Determinação de ²¹⁰Pb em Amostras de Solo Coletadas no Campus do IPEN

Gustavo Roseira de Freitas e Sandra Regina Damatto Instituto de Pesquisa Energéticas e Nucleares - IPEN

INTRODUÇÃO

A radiação natural está presente na atmosfera da Terra, na radiação cósmica e nos minerais encontrados na crosta principais radionuclídeos terrestre. Os existentes na crota terrestre são associados à sua formação, e pertencem as séries radioativas naturais do 238U, 235U e ²³²Th (UNSCEAR, 2000). O radionuclídeo 226 Ra ($T_{1/2}$ =1620 a) da série natural do 238 U. pode ser encontrado em solos e sedimentos devido ao intemperismo das rochas e, decai formando o radionuclídeo ²²²Rn (T_{1/2}=3,5 d). Este, sendo um gás inerte, é liberado de solos e sedimento para atmosfera e decai radionuclídeo ²¹⁰Pb. 0 para o deposita-se no solo por fallout seco, ou por lavagem da atmosfera pela chuva [1]. Embora existam literatura na trabalhos referentes à caracterização química do solo da cidade de São Paulo, poucos trabalhos são encontrados quanto à quantificação do radionuclídeo 210Pb em amostras de solo.

OBJETIVO

O objetivo deste trabalho foi determinar a concentração de atividade do ²¹⁰Pb em amostras de solo coletadas quinzenalmente no campus do IPEN, no período de agosto de 2014 a abril de 2015.

METODOLOGIA

As amostras de solo foram coletadas quinzenalmente em uma área 30 X 30 cm e profundidade de até 5 cm em um ponto localizado no campus do IPEN, coordenadas 23°33'59"S e 46°44'15'O. As mesmas foram secas à temperatura ambiente, moídas e peneiradas em malha 115 mesh. Uma alíquota de 1,0 g da amostra, em duplicata, foi dissolvida com ácidos minerais e H2O2 em digestor de

micro-ondas submetida procedimento radioquímico sequencial para determinação da concentração de atividade do radionuclídeo Pb-210, segundo Damatto, 2009. A medida da concentração foi realizada em um detector proporcional de fluxo gasoso de baixo radiação de fundo, marca Berthold, modelo LB 770. Para auxiliar a interpretação dos resultados obtidos foram determinados também os pH das amostras medidos em KCl 1mol.L-1, CaCl₂ 0,01mol/L⁻¹ e H₂O e a composição granulométrica das amostras coletadas. A granulométrica foi determinada análise peneirando 5 q de cada amostra, com auxílio de água superpura, em um conjunto de peneiras que possibilitou determinar a % areia, % silte e % argila [2].

RESULTADOS

Foram coletados de agosto de 2014 a abril de 2015, 16 amostras de solo. Na Fig. 1 são apresentados os índices pluviométricos mensais, em mm do período de estudo, obtidos do PMRA do IPEN [3].

Fig. 1 Índices pluviométricos mensais do período estudado

Na Tabela 1 são apresentados as datas de coleta, os valores do pH medidos em KCl 1mol.L⁻¹, CaCl₂ 0,01mol.L⁻¹ e H₂O e a composição granulométrica das amostras.

Data	KCI 1 mol. L ⁻¹	CaCl ₂ 0,01mol.L ⁻¹	H ₂ O	% areia	% silte	% argila
04/08/14	6,86	6,58	7,20	64,2	8,9	26,6
29/08/14	6,57	6,43	7,07	73,6	6,4	19,7
12/09/14	7,05	6,54	6,69	70,6	4,4	20,3
26/09/14	6,03	6,29	6,99	69,4	4,7	25,2
10/10/14	5,14	6,09	6,24	75,1	4,2	18,6
24/10/14	6,07	5,87	6,53	76,0	4,9	16,3
07/11/14	5,98	5,95	6,97	69,4	11,2	19,2
24/11/14	6,78	6,76	7,34	70,2	6,8	20,0
08/12/14	5,90	5,94	6,89	74,0	8,6	13,4
22/12/14	7,80	7,66	8,27	72,6	10,2	15,4
09/01/15	5,87	6,17	6,61	74,8	8,6	16,2
23/01/15	7,85	7,74	8,30	66,6	10,6	19,6
06/02/15	6,01	6,44	6,26	67,6	10,0	18,0
20/02/15	5,60	5,81	6,36	83,4	5,8	10,0
08/03/15	5,79	5,80	6,53	79,2	7,0	12,4
24/03/15	6,04	6,18	6,61	77,8	7,2	14,8
13/04/15	5,77	5,81	6,66	71,0	8,2	17,0
30/04/15	5,57	5,75	6,60	73,4	8,4	14,4

Tabela 1 – Valores de pH em KCl 1 mol.L⁻¹, CaCl₂ 0,01 mol.L⁻¹ e H₂O e % areia, % silte e % argila

Na Fig. 2 são apresentadas as concentrações em mBq. g⁻¹ de ²¹⁰Pb e a % da fração fina, (s+arg) e na Fig. 3 as concentrações em mBq. g⁻¹ de ²¹⁰Pb e os índices pluviométricos, mm.

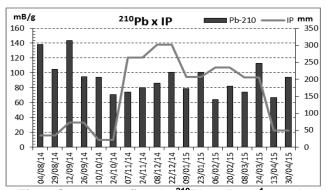


Fig. 2 Concentrações de ²¹⁰Pb, mBq.g⁻¹ e % da fração fina

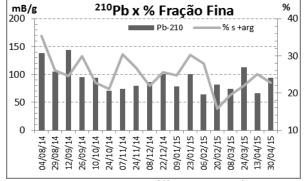


Fig. 3 Concentrações de ²¹⁰Pb, mBq.g⁻¹, e índices pluviométricos, mm

CONCLUSÕES

Todas as amostras apresentaram valores acima de 60% de porcentagem de areia, caracterizando-as como arenosa.

Os maiores valores de pH foram obtidos nas amostras coletadas no período chuvoso, meses de novembro a março e os menores no período de seca, meses de abril e de agosto a outubro, nas três soluções de medida, sugerindo uma contribuição da composição química da água de chuva nos valores de pH medidos no solo.

As maiores concentrações de ²¹⁰Pb foram obtidas nas amostras que apresentaram maiores porcentagens de fração fina, na confirmando maioria das amostras. afinidade de elementos métalicos fração fina do solo e nos meses do inverno, onde ocorreram os menores **indices** pluviométricos

REFERÊNCIAS BIBLIOGRÁFICAS

[124] DAMATTO, S. R Dating lacustrine and marine sediments using ²¹⁰Pb: some Brazilian examples. In: International Topical Conference on Po and Radioactive Pb isotopes – Sevilla, October, 2009.

[125] DAMATTO, S. R.; MESSIAS J., J.; MAZZILLI, B. P. Seasonal variation of ²¹⁰Pb concentration measured in rainfall in São Paulo – Brazil. In: International Topical Conference on Po and Radioactive Pb isotopes – Sevilla, October, 2009.

[126]Relatório PRMA IPEN- Relatorio de Avaliação do Programa de Monitoração Rradiologica Ambiental do IPEN 2014

APOIO FINANCEIRO AO PROJETO

PROBIC - CNEN