OPTICAL AND MAGNETIC NANOCOMPOSITES CONTAINING Fe₃O₄@SiO₂ GRAFTED WITH Eu³⁺ AND Tb³⁺ COMPLEXES

L.U. Khan¹, D. Muraca², <u>H.F. Brito¹</u>, O. Moscoso-Londoño², M.C.F.C. Felinto³, K.R. Pirota², E.E.S. Teotonio⁴, O.L. Malta⁵

¹Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo-SP, Brazil.

²Institute of Physics "Gleb Wataghin", Condensed Matter Physics Department, State University of Campinas (UNICAMP), 13083-859 Campinas-SP, Brazil.

³Nuclear and Energy Research Institute (IPEN-CQMA), Av. Prof. Lineu Prestes, 2242, 05508-000, São Paulo-SP, Brazil.

⁴Department of Chemistry, Federal University of Paraiba, 58051-970 João Pessoa-PB, Brazil. ⁵Department of Fundamental Chemistry, Federal University of Pernambuco, 50670-901, Recife-

PE, Brazil

* corresponding author: <u>hefbrito@iq.usp.br</u>

Keywords: europium, terbium, magnetite, silica, photoluminescence and magnetism

The fabrication of bifunctional nanocomposites, co-assembling photonic (RE^{3+}) and magnetic (Fe₃O₄) features into single entity nanostructures is reported through a facile method, using Fe₃O₄ as core nanoparticles, which were coated with SiO₂ shell and further grafted with Eu³⁺ and Tb³⁺ complexes. The sophisticated structural features and morphologies of the core-shell Fe₃O₄@SiO₂-(TTA-RE-L) nanomaterials were studied by Small-angle X-ray Scattering.

The core mean size $\langle D_{\text{SAXS}} \rangle$, shell thickness ΔR , cluster size ξ and fractal dimension $D_{\rm F}$ were determined by fitting the experimental SAXS data, corroborating through Transmission Electron Microscopy images. The DC magnetic properties at temperatures of 2 and 300 K were explored in support to the structural conclusions from SAXS and TEM analyses. The magnetic contributions of the RE^{3+} ions to the magnetizations of the Eu^{3+} and Tb^{3+} nanocomposites were discussed. The photoluminescence properties of the Eu³⁺ and Tb³⁺ nanocomposites based on the emission spectral data and luminescence decay curves were studied (Fig.1). The experimental intensity parameters (Ω_{λ}) , lifetimes (τ) , emission quantum efficiencies (n) as well as radiative (A_{rad}) and non-radiative (A_{nrad}) decay rates were calculated and discussed, in addition, the structural conclusions from the values of the 4f-4f intensity para-

Fig. 1. Photographs of the $Fe_3O_4@SiO_2$ -(TTA-RE-L), (RE: Eu and Tb) nanocomposites, showing magnetic separation-redispersion process of the nanomaterials in the absence and under the UV irradiation lamp.

meters in the case of the Eu^{3+} ion. These novel Eu^{3+} and Tb^{3+} nanocomposites may act as red and green emitting layers for magnetic and light converting molecular devices.

Khan, L.U.; Brito, H.F.; Hölsä, J.; Pirota, K.R.; Muraca, D.; Felinto, M.C.F.C.; Teotonio, E.E.S.; Malta, O.L. *Inorg. Chem.*, **53** (2014) 2902.