XVIIth International Krutyn Summer School 2015 Krutyń, Masurian Lake District, Poland, June 14-20, 2015

SPONSORS

Institute of Physical Chemistry, Polish Academy of Sciences

Fondazione Bruno Kessler FBK

MEDIAL PATRONAGE

Nanonet Portal

Clandia

Red Persistent Luminescence in CaWO4: Eu³⁺ Phosphors

<u>Helliomar P. Barbosa</u>^a, Danilo Mustafa^a, Lucas C.V. Rodrigues^a, Maria C.F.C. Felinto^b, Jorma Hölsä^{a,c,d}, Hermi F. Brito^a

^aInstituto de Química, Universidade de São Paulo, São Paulo-SP, Brazil
^bCentro de Química e Meio Ambiente, IPEN, São Paulo-SP, Brazil
^cDepartment of Chemistry, University of Turku, FI-20014 Turku, Finland
^dTurku University Centre for Materials and Surfaces (MatSurf), Turku, Finland
hbarbosa@iq.usp.br

Strong luminescence from the trivalent rare earth (R³⁺) doped tungstate [WO₄]²⁻ hosts offers possibility to design new luminescent materials [1]. Persistent luminescent materials that emit in red are still rare [2]. This work reports the investigation of the CaWO4:Eu3+ materials which show persistent luminescence and were prepared with a low cost and easy synthesis route. The materials were obtained by mixing stoichiometric amounts of aqueous solutions of Na₂WO₄, CaCl₂ and EuCl₃ (Eu³⁺ as 0.1 to 10 mol-% of the Ca²⁺ amount). The as-prepared materials were annealed in static air at 1000 °C for 3 hours. The XPD patterns revealed the pure tetragonal scheelite phase with I4₁/a (#88) as the pace group. The X-ray Absorption Near Edge Structure (XANES) spectra at the Eu L_{III} edge of CaWO₄:Eu³⁺ show only the Eu³⁺ but no Eu²⁺ species. The emission spectra are dominated by the high intensity ${}^5D_0 \rightarrow {}^7F_2$ hypersensitive transition. indicating the non-centrosymmetric environment of Eu (Fig.; left). The C.I.E. chromaticity diagram (Fig.; center) suggests emission color tuning from blue to red just by changing the Eu³⁺ concentration from 0.1 to 10.0 mol-%. Despite different conventional emission color of the materials (Fig.; right), persistent luminescence is always red. In phosphors doped with 0.1 and 1.0 mol-% of Eu³⁺, persistent luminescence is longer than with 10 mol-% doping, indicating concentration quenching. These results suggest that these materials may be used as alternative red persistent luminescence markers though optimizing the phosphor properties is required.

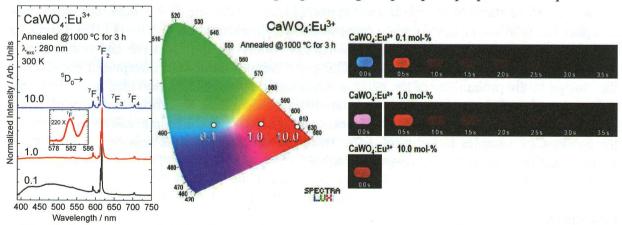


Fig. Emission spectra, C.I.E. color coordinates and photographs taken each 0.5 s after ceasing the excitation of the CaWO₄:Eu³⁺ (x_{Eu}: 0.1; 1.0 and 10 mol-%) phosphors.

References

- (1) Kodaira, C.A.; Brito, H.F.; Malta O.L.; Serra, O.A. J. Lumin. 2003, 101, 11.
- (2) Brito, H.F.; Hölsä, J.; Laamanen, T.; Lastusaari, M.; Malkamäki, M.; Rodrigues, L.C.V. *Opt. Mater. Express* **2012**, 2, 371.