ESTUDO DE SÍNTESE DE NANOPARTÍCULAS DE SÍLICA A PARTIR DE MATÉRIA-PRIMA INORGÂNICA

Vinícius Ribas de Morais*¹, Chieko Yamagata²

¹Faculadade de Tecnologia de São Paulo – FATEC SP

²Instituto de Pesquisas Energéticas e Nucleares - IPEN

v.ribas@hotmail.com, yamagata@ipen.br

1. Introdução

Dentre os vários métodos de síntese de nanopartículas de sílica, o método sol-gel é um dos mais utilizados, por permitir controlar a qualidade e morfologia do produto final através da variação dos parâmetros de reação, tais como natureza dos precursores, pH e uso de agentes modificadores [1].

Os alcóxidos como o TEOS (Tetraetilortossilicato) são os precursores mais comuns deste processo. No entanto, estes materiais, além de serem caros e importados, exigem cuidados rigorosos quanto ao armazenamento e manuseio. O objetivo deste trabalho é estudar a influência das variáveis do processo de síntese nas características de nanopartículas de sílica, utilizando uma fonte de silício mais barata: silicato de sódio [2].

2. Metodologia e Materiais

Soluções de ácido clorídrico concentrado, surfactante ETH HT (83 g.L⁻¹) e silicato de sódio (35,93 g.L⁻¹) foram misturadas manualmente em um béquer, que em seguida foi levado a banho ultrassônico por 4 sessões de 12 minutos. Depois de 24 horas, as amostras foram lavadas com água e filtradas até a remoção do Cl⁻, em seguida foram secas em estufa a 75°C por 24 h e calcinadas a 550°C por 2 h. Foram preparadas quatro amostras, relacionadas na Tabela 1, variando-se a concentração da solução de surfactante.

Tabela 1: Amostras Preparadas

Amostra	HCl (mL)	SURFACTANTE (G. L ⁻¹)	Na ₂ SiO ₃ (mL)
D1	8	9,20	10
D2	9	4,36	10
D3	9	0,96	10
D4	9	0,43	10

3. Resultados e Discussão

Pelas micrografias apresentadas na Figura 1, verifica-se que as amostras D1 e D2 apresentam partículas esféricas com estreita distribuição de tamanhos, enquanto que as amostras D3 e D4 apresentam aglomerados rígidos e irregulares. Pelos valores de área superficial apresentados na Tabela 2, observa-se que a diminuição da concentração do surfactante resultou em um aumento da área superficial específica, podendo sugerir que as os aglomerados presentes nas amostras D3 e D4, apesar da morfologia irregular, são porosos e formados por partículas menores do que as amostras D1 e D2.

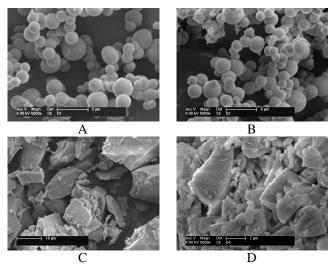


Figura 1-Micrografias obtidas por MEV das amostras (A) D1, (B) D2, (C) D3, (D) D4

Tabela 2: Valores de área de superfície específica das amostras, obtidas pelo método BET

Amostra	Área de superfície específica (m².g-¹)
D1	308
D2	350
D3	512
D4	572

4. Conclusões

Os altos valores de área superficial obtidos, na faixa de 308-572 m².g⁻¹, indicam que foram preparados pós micrométricos de sílica, mostrando que o silicato de sódio pode atuar como substituto do TEOS na obtenção de partículas de sílica, e que a adição de quantidades menores de surfactante resultam em partículas com maior área superficial, mas morfologia irregular

5. Referências

[1]C. A. Milea *et al.* Bulletin of the Transilvania University of Brasov, Series I: Engineering Sciences Vol. 4 (53) No. 1 – 2011

[2] C. Yamagata *et al.* Journal of Materials Science and Engineering B 2 (8) (2012) 429-436.

Agradecimentos

Ao CNPq e IPEN, respectivamente, pela bolsa concedida e apoio de infraestrutura à pesquisa.
*Aluno de Iniciação Científica do CNPq