O EFEITO DA SINTERIZAÇÃO EM DUAS ETAPAS NA COMPOSIÇÃO DE FASES E NA CONDUTIVIDADE ELÉTRICA DO La0,9Sr0,1Ga0,8Mg0,2O3-δ

S. L. Reis, E. N. S. Muccillo Instituto de Pesquisas Energéticas e Nucleares – IPEN R. do Matão, Travessa R, 400, Cidade Universitária, S. Paulo, 05508-000, SP, Brasil; e-mail: shirley.reis@usp.br

RESUMO

O galato de lantânio contendo substituições parciais de estrôncio e magnésio (LSGM) tem sido extensivamente estudado por apresentar alta condutividade iônica em temperaturas relativamente baixas quando comparado à zircônia estabilizada com ítria. Neste trabalho, a composição $La_{0,9}Sr_{0,1}Ga_{0,8}Mg_{0,2}O_{3-\delta}$ foi preparada por reação em estado sólido e consolidada por sinterização em duas etapas visando obter menor teor de fases secundárias e alta condutividade iônica. Temperaturas elevadas na primeira etapa (T₁) promovem a diminuição do teor das fases secundárias. Temperaturas do patamar (T₂) entre 1350 e 1400°C são necessárias para obter o menor teor de fases secundárias quando T₁ é igual a 1500°C. A fase $La_{0,9}Sr_{0,1}Ga_{0,8}Mg_{0,2}O_{3-\delta}$ é maximizada com T₁ de 1500°C e T2 de 1350°C. Amostras com tamanho médio de grão entre 3 e 5 µm, densidades acima de 99% e altos valores de condutividade iônica foram obtidos para T₂ entre 1350 e 1450 °C.

Palavras-chave: sinterização, densificação, condutividade iônica.

INTRODUÇÃO

O galato de lantânio contendo substituições parciais de estrôncio e magnésio (LSGM) tem sido amplamente estudado nos últimos anos, por apresentar alta condutividade iônica (0,17 S.cm⁻¹ em 800°C), insignificante condutividade eletrônica, e boa estabilidade química em ampla faixa de pressão parcial de oxigênio (1 a 10⁻²² atm) [1]. Estas características permitem que o LSGM seja considerado um dos materiais mais promissores para uso como eletrólito sólido em células a combustível de óxido sólido (SOFC) operando em temperaturas intermediárias (600-800°C) [2,3].

Independentemente do método de síntese e/ou das etapas de processamento, o LSGM geralmente exibe fases secundárias, principalmente La₄Sr₃O₉, LaSrGa₃O₇, LaSrGaO₄ e MgO [4-7].

Mais recentemente, atenção especial tem sido dada ao método de sinterização do LSGM [8-11]. A sinterização em duas etapas (TSS - "Two Step Sintering"), proposta em 2000 por Chen e Wang [12], tem como premissa a obtenção de cerâmicas densas e com tamanho de grãos reduzidos, porque suprime o crescimento de grãos que ocorre no estágio final de sinterização. Neste método, a amostra é inicialmente conduzida a uma alta temperatura (T₁) por tempo muito pequeno ou nulo (t₁), sendo em seguida resfriada rapidamente até uma temperatura (T₂) específica, na qual permanece por um tempo (t₂) longo. Para que o processo seja otimizado, os autores mostraram que uma densidade relativa em torno de 75-85% deve ser obtida na primeira etapa de sinterização [13]. Este método de sinterização em duas etapas foi utilizado com sucesso por alguns pesquisadores para diversos materiais tais como: Al₂O₃, ZnO, BaTiO₃, Si₃N₄, SiC, Ca₃MgSi₂O₈, YSZ, dentre outros [14-23].

Neste trabalho o método de sinterização em duas etapas foi utilizado para verificar os efeitos do método na composição de fases, densificação e condutividade iônica do La_{0,9}Sr_{0,1}Ga_{0,8}Mg_{0,2}O_{3-δ}.

MATERIAIS E MÉTODOS

A composição $La_{0,9}Sr_{0,1}Ga_{0,8}Mg_{0,2}O_{3-\delta}$ foi preparada a partir da mistura estequiométrica de La_2O_3 (99,9%-Alfa Aesar), Ga_2O_3 (99,99%-Alfa Aesar), MgO (P.A-Merk.) e SrCO₃ (P.A.-Vetec). O La_2O_3 foi tratado termicamente a 1000 °C por 3 h antes de ser utilizado.

Foram realizadas três etapas de calcinação sucessivas por tempo de 4 h cada na temperatura de 1250 °C. Entre cada etapa de calcinação as misturas foram desaglomeradas em almofariz de ágata. Ao final as misturas foram moídas em moinho tipo atritor em meio alcoólico por 1 h com meios de moagem de zircônia com diâmetro de 2 mm.

Foram preparadas amostras cilíndricas por compactação uniaxial, seguido de compactação isostática a frio a 100 MPa. Os compactos foram, em seguida, sinterizados utilizando o processo de sinterização em duas etapas. A taxa de aquecimento foi de 10 °C/min e para o resfriamento 30 °C/min.

O tempo t₁ foi fixado em nulo. Inicialmente a temperatura T₁ foi variada de 1250°C até 1500°C. Numa etapa subsequente, T₁ foi fixada em 1500°C e T₂ foi variada de 1300 a 1450°C. O tempo t₂ foi de 5 a 15 h.

Após a sinterização, as amostras foram caracterizadas por meio de medidas de densidade aparente utilizando o princípio de Arquimedes e difração de raios X (Bruker-AXS, D8 Advance), no intervalo $20^{\circ} \le 20 \le 80^{\circ}$, com passo de 0,05° e tempo de contagem de 2 s, utilizando a radiação K α do Cu ($\lambda = 1,5405$ Å) e filtro de Ni. Os teores das fases secundárias não foram quantificados e apenas uma avaliação qualitativa foi realizada. A observação da microestrutura foi realizada por microscopia eletrônica de varredura com espectroscopia de energia dispersiva (EDS) acoplado (Philips, XL30, EDAX, Apollo 10). O tamanho médio de grãos foi determinado utilizando o método dos interceptos [24]. Medidas da condutividade iônica foram realizadas por espectroscopia de impedância, na faixa de frequência de 5 Hz a 13 MHz, e no intervalo de temperatura de 280 a 420°C. Para estas medidas foi utilizado um analisador de impedância HP 4192A, acoplado a um controlador HP 362, e tensão AC de 100 mV. Eletrodos de prata foram empregados nestas medidas. Os dados foram coletados e analisados por meio de um programa computacional convencional [25].

RESULTADOS E DISCUSSÃO

Inicialmente as amostras foram sinterizadas em diversas temperaturas T₁ por tempo nulo com a finalidade de verificar o efeito deste parâmetro na formação e nos teores relativos das fases secundárias. A Figura 1a mostra os difratogramas de raios X obtidos. Na Figura 1b é mostrada uma ampliação da região angular de 25 a 32°.

Figura 1: Difratogramas de raios X das pastilhas variando a temperatura de sinterização T₁ com tempo de patamar nulo, na faixa de 2 θ entre (a) 20 e 80°, e (b) 25 e 32°. (*) LSGM, (1) LaSrGaO₄, (2) La₄Ga₂O₉ e (3) LaSrGa₃O₇.

Em todas as temperaturas de sinterização são observados picos referentes à fase ortorrômbica do LSGM (ICSD #51-288) e as reflexões mais intensas das fases LaSrGaO₄ (ICDD #24-1208), LaSrGa₃O₇ (ICDD #45-0637) e La₄Ga₂O₉ (ICDD #37-1433). De forma geral, o aumento da temperatura T₁ promoveu diminuição no teor das fases secundárias, especificamente as de composição LaSrGaO₄ e La₄Ga₂O₉. Esta é uma indicação que estas fases são precursoras na formação da fase ortorrômbica LSGM.

Neste método de sinterização, a densidade das amostras atingida na temperatura T₁ é uma condição necessária para a densificação sem crescimento de grãos na segunda etapa de sinterização. Além disso, esta temperatura determina o tamanho médio de grãos das amostras. A Tabela 1 lista os valores de densidade relativa.

Tabela	1:	Valores	de	densidade	relativa	das	amostras	sinterizadas	em	diversas
tempera	atur	as (T ₁) c	om	tempo (t1) n	ulo.					

Temperatura, T ₁ (°C)	Densidade relativa (%)
1250	89
1300	91
1400	95
1500	98

Amostras sinterizadas a 1500°C apresentam densidades de 98%. Este resultado mostra que a condição utilizada (T₁) é muito elevada, e superior àquelas frequentemente empregadas em alguns trabalhos, que resultam em densidades relativas entre 75 e 85% dependendo do material em estudo [12,13]. Poucos trabalhos relatam o uso de T₁ mais elevada, ou seja, acima da temperatura necessária para obtenção de densidade relativa entre 75 e 85% [17,22]. Neste trabalho, o principal objetivo não é a densificação do LSGM, mas utilizar o método TSS para minimizar os teores das fases secundárias. Assim, considerando os resultados de difração de raios X, a temperatura T₁ escolhida foi de 1500°C.

Após a escolha da temperatura T_1 ideal, foi realizado um estudo para determinar a temperatura T_2 e o tempo do patamar (t₂).

A Figura 2 mostra difratogramas de raios X das amostras sinterizadas com T₁ igual a 1500°C e variando a temperatura T₂, mas mantendo fixo t₂ em 5 h. A região angular onde as fases secundárias são detectadas na Figura 2a é expandida em 2b.

Figura 2: Difratogramas de raios X das pastilhas sinterizadas a 1500°C variando a temperatura de sinterização do patamar (T₂) com tempo de patamar fixo de 5 h na faixa de 2 θ entre (a) 20 e 80° e (b) 25 e 32°. (*) LSGM, (1) LaSrGaO₄, (2) La₄Ga₂O₉ e (3) LaSrGa₃O₇.

O aumento da temperatura de sinterização do patamar T₂ promoveu o aumento no teor da fase La₄Ga₂O₉ em detrimento da fase LaSrGaO₄. Como pode ser visto na Figura 2b, temperaturas de patamar intermediárias permitiram minimizar os teores destas fases secundárias. O aumento de t₂ para 15 h na temperatura T₂ de 1350°C resultou no aumento no teor da fase La₄Ga₂O₉ (resultado não mostrado). Por outro lado, para T₂ igual a 1300°C, o aumento no tempo t₂ favoreceu a diminuição do teor da fase LaSrGaO₄, Figura 3.

Não foi possível obter o LSGM com fase única nas condições utilizadas, mas o teor destas foi reduzido consideravelmente. Neste estudo, os parâmetros otimizados são T₁ igual 1500°C e T₂ de1350°C.

Figura 3: Difratogramas de raios X das pastilhas sinterizadas a 1500°C com a temperatura de sinterização do patamar T₂ fixa em 1300°C, e variando o tempo de patamar na faixa de 2 θ entre (a) 20 e 80° e (b) 25 e 32°. (*) LSGM, (1) LaSrGaO₄, (2) La₄Ga₂O₉ e (3) LaSrGa₃O₇.

Os valores obtidos para as densidades relativas após as duas etapas de sinterização são listados na Tabela 2.

Tabela 2: Valores de densidade relativa e de tamanho médio de grãos das amostra	as
sinterizadas em diversas temperaturas T_2 e tempos t_2 . T1= 1500°C.	

T ₂ /t ₂ (°C/h)	Densidade relativa (%)	Tamanho médio de grãos (µm)	T ₂ /t ₂ (°C/h)	Densidade relativa (%)	Tamanho médio de grãos (µm)
1300/5	99	$3,16 \pm 0,07$	1300/10	~100	
1350/5	99	$3,\!99 \pm 0,\!10$	1300/15	~100	$4{,}02\pm0{,}08$
1400/5	99	$4,21 \pm 0,10$			
1450/5	99	$4,\!89 \pm 0,\!12$			

Densidades relativas iguais ou superiores a 99% foram obtidas para todas as amostras. Os valores de densidades obtidos neste trabalho são superiores àqueles reportados na literatura para o LSGM [9, 26-28]. Um estudo prévio permitiu otimizar o processamento cerâmico e, consequentemente, a densificação do LGSM [29].

Foram realizadas observações em microscópio eletrônico de varredura para investigar a evolução da microestrutura do LSGM após diferentes condições de sinterização, Figura 4.

Figura 4: Micrografias obtidas em microscópio eletronico de varredura de amostras sinterizadas a) 1500°C/0 h, b) 1500°C/0 h - 1350°C/5 h, c) 1500°C/0 h - 1450°C/5 h.

A microestrutura consiste de grãos micrométricos e apresenta boa homogeneidade com relação ao tamanho e forma. São observados alguns grãos com aspecto rugoso. Os grãos com aparência lisa e os grãos com aparência rugosa apresentam a mesma composição, como verificado por EDS (resultado não mostrado).

Os valores de tamanho médio de grãos são sumarizados na Tabela 2. Foi observado um pequeno aumento no tamanho médio de grãos com o aumento do tempo t₂. Também houve aumento no tamanho médio de grãos com o aumento da temperatura T₂. Isto pode estar associado com a alta temperatura T₁ utilizada. De forma geral, o tamanho médio de grãos das amostras sinterizadas nas diversas condições é superior aos das amostras preparadas por solidificação rápida a laser [9] e sinterização por descarga de plasma [8], inferior àquelas preparadas pelo método convencional [28,30,31] e similares àqueles de amostras sintetizadas por microondas [10], e sinterizadas rapidamente (*fast firing*) [11].

Foram realizadas medidas de espectroscopia de impedância para avaliar a influência do método de sinterização na condutividade iônica do La_{0,9}Sr_{0,1}Ga_{0,8}Mg_{0,2}O_{3-δ}. A Figura 5 mostra diagramas de impedância para as

amostras sinterizadas com nas seguintes condições: T₁ igual a 1500°C e variando T₂, com o tempo do patamar (t₂) fixo em 5 h.

Figura 5: Diagramas de impedância das amostras sinterizadas 1500°C variando a temperatura de patamar (T₂) com o tempo (t₂) fixo em 5 h.

A amostra sinterizada a 1500°C apresenta maior resistividade elétrica do grão e contorno de grão do que as demais amostras. O aumento da temperatura T₂ promoveu a diminuição da resistividade elétrica dos contornos de grão. Isto mostra que a fase LaSrGaO₄ exerce maior influência na condutividade iônica do LSGM, comparativamente à fase La₄Ga₂O₉, embora ambas apresentem baixa condutividade elétrica [32].

A análise dos resultados de medidas de condutividade em amplo intervalo de temperatura permitiu construir os gráficos de Arrhenius da condutividade iônica. Neste estudo, como mostram os diagramas de impedância (Figuras 5), não foi possível obter boa resolução na região de baixas frequências e, portanto, determinar o componente intergranular. Assim, são apresentados apenas os gráficos de Arrhenius da condutividade intragranular, Figura 6.

A condutividade intragranular é similar para as amostras sinterizadas na temperatura T₂ igual a 1350 e 1450°C e superior àquela da amostra sinterizadas a 1500°C sem patamar. Isto evidencia a importância da cinética de formação da fase LSGM.

Figura 6: Gráficos de Arrhenius da condutividade elétrica dos grãos para as amostras sinterizadas a 1500° C variando a temperatura de patamar (T₂) com o tempo (t₂) fixo em 5 h.

CONCLUSÕES

A composição La_{0,9}Sr_{0,1}Ga_{0,8}Mg_{0,2}O_{3-δ} foi preparada por reação em estado sólido e consolidada por sinterização em duas etapas com sucesso.

O aumento da temperatura T₁ promoveu diminuição do teor das fases secundárias. Além disso, temperaturas de patamar (T₂) intermediarias permitiram minimizar os teores destas fases secundárias, quando T₁ é de 1500°C. Independentemente dos parâmetros de sinterização, todas as amostras apresentaram densidades relativas superiores a 99%, e tamanho médio de grãos micrométricos. A microestrutura apresentou homogeneidade com relação ao tamanho e forma dos grãos. O aumento da temperatura T₂ promoveu a diminuição da resistividade elétrica dos contornos de grão.

REFERÊNCIAS BIBLIOGRÁFICAS

[1] K. Huang, R. S. Tichy, J. B. Goodenough, C. Milliken, Superior perovskite oxideion conductor; strontium- and magnesium-doped LaGaO₃: III, performance tests of single ceramic fuel cells, J. Am. Ceram. Soc. **81** (1998) 2581-2585.

[2] T. Ishihara, M. Honda, Y. Takita, Doped LaGaO₃ perovskite type oxide as a new oxide ionic conductor, J. Am. Chem. Soc. **116** (1994) 3801-3803.

[3] M. Feng, J. B. Goodenough, A superior oxide-ion electrolyte. Eur. J. Solid State Inorg. Chem. **31** (1994) 663-672.

[4] E. Djurado, M. Labeu, Second phases in doped lanthanum gallate perovskites, J. Eur. Ceram. Soc. **18** (1998) 1397-1404.

[5] X. C. Lu, J. H. Zhu, Effect of Sr and Mg doping on the property and performance of the La_{1-x}Sr_xGa_{1-y}Mg_yO_{3-δ}, J. Electrochem. Soc. **155** (2008) B494-B503.

[6] K. Huang, M. Feng, J. B. Goodenough, Wet chemical synthesis of Sr- and Mgdoped LaGaO₃, a perovskite-type oxide-ion conductor, J. Am. Chem. Soc.**79** (1996) 1100–1104.

[7] S. Li, B. Bergman, Doping effect on secondary phases, microstructure and electrical conductivities of LaGaO₃ based perovskites. J. Eur. Ceram. Soc. **29** (2009) 1139-1146.

[8] B. Liu, Y. Zhang, La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O₃₋₈sintered by spark plasma sintering (SPS) for intermediate temperature SOFC electrolyte, J. Alloy Compd. **458** (2008) 383-389.

[9] J. Zhang, E. J. Liang, X. H. Zhang, Rapid synthesis of La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3selectrolyte by a CO₂ laser and its electric properties for intermediate temperature solid state oxide full cells, J. Power Sources **195** (2010) 6758-6763.}

[10] Y. Zhai, C. Ye, F. Xia, J. Xiao, L. Dai, Y. Yang, Y. Wang, Preparation of La_{0.8}Sr_{0.2}Ga_{0.83}Mg_{0.17}O_{2.815} powders by microwave-induced poly(vinyl alcohol) solution polymerization, J. Power Sources **162** (2006) 146-150.

[11] S. L. Reis, E. N. S. Muccillo, Structure and ionic conductivity of fast fired La_{0,9}Sr_{0,1}Ga_{0,8}Mg_{0,2}O₃₋₈solid electrolyte, Adv. Mater. Res. **965** (2014) 81-85.

[12] I.-W. Chen, X.-W. Wang, Sintering dense nanocrystalline ceramics without finalstage grain growth, Nature **404** (2000)168-171.

[13] Y.-I. Lee, Y.-W. Kim, M. Mitomo, D.-Y. Kim, Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering, J. Am. Ceram. Soc. **86** (2003) 1803-1805.

[14] Y.-I. Lee, Y.-W. Kim, M. Mitomo, D.-Y. Kim, Effect of processing on densification of nanostructured SiC ceramics fabricated by two-step sintering, J. Mater. Sci., **39** (2004) 3801-3803.

[15] H. T. Kim, Y. H. Han, Sintering of nanocrystalline BaTiO₃, Ceram. Int. **30** (2004) 1719-1723.

[16] H. D. Kim, Y.-J. Park, B.-D. Han, M.-Q. Park, W.-T. Bae, Y.-W. Kim, H.-T. Lin, P. F. Becher, Fabrication of dense bulk nano-Si₃N₄ ceramics without secondary crystalline phase, Scripta Mater. **54** (2006) 615-619.

[17] K. Bodisová, P. Sajgalik, G. Galusek P. Svancarek, Two-stage sintering of alumina with submicrometer grain size, J. Am. Ceram. Soc. **90** (2007) 330-332.

[18] M. Mazaheri, A. M. Zahedi, S. K. Sadrnezhaadt, Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth, J. Am. Ceram. Soc. **91** (2008)56-63.

[19] J. Binner, K. Annapoorani, A. Paul, I. Santacruz, B. Vaidhyanathan, B. Dense

nanostructured zirconia by two stage conventional/hybrid microwave sintering, J.Eur. Ceram. Soc. **28** (2008) 973-977.

[20] D.-S. Kim, J.-H. Lee, R. J. Sung, W. W. Kim, H. S. Kim, J. S. Park, Improvement of translucency in Al₂O₃ ceramics by two-step sintering, J. Eur. Ceram. Soc. **27** (2007) 3629-3632.

[21] G. Magnani, A. Brentari, E. Burresi, G. Raiteri, Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method, Ceram. Int. **40** (2014) 1759-1763.

[22] K. Maca, V. Pouchly, P. Zalud, Two-step sintering of oxide ceramics with various crystal structures, J. Eur. Ceram. Soc. **30** (2010) 583-589.

[23] A. Nadernezhad, F. Moztarzadeh, M. Hafezi, H. B. Bafrooei; Two step sintering of a novel calcium magnesium silicate bioceramic: Sintering parameters and mechanical characterization, J. Eur. Ceramic Soc. **34** (2014) 4001-4009.

[24] M. J. Mendelson, Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc. **52** (1969) 443-446.

[25] M. Kleitz, J. H. Kennedy, Resolution of multicomponents impedance diagrams. In: Proc. Intern. Conf. Fast Ion Transport in Solids, Electrodes and Electrolytes, ed. P. Vashishta, J. N. Mundy, G. K. Shenoy, North-Holland, Amsterdam, p. 1858, 1979.

[26] Raghvendra; R. K. Singh, P. Singh, Influence of small DC bias field on the electrical behaviour of Sr- and Mg-doped lanthanum gallate, Appl.Phys. A. **116** (2014) 1793-1800.

[27] A.-M. Azad, L. F. Er, Microstructural evolution in B-site Mg-substituted La_{0,9} Sr_{0,1} GaO_{3-δ} oxide solid solutions, J. Alloy Compd. **306** (2000) 103-112.

[28] Y.-C. Wu, M.-Ze Lee, Properties and microstructural analysis of $La_{1-x}Sr_xGa_{1-y}Mg_yO_{3-\delta}$ solid electrolyte ceramic, Ceram. Int. **39** (2013) 9331-9341.

[29] S. L. Reis, Efeito dos métodos de síntese e sinterização na densificação, estrutura, microestrutura e condutividade elétrica do galato de lantânio, Tese de doutorado, IPEN/USP (2014).

[30] J. Drennan, V. Zelizko, D. Hay, F. T. Ciacchi, S. Rajendran, S. P. S. Badwal, Characterisation, conductivity and mechanical properties of the oxygen-ion conductor La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-x}, J. Mater. Chem. **7** (1997) 79-83.

[31] K. Huang, R. S. Tichy, J. B. Goodenough, Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO₃: II, ac impedance spectroscopy, J. Am. Ceram. Soc. **81** (1998)2576-80.

[32] M. Rozumek, P. Majewski, F. Aldinger, K. Künstler, G. Tomandl, Preparation and electrical conductivity of common impurity phases in (La,Sr)(Ga,Mg)O₃ solid electrolytes, cfi/Ber. DKG **80** (2003) E35-E40.

EFFECT OF TWO STEP SINTERING ON PHASES COMPOSITION AND ELECTRIC CONDUCTIVITY OF La0.9Sr0.1Ga0.8Mg0.2O3-8

ABSTRACT

Strontium and magnesium-doped lanthanum gallate (LSGM) has been extensively studied due to its high ionic conductivity at relatively low temperatures compared to yttria-stabilized zirconia, that is the most widely used electrolyte in solid oxide fuel cells. In this work, the composition $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\delta}$ was prepared by solid state reaction and sintering by two step sintering to obtain lower content of secondary phases and high ionic conductivity. The high temperature on first step (T₁) promoted a reduction of the content of secondary phases. Dwell temperatures (T₂) between 1350 e 1400°C are necessary to obtain lower content secondary phases when T₁ is equal to 1500°C. The phase $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-\delta}$ is maximize when T₁ = 1500°C and T₂ = 1350°C. Samples with average grain size between 3 and 5 µm and relative density above 99% were obtained for T_2 varying between 1300 and 1450°C. High ionic conductivity was obtained for T_2 between 1350 and 1450 °C.

Key-words: sintering, densification, electric conductivity.