Optical and Magnetic Nanocomposites Containing Fe₃O₄@SiO₂ Grafted with Eu³⁺ and Tb³⁺ Complexes

Latif Ullah Khan¹, Diego Muraca², Hermi Felinto Brito¹, Kleber Roberto Pirota², Maria Cláudia França da Cunha Felinto³

¹Universidade de São Paulo, ²Universidade Estadual de Campinas, ³Instituto de Perquisas Energéticas e Nucleares

e-mail: latifkhn@iq.usp.br

The fabrication of bifunctional luminescent and magnetic nanocomposites, co-assembling two different photonic (RE³⁺) and magnetic (Fe₃O₄) features into single entity nanostructures is reported. Their preparation is accessible through a facile method of multistep syntheses, using Fe_3O_4 core nanoparticles as a precursor, which were coated with SiO₂ shell and further grafted with Eu³⁺ and Tb³⁺ complexes. These novel Fe₃O₄@SiO₂-TTA-Eu(L) and Fe₃O₄@SiO₂-TTA-Tb(L), L: TTA, TC, AB and AMB optical and magnetic nanocomposites show interesting superparamagnetic and photonic properties. The DC magnetic properties (M-H and ZFC/FC magnetization curves) at temperatures of 2 and 300 K were studied and investigated the influence of SiO_2 coating and RE^{3+} complexes on the saturation magnetization (M_s) , magnetic coercivity (H_c) and blocking temperatures (T_B) of the nanomaterials. The paramagnetic contributions of the RE³⁺ ions to the whole magnetizations of the Eu^{3+} and Tb^{3+} nanocomposites were also studied. Even though magnetite is a strong luminescence guencher, the coating of the Fe_3O_4 nanoparticles with SiO_2 has overcome this difficulty. The photoluminescence properties of the Eu³⁺ and Tb³⁺ nanocomposites based on the emission spectral data and luminescence decay curves were studied. The experimental intensity parameters (Ω_{λ}) , lifetimes (t), emission quantum efficiencies (η) as well as radiative (A_{rad}) and non-radiative (A_{nrad}) decay rates for the Eu³⁺ nanocomposites were calculated and discussed, in addition, the structural conclusions from the values of the 4f-4f intensity parameters in the case of the Eu³⁺ ion. These novel nanomaterials may act as the emitting layer for the red and green light for magnetic and light converting molecular devices (MLCMDs).