ICOM 2015 The 4TH International Conference on the Physics of Optical Materials and Devices ## **BOOK OF ABSTRACTS** Budva, Montenegro August 31st – September 4th, 2015 ## BLUE LUMINESCENCE IN MWO4:Tm³⁺ (M= Ba, Sr) PHOSPHORS Edson L. Gaiollo^a,Renan P. Moreira^a, Helliomar P. Barbosa^b, Cassio C. S. Pedroso^b, Lucas C.V. Rodrigues^b, Oscar M. L. Malta^c, Hermi F. Brito^b, <u>Maria C.F.C. Felinto^b</u> ^aCentro de Química e Meio Ambiente, IPEN, São Paulo, Brazil ^bInstituto de Química, Universidade de São Paulo, São Paulo, Brazil ^cDepartamento de Química, Universidade Federal de Pernambuco, Pernambuco, Brazil mfelinto@ipen.br Highly luminescent emission from trivalent rare earth (R^{3+}) doped tungstates [WO₄]₂- have been extensively studied during the past century, especially on their very interesting luminescence, structural properties and electro-optical applications [1]. Nowadays they have awaken the curiosity of nano word. This work reports the investigation of MWO₄:Tm³⁺ (M=Ba, Sr) materials with blue emission luminescence prepared with a low cost and easy synthesis route. The materials were prepared by the co-precipitation method with stoichiometry aqueous solutions of Na₂WO₄, BaCl₂ or SrCl₂ and TmCl₃ (Tm3+ in 0.02 to 0.1 mol-% of the M²⁺ amount). The as-prepared materials were characterized by infrared spectroscopy showing strong vibrations in the range 700-1000 cm-1 attributed to stretching vibration (v) symmetrical and asymmetrical of the tetrahedral group (WO₄ 2-).The XRD measurements reveal that the majority phase is tetragonal scheelite phase with I41/a (#88) space group. The emission spectra of MWO₄:Tm³⁺ (M= Ba, Sr) materials are dominated by high intensity 1D2 \rightarrow 3F4 transition in blue region (\sim 452nm) and 1 G₄ \rightarrow ³H₆ (\sim 475nm) and also other transitions of Tm3+,in red 1 G₄ \rightarrow ³F₄ (654 nm) and close to infrared 3 H4 \rightarrow ³H₆ (\sim 780 nm) transitions observed in the spectra. These transitions, although with low intensity, means that different Tm³⁺-related emitting centers coexist in the same sample suggesting that the ions must be placed in different site of symmetry. (Fig. 1; left and center). The chromaticity diagram (Fig. 1;right) exhibit emission color tuning of of MWO₄:Tm³⁺ (M= Ba, Sr) materials phosphors by changing the dopant concentration from 0.2 to 1.0 mol-%. These results suggest that the material can be used as an alternative to blue marker. Figure 1. Emission spectra; (left and center) and CIE color coordinates; (right) of the MWO4:Tm3+ phosphors. [1] Kodaira, C. A.; Brito, H. F.; Malta O. L.; Serra, O. A. J. Lumin. 2003, 101, 11–21.