Desenvolvimento de detector plástico cintilador de grande volume

João Francisco Trencher Martins e Margarida Mizue Hamada Instituto de Pesquisas Energéticas e Nucleares – IPEN

INTRODUÇÃO

Os detectores plásticos cintiladores são soluções sólidas obtidas pela adição de compostos orgânicos cintiladoras em matrizes poliméricas. As principais vantagens dos detectores plásticos cintiladores dentre os cintiladores sólidos são: (a) não são higroscópicos, (b) estabilidade térmica alta, (c) resistência mecânica elevada, (d) podem ser obtidos no tamanho e na configuração geométrica desejada e (e) de baixo custo. Estas características tornam os plásticos cintiladores materias de fácil manuseio na usinagem, no transporte e na operação, além possibilidade de confecção dos detectores nos tamanhos e configurações desejados. No IPEN, plásticos cintiladores de pequeno volume são produzidos rotineiramente, no entanto para a fabricação de plásticos cintiladores de grande volume aprimoramentos ainda são necessários.

OBJETIVO

O objetivo do trabalho é desenvolver e confeccionar detectores plásticos cintiladores de grandes volume a partir da otimização do método de purificação e polimerização da solução cintiladora.

METODOLOGIA

A preparação do plástico cintilador consiste basicamente em três etapas: na purificação do monômero, na preparação da solução cintiladora e na polimerização da solução cintiladora.

Monômero de estireno comercial, utilizado como a matéria prima da matriz polimérica, deve ser previamente purificado. A purificação do estireno é realizada a baixa pressão (~10mmHg) e 31°C de temperatura. 4 litros de estireno foram destilados por vez, utilizando um balão de 5 litros. A condensação do vapor foi realizada pela passagem no condensador de uma mistura

aquosa de propileno glicol resfriada a 0°C. Esta temperatura foi obtida utilizando-se um sistema de refrigeração RAI 015 ACE da Refriac. O balão de recolhimento do monômero destilado foi acondicionado numa cuba térmica circulando a mistura aquosa a 0 °C , para evitar a formação de polímeros. A Figura 1 mostra o esquema do sistema de purificação.

Figura 1- Sistema de Purificação

O monômero de estireno foi bidestilado com o intuito de obter solução com grau de pureza adequada para sua utilização na confecção do plástico cintilador.

A eficiência da técnica de purificação foi avaliada pelas medidas de transmitância a cada etapa de destilação, utilizando espectrofotômetro UV-visível (Shimadzu UV 1601-PC) . Alíquotas das amostras a cada fração de 200 ml de destilação foram retiradas para avaliar a redução das impurezas.

A solução cintiladora foi preparada misturando-se 0,5% de PPO e 0,05% de POPOP, em peso, ao estireno previamente purificado. A seguir foi introduzida no molde de aço inox para subseqüente polimerização. A seguir, 22 litros de solução cintiladora contendo 2,2ml (0,01%) de catalisador Tignonox 22-E50 da Akzo Nobel (concentração determinada como ideal) foram introduzidos em molde de aço inoxidável, deixando espaço vazio de 25% do volume interno para efeito de expansão

dos gases durante o processo de polimerização. Imergiu-se o molde em banho de óleo termostatizado, inicialmente a temperatura ambiente e por meio de uma mangueira conectada ao tubo menor do molde, manteve-se um fluxo de N2 gasoso, durante a polimerização

RESULTADOS

Para quantificar o grau de transparência dos monômeros purificados, foram realizados medidas de transmitância óptica no intervalo de luminescência do detector plástico cintilador. A Fig. 2 ilustra as medidas de transmitância, nos comprimentos de onda de 200 à 800nm, das amostras do monômero estireno comercial armazenado e frações coletadas após 3500 ml (88%) de monodestilação e 800 mL (20%) e 3200 ml (80%) de bidestilação.

Como pode ser observado, há uma nitida melhora na transmitância do estireno destilado comparado ao comercial antes da destilação, demonstrando a eficiência da técnica da destilação. Transmitância superior à 80% foi observados para comprimentos de onda acima de 400 nm, que é a área de sensibilidade da eficiência quântica das fotomultiplicadoras. Para o monômero sem purificação a transmitância foi ao redor de 65% para o intervalo de comprimento acima de 350 nm.

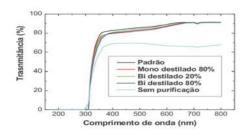


Figura 2 - Transmitâncias do Estireno Bruto e Após Diferentes Destilações

O melhor resultado de transmitância a 420 nm foi encontrado para o monomero bidestilado 20% com 81,79% de tranmistância. Para o bidestilado 80% foi de 80,80%, o monodestilado 88% de 80.19% e o comercial com 69.34%.

CONCLUSÕES

A destilação do monômero de estireno à uma pressão de 10 mmHg e à 31°C mostrou-se

eficiente para remoção de impurezas traços presentes no estireno comercial.

REFERÊNCIAS BIBLIOGRÁFICAS

[1]COSTA JUNIOR, N.P. Otimização do método de polimerização para confecção de detectores plásticos cintiladores de grande volume. São Paulo: 1999. Tese Doutoramento – Instituto de Pesquisas energéticas er Nucleares, USP.
[2]SCHAM, E.; LOMBAERT, R. Organic Scintillation Detectors. Amisterdam. Elsevier Publishing Company. 1963.

APOIO FINANCEIRO

CNPq/PIBIC