions will use the recently approved new Brazilian Multipurpose Reactor (BMR) that will be built near São Paulo city and will have a 30 MW power.

2.1. Short term project

A short term solution was achieved with the purchase of ⁹⁹Mo from Argentina and more recently from South Africa and also the distribution of generators produced by Belgium (IBA) and Israel.

2.2. Mid term project

The mid term project consists on the production of (n,) ⁹⁹Mo and distribution of ^{99m}Tc and monodoses of radiopharmaceuticals labelled with ^{99m}Tc to hospitals near Sao Paulo. The idea is to separate ^{99m}Tc from ⁹⁹Mo through the solvent extraction technique with metilethylketone (MEK) or the combined technique, so-called extraction chromatography using basic alumina with absorbed MEK. The ^{99m}Tc will then be distributed to the clinics near IPEN, in Sao Paulo city, and later monodoses will be prepared by labeling the lyophilized kits with ^{99m}Tc.

Figure 1 represents the mid term strategies for the production of ⁹⁹Mo via neutronic activation based on early experiences. Future perspectives on the development of mid term actions would be mainly dependent on the new configuration of IEA-R1m Nuclear Reactor (i.e, if the reactor power is upgraded from 4.0 MW to 5 MW) and also the use of the new Reactor.

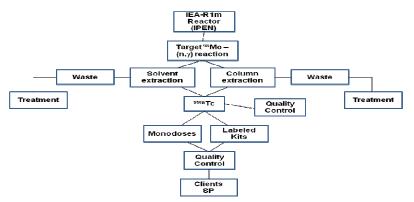


Fig 1. Mid term strategies for the production of ⁹⁹Mo and distribution of ^{99m}Tc.

2.3. Long term project: new Brazilian Multipurpose Reactor (BMR)

The long term project deals with the production of ⁹⁹Mo through the fission of ²³⁵U using LEU targets. Due to the international concerns about the proliferation of weapons-usable uranium and eventually eliminating the use of HEU (>20%) the International Atomic Energy Agency (IAEA) initiated a program of developing techniques for production of ⁹⁹Mo using low enriched uranium (LEU)⁽³⁾. The substitution of HEU to LEU requires a modified technology. The approach to be adopted by IPEN would be largely dependent on the reactor features and the economic viability of the process employed. Figure 2 shows the strategies for the production of ⁹⁹Mo through the fission of ²³⁵U. Two different approaches are being studied, the more conventional basic dissolution of UAIx targets and the modified Cintichem method that employs the acid dissolution of metallic U targets. This last method is being promoted by IAEA through the CRP: T1 2018 - Developing Techniques for Small Scale Indigenous Molybdenum-99 Production Using Low Enriched Uranium (LEU) Fission or Neutron Activation.

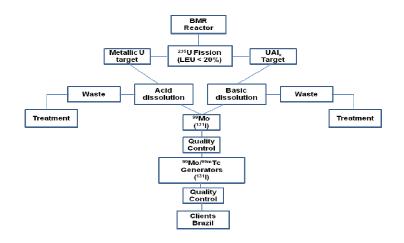


Fig 2. Long term alternatives for the production of ⁹⁹Mo and distribution of ^{99m}Tc via LE²³⁵U in the BMR.

3. Results

3.1. Short term project

Figure 3 shows the demand of ⁹⁹Mo in Brazil for the past few years. It is clear the effects of the crisis in 2010.

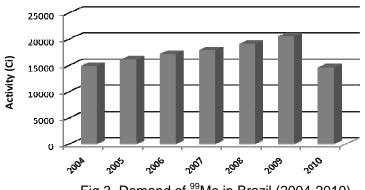


Fig 3. Demand of ⁹⁹Mo in Brazil (2004-2010)

In 2009, actions have been taken to overcome the shortage of ⁹⁹Mo supply by the main Brazilian supplier (MDS Nordion). The straight forward short term action included the purchase of ⁹⁹Mo from Argentina and South Africa and also the distribution of ⁹⁹Mo/^{99m}Tc generators from Israel and Belgium (IBA). Besides, an adequacy of the Brazilian market (i.e., from 450 Ci ⁹⁹Mo/week to nearly 360 Ci/week) took place. A change of trend happened; there was a higher demand for low activity generators compared to the pre-crisis higher demand for high activity generators. Another interesting point was that the nuclear medicine physicians started to employ less ^{99m}Tc activity in the exams, leading to a better use of the generators. Figure 4 shows the current scenario of ⁹⁹Mo-^{99m}Tc generators distribution in Brazil.

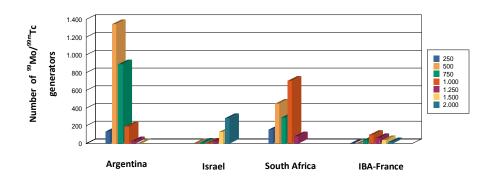


Fig 4. Distribution of ^{99m}Tc generators (jan-apr 2010).

3.2. Mid term project

In the past, IPEN has developed the route for producing ⁹⁹Mo by neutron activation of Mo targets in the IEA-R1m Research Reactor through the ⁹⁸Mo(n,)⁹⁹Mo reaction and developed the MoZr gel generator technology. This technology is limited so the mid term project will employ the solvent extraction principle. Experiments are under way and both the solvent extraction of ^{99m}Tc with MEK and the extraction chromatography were studied and the preliminary results showed a better behavior for the chromatography technique with a yield of more than 85% for ^{99m}Tc with adequate purity for posterior labeling.

3.3. Long term project: new Brazilian Multipurpose Reactor (BMR)

Due to the increasing needs of the nuclear medicine in Brazil and the world shortage of ⁹⁹Mo observed since 2008, IPEN decided to develop its skills for producing ⁹⁹Mo through the route of ²³⁵U fission. This decision was based on: (i) the well established laboratory for producing ^{99m}Tc generators already in operation in IPEN and responsible for the Brazilian market supply; (ii) the availability of LEU (20 wt%) by the Brazilian Enrichment Laboratory; (iii) the established capacity to prepare targets of UAIx; (iv) the availability of some human resources in uranium chemistry; (v) the possibility of operating the IEA-R1 for at least ten years more; and (vi) the recent intention of the CNEN to construct a new research reactor (BMR).

Studies are under way on both routes, i.e., the basic dissolution of UAIx targets and acid dissolution of metallic U targets, always using LEU targets.

4. Conclusions

Several actions have been taken to overcome the ⁹⁹Mo supply crisis and also to underline the efforts towards the nationalization of ⁹⁹Mo production. The long term project is only possible with the construction and operation of the new Reactor, the BMR.

Acknowledgments

The authors wish to thank IAEA for the Brazilian participation in the CRP: T1 2018 - Developing Techniques for Small Scale Indigenous Molybdenum-99 Production Using Low Enriched Uranium (LEU) Fission or Neutron Activation. The authors also want to thank CNPq for granting the fellowships for this project.

5. References

1. CHAKRAVARTY, R.; DASH, A.; VENKATESH, M. A novel eletrochemical technique for the production of clinical grade ^{99m}Tc using (n,)⁹⁹Mo. *Nucl. Med. Biol.*, v. 37, p. 21-28, 2010.

2. ZAKZOUK, M. The medical Isotope shortage: cause, effects and options. In: Library of Parliament Bibliothéque du Parlement. *PRB 09-04E*, Canadá, 2009.

3. ABOIMOV, M. A.; CAPUS, G.; MAX, A.; HADFIELD, A. C. F.; KUDRIAVTSEV, E. G.; MACMURRAY, F.; NAWADA, H. P.; MULLER, H; TOUSLEY, D. Management of high enriched uranium for peaceful purposes : Status and Trends. *IAEA – TECDOC-1452*, v. 1, p. 1-58, 2005.