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ABSTRACT 

 

In this study, the Self-Organizing Maps were applied to concentration data of chemical 

elements measured in archaeological ceramics from Central Amazon using instrumental 

neutron activation analysis (INAA). The main objective was testing the chemical patterns 

previously identified using cluster and principal component analysis, forming groups of 

ceramics according the multivariate chemical composition.  It was verified by statistical 

tests that the chemical elemental data was not normally distributed and did not present 

homogeneity of covariance matrices for different groups, as requested by principal 

component analysis and other multivariate techniques. The maps obtained were consistent 

with the patterns identified by cluster and principal component analysis, forming two 

chemical groups of pottery shards for each archaeological site tested. Finally, it was 

verified the potential of SOMs for testing if failures in underlying hypotheses of traditional 

multivariate techniques might be critically influencing the results and subsequent 

archaeological interpretation of archaeometric data.  

 

 

INTRODUCTION 

 

 Artificial neural networks, AAN, represent an alternative to traditional multivariate 

techniques, such as principal component and discriminant analysis, which rely on 

hypotheses regarding the normal distribution of the data and homoscedasticity. They also 

may be a powerful tool for multivariate modeling of systems that do not present linear 

correlation between variables, as well as to visualize high-dimensional data in bi or 

trivariate structures. One special kind of neural network of interest in archaeometric studies 
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is the Self-Organizing Map (SOM).  SOMs can be distinguished from other neural 

networks for preserving the topological features of the original multivariate space.  

 Two main applications of ANN may be identified: function approximation by 

retropropagation algorithms, and grouping or classification of input vectors (Merdun, 

2011).  

 The main applications of artificial intelligence to archaeometric studies regards the 

comparison of geochemical data classification by traditional algorithms, such as hierarchic 

cluster analysis (CA) and principal component analysis (PCA), and neural networks based 

methods. One main advantage is that the latter do not depend on any specific data 

distribution (Bell & Croson, 1998). A recurrent method for such a purpose is the 

application of self-organizing maps (SOMs) (Toyota et al., 2009), developed by Teuvo 

Kohonen. Those maps are based in AAN in a frequently non-supervised leaning strategy, 

and do not need a previous set of test samples of an already known structure (Lopes-

Molinero et al., 2000). A graphical representation of a SOM is presented in Fig. 1.  The 

method is partially based in the way sensorial information are processed in separate parts 

of the human brain cortex.   

   

  

  

 

Figure 1 – Graphical representation of a self-organizing map (SOM) showing the neurons 

represented by vertical columns. The structure surface corresponds to the map 

which is visualized after the application of the method. Source: Tanevska et al. 

(2007).  
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 As in the case of principal components and discriminant functions, those maps are a 

useful tool for graphical visualization of high dimensional data in bi- or tridimensional 

structures. The maps as formed by nodes, or neurons, and every node has a weigh vector 

with the same dimension as the data, or inputs. The neuronal geometry may be hexagonal 

or rectangular, which influences the number of neighbors. SOMs can be distinguished from 

other ANNs by the preservation of the topological properties of the original space, by 

using neighborhood functions.  

 In the SOM method, an input vector is allocated in the neuron unit that has the most 

similar weigh vector, or the nearest, based in an adequate metric to measure the distances 

between vectors. The general idea is that the weigh vectors representative of each neuron 

are spatially correlated, such as near representative vectors in the grade are more similar 

between them when compared to distant vectors.  

 The SOM training consists in a competitive unsupervised learning, which assign 

input vectors to the most similar neuron, represented by its weigh vector. In this way, this 

method aids in identifying grouping patterns in the data set. As a new input vector is 

presented to the net, its Euclidean distance to every weigh vector associated to a neuron is 

calculated. The “winning” neuron, called best matching unit (BMU), and neighboring 

vectors have their weigh adjusted due to the input vector. The magnitude of the adjustment 

decreases over time and with the distance to the BMU, according the following updating 

equation (adapted from Lopez-Molinero et al., 2000) 

 

   (   )    ( )   (     ) ( )[ ( )    ( )] (1) 

where t is the iteration or epoch of the algorithm, D(i) is the input vector (i is the sample 

size of the data set for training, varying from 1 to n), θ(v,t,d) is the neighborhood function 

(frequently Gaussian or Triangular) depending on the distance d to the BMU, and α(t) is 

the monotonically decreasing learning coefficient.   

 The learning process initiate with large neighborhoods to the point where its 

definition turns more restrict, and the weigh vector of each neuron converge to local 

estimates in the map. An epoch of training is complete when all input vectors are presented 

once to the net for correction of neuronal weigh vectors. At the end of the procedure, the 

neurons, or output nodes, may be associated to the groups present in the multidimensional 

space of input by graphical visualization, with color scales representing the Euclidean 

distances between the neurons, stored in a U matrix.   
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 The batch version of SOM algorithm, where all the input vectors are presented 

simultaneously to the net in a unique update is more recent. In the literature, there are still 

few works dealing with the application of self-organizing maps to archaeometric data 

(Lopez-Molinero et al., 2000; Toyota, 2009). 

 

Archaeological background 

 This work comprises the analysis of pottery shards data from two large and 

important archaeological sites in Central Amazon, namely Lago Grande and Osvaldo. The 

main archaeological objective is the verification of potential cultural and commercial 

exchange networks in the region. Once confirmed, it would have impact on the traditional 

theories about the occupation of pre-colonial Amazon, based on environmental 

determinism, which conclude that large sedentary settlements and hierarchical and 

complex human organizations could not emerge in the tropical rain forest environment 

(Lima, 2008; Hazenfratz et al., 2016). 

 Previous archaeometric analysis of data from Lago Grande and Osvaldo led to the 

determination of two chemical groups of pottery for each archaeological site. They 

presented pairwise superposition, which were further explored seeking for archaeological 

correlations regarding territorial integration, commercial exchange and exogamic marriage 

between the inhabitants of the region (Hazenfratz-Marks et al., 2012).  The statistical 

significance of the chemical groups was teste indirectly by comparison with variation 

coefficients found in archaeometric studies of pottery around the world (Harbottle, 1982; 

Bishop, 2003), by discriminat analysis and by multivariate analysis of variance.  

 Table 1 present the average concentrations of nine chemical elements used in 

previous studies for each chemical group defined for the two archaeological sites. Fig. 2 

presents a refined projection of the multivariate data in the two first principal components.  

 

RESULTS AND DISCUSSION 

 In this work, a study with self-organizing maps was developed for comparison with 

multivariate patterns identified by CA and PCA of geochemical data of pottery shards from 

two large archaeological sites in central Amazon. The results may be found elsewhere 

(Hazenfratz-Marks et al., 2012; Hazenfratz et al., 2016). The total data set comprises the 

concentrations of 9 chemical elements (Sc, Cr, Fe, La, Ce, Eu, Yb, Lu, Th) in 141 samples.  
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Table 1 – Mean concentrations of nine chemical elements in the chemical groups of 

pottery defined for Lago Grande and Osvaldo archaeological sites. 

Concentrations are in μg.g
-1

. 

 

Element 
Lago Grande Osvaldo 

A (n=61) B (n=28) A (n=37) B (n=15) 

Sc   14.8 ± 1.9 18.6 ± 2.1 13.8 ± 2.0 18.7 ± 2.3 

Cr  64.3 ± 8.3 79.1 ± 10.2 59.0 ± 7.4 75.3 ± 9.6 

Fe 36543 ± 7991 44197 ± 6505 32432 ± 5723 39165 ± 3728 

La 38 ± 5 50 ± 5 38 ± 4 47 ± 7 

Ce   75 ± 11 104 ± 17 71 ± 12 107 ± 24 

Eu 1.1 ± 0.2 1.7 ± 0.2 1.1 ± 0.2 1.5 ± 0.2 

Yb 2.7 ± 0.4 3.5 ± 0.4 2.9 ± 0.4 3.3 ± 0.4 

Lu 0.45 ± 0.07 0.56 ± 0.07 0.47 ± 0.07 0.55 ± 0.06 

Th 13.7 ± 1.5 16.6 ± 2.0 13.8 ± 2.2 17.2 ± 2.4 

 The parameter n represents the number of samples in each group.  

 

 

 

 

 

Figure 2 – PCA scores of elemental concentration data from Lago Grande and Osvaldo 

archaeological pottery combined after classification refinement. Ellipses 

represent the 95% confidence region.   
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 The computer packages Kohonen and CP-ANN (implemented in Matlab 7.6.0 

R2008a with the function newsom) were employed to calculate the SOMs (Ballabio et al., 

2009; Ballabio & Vasighi, 2012). It was adopted the non-supervised algorithm so that the 

previous classifications of samples by CA and PCA might not interfere in the learning 

procedure. After the convergence of maps comparisons between the classifications of 

samples were made. The parameters selected for the algorithm were (Lopez-Molinero et 

al., 2000; Tanevska et al., 2007; Toyota, 2009; Ballabio & Vasighi, 2012): 

 Model: non-supervised Kohonen map 

 Net geometry: hexagonal 

 Number of neurons: 7x7 

 Number of epochs: 500 

 Neighborhood function: Gaussian 

 Training algorithm: batch 

 Initialization of neuronal weighs: linear (from data eigenvectors) 

 Data transformation: base-10 logarithm 

 Initial learning rate: 0.5 

 Final learning rate: 0.01 

 In Fig. 3 and 4 the SOMs for Lago Grande and Osvaldo are presented, respectively. 

Fig. 3 shows that the SOM converged to a configuration where the samples from different 

chemical groups were allocated in different regions of the map. The white and hachured 

neurons represent approximately the different group domains. The group g1 has a higher 

number of neurons associated to it, and it may be correlate of a higher geochemical 

variation in the samples. In fact, by comparison of Fig. 2 and 3, regarding the refined PCA 

results, it is possible to observe that the 95% confidence ellipse associated to the group A 

(called g1 here) is larger than the ellipse associated to group B (called g2 here), which may 

be interpreted as another indication of the same higher geochemical variability. The same 

interpretation may be claimed for Fig. 3, regarding the SOM for Osvaldo archaeological 

site.  

  The higher chemical variability of group g1 in Lago Grande was interpreted as 

possible superposition of different clay recipes, and it was hypothesized that it may 

represent pottery shards from other archaeological sites in the region that have might 

participated in larger exchange networks than previously thought initially, and not only 

between Lago Grande and Osvaldo (Hazenfratz-Marks,  2014).  
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Figure 3 – Kohonen Map for the chemical groups of Lago Grande archaeological site. The 

symbols g1 and g2 represent different groups identified by CA and PCA 

analysis.  

 

 

 Fig. 4 refers to the application of SOM algorithm for the samples of pottery shards 

from Lago Grande and Osvaldo in a combined fashion. It was observed that the map 

converged to a configuration where the pottery shards of group g1 of Lago Grande and 

group g3 of Osvaldo presented superposition and were allocated in a common region in the 

map (white hexagons). This region is distinct from the region where the pottery shards 

from groups g2 of Lago Grande and g4 from Osvaldo were allocated, presenting the same 

superposition observed for groups g1 and g3 (blue hexagons). The three neurons 

highlighted in orange represent a transition region, with different mixing of samples. 

However, they represent the smallest portion of the map.  

 The results of the samples from Lago Grande and Osvaldo combined are in 

agreement with the combined CA and PCA analysis which identified at least two chemical 

groups of pottery shards for each archaeological site, with pairwise superposition, as it can 

be observed in Fig. 2.  
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Figure 4 – Kohonen Map for the chemical groups of Osvaldo archaeological site. The 

symbols g1 and g2 represent different groups identified by CA and PCA 

analysis.  

 

CONCLUSION 

The Kohonen maps applied to the geochemical data of pottery shards from Lago 

Grande and Osvaldo, two large and important sites in central Amazon, agreed with the 

results of previous multivariate statistical methods using cluster and principal component 

analysis. It indicates that the archaeological community can rely on the chemical groups of 

ceramic artifacts defined for those archaeological sites so far, and can use them for 

archaeological interpretation and basis for planning further research regarding the pre-

colonial Amazonian occupation.    

It was also verified the potential of the self-organizing maps for archaeometric data 

analysis and comparison with multivariate statistical methods which rely upon hypotheses 

regarding the normal distribution of data and the homogeneity of the covariance matrices. 

Such a comparison could indicate if the deviation of underlying hypotheses of more  
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traditional multivariate analysis would affect the results in pattern recognition, used 

frequently to analyse archaeometric data sets with the objective of identifying chemical 

groups of artifacts and provenance studies.  
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