Luminescent and Magnetic Composites: Study of Iron Oxide Induced Luminescence Quenching of Eu³⁺ ion

Latif U. Khan^{1*}, Luis F. M. Zambon¹, Hermi F. Brito¹, Maria C.F.C. Felinto³

¹Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo-SP, Brazil. ²Nuclear and Energy Research Institute (IPEN-COMA), Av. Prof. Lineu Prestes, 2242,

Nuclear and Energy Research Institute (IPEN-CQMA), AV. Prof. Lineu Prestes, 2242,

05508-000, São Paulo-SP, Brazil.

*e-mail: <u>latifkhn@iq.usp.br</u>

The bifunctional nanomaterials, co-assembling photonic and magnetic features into single entity nanostructures are remarkable for applications, such as biosensors for medical diagnosis and ionizing radiation scintillation. The preparation of these nanomaterials are accessible through facile methods, using iron oxide as core nanoparticles and RE³⁺ materials as luminescent center. The magnetic properties are usually due to the core Fe₃O₄ nanoparticles, however, the magnetic moments of the RE³⁺ ions are also contributed to the whole magnetization of these nanostructures. In addition, rare earth ions exhibit well-defined narrow emission bands in different spectral ranges from visible to near-infrared due to their 4f intraconfiguration transitions, giving the bifunctional nanomaterials efficient luminescent behavior. In the present work, the preparation strategy and characterizations of the bifunctional Fe₃O₄@Y₂O₃:Eu³⁺ Fe₃O₄@SiO₂@Y₂O₃:Eu³⁺, Fe₃O₄@SiO₂@Ag@Y₂O₃:Eu³⁺ and α -Fe₂O₃@Y₂O₃:Eu³⁺ materials are discussed. The DC magnetic properties (MH and ZFC/FC curves) and photoluminescence behavior of the RE³⁺ composites based on the emission spectral data and luminescence decay curves are studied. The experimental intensity parameters (Ω_{λ}), lifetimes (τ), emission quantum efficiencies (η) as well as radiative (A_{rad}) and non-radiative (Anrad) decay rates are calculated, in addition, based on these parameters iron oxide induced luminescence quenching of Eu³⁺ ion is studied.

Figure: Emission spectra of Fe₃O₄@Y₂O₃:Eu³⁺, Fe₃O₄@SiO₂@Y₂O₃:Eu³⁺ and Fe₃O₄@SiO₂@Ag@Y₂O₃:Eu³⁺ (left) as well as α -Fe₂O₃@Y₂O₃:Eu³⁺ (right) materials.

References

1. Khan, L. U.; Brito, H. F.; Hölsä, J.; Pirota, K. R.; Muraca, D.; Felinto, M. C. F. C.; Teotonio, E. E. S.; Malta, O. L.; *Inorg. Chem.* **2014**, *53*, 12902.

2. Khan, L. U.; Muraca, D.; Brito, H. F.; Moscoso-Londoño, O.; Felinto, M. C. F. C.; Pirota, K. R.; Teotonio, E. E. S.; Malta, O. L.; *Journal of Alloys and Compounds* **2016**, *686*, 453.

The authors are grateful for financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil).