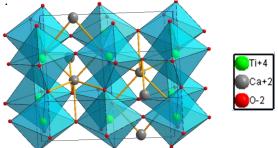
Estudo dos materiais luminescentes CaTiO₃:TR³⁺ sintetizados pelo método Sol-Gel

<u>Otávio P. Bezzan</u>*¹(IC), Cássio C. S. Pedroso¹(PG), José M. Carvalho¹(PG), Maria C.F.C. Felinto³(PQ), Jorma Hölsä^{1,2}(PQ), Hermi F. Brito¹(PQ), Lucas C.V. Rodrigues¹(PQ)

² Departamento de Química, Universidade de Turku, Fl-20014 Turku, Finlândia.

Palavras Chave: CaTiO₃, Sol-Gel, terras-raras, fotoluminescência.

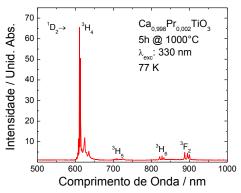

Introdução

A química do processo Sol-Gel é baseada na hidrólise e condensação de precursores em solução. Entre as vantagens do processo Sol-Gel estão a possibilidade do processamento de soluções de diferentes íons (Ca²+, Si¹V e Ti¹V), obtenção de materiais mais homogêneos e com estequiometria bem definida¹. Em trabalhos anteriores², foi mostrado que a matriz CaTiO₃ dopado com praseodímio apresenta luminescência persistente vermelha. Para esse trabalho, outros elementos terras-raras (TR³+) foram dopados em CaTiO₃ apresentando diferentes propriedades luminescentes.

Resultados e Discussão

Os materiais $Ca_{0,998}TR_{0,002}TiO_3$ (TR: Pr, Sm, Eu, Gd, Tb e Dy) foram preparados a partir do método solgel convencional, utilizando os precursores $Ca(NO_3)_2$, $Ti(OC_3H_7)_4$ e nitratos de terras-raras. Os materiais recém-preparados foram calcinados por 5 h a 1000 °C e caracterizados por difração de raios X (DRX), e espectroscopia fotoluminescente e de luminescência persistente.

Através de estudos da difração de raios-X, é possível ver que há formação marjoritária da fase perovskita. A estrutura possuí octraedros de ${\rm TiO_6}^2$ entreligados e os íons ${\rm Ca}^{2^+}$ ocupam os sítios com simetria octaédrica distorcida (Fig. 1). Devido à similaridade dos raios iônicos (${\rm Ca}^{2^+}$: 1,00 e ${\rm TR}^{3^+}$: 0,86 – 1,03 Å) os íons ${\rm TR}^{3^+}$ ocupam os sítios de ${\rm Ca}^{2^+}$.


Fig. 1. Estrutura cristalina perovskita do CaTiO₃ gerado pelo software DIAMOND

Para o íon Pr³⁺, o espectro de emissão apresenta as transições 4f-4f gerando linhas finas, com maior

intensidade em 610 nm (${}^{1}D_{2} \rightarrow {}^{3}H_{4}$), conferindo ao material uma coloração vermelha 3 .

Devido à posição dos níveis de energia excitados do íon Tb³⁺ que se encontram dentro da banda de condução da matriz CaTiO₃, este íon não apresenta sua luminescência verde característica neste sistema.

Por outro lado, os materiais dopados com Dy³⁺ exibiram luminescência oriunda de suas transições 4f-4f, resultando em uma emissão amarela.

Fig. 2. Espectro de emissão do material Ca_{0,998}Pr_{0,002}TiO₃ calcinado por 5 h a 1000°C, sob excitação na matriz (330 nm), a 77 K

Conclusões

Os materiais foram eficientemente preparados pelo método sol-gel, exibindo alta intensidade de luminescência para os dopantes Pr³+ e Dy³+. O modelo de níveis de energia no bandgap do material foi construído, explicando a ausência de luminescência do íon Tb³+ nesta matriz.

Agradecimentos

CNPq, FAPESP e CAPES

¹ Blasse, G.; Grabmaier, B.C. *Luminescent Materials*. Heidelberg Springer, 1994, 232 p.

² Bezzan, O.P., Pedroso, C.C.S., Rodrigues, L.C.V., Carvalho, J.M., Hölsä, J., Felinto, M.C.F.C., Brito, H.F., 37^a Reunião Anual da Sociedade Brasileira de Química, Natal-RN, Brasil

³ Carvalho, J.M.; Latsusaari, M.; Laamanen, T.; Rodrigues, L.C.V.; Hölsa, J.; Felinto, M.C.F.C.; Nunes, L.A.O.; Brito, H.F., 8th International Conference on f-Elements, August 26-31, 2012, Udine, Italy

¹Departamento de Química Fundamental. Instituto de Química. USP, Av, Lineu Prestes. 748. São Paulo-SP,Brasil.

³CQMA, Instituto de Pesquisas Energéticas e Nucleares, Av. Lineu Prestes, 2242, São Paulo-SP, Brasil. *otavio.bezzan@usp.br