Journal of Nuclear Materials 493 (2017) 30-39

Contents lists available at ScienceDirect

Journal of Nuclear Materials

journal homepage: www.elsevier.com/locate/jnucmat

Effect of $Al(OH)_3$ on the sintering of $UO_2-Gd_2O_3$ fuel pellets with addition of U_3O_8 from recycle

JOURNAL OF

192

Lauro Roberto dos Santos ^a, Michelangelo Durazzo ^{a, *}, Elita Fontenele Urano de Carvalho ^a, Humberto Gracher Riella ^{a, b}

^a Nuclear and Energy Research Institute – IPEN/CNEN-SP, São Paulo, Brazil

^b Chemical Engineering Department, Santa Catarina Federal University, Florianópolis, Brazil

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Sintering tests for UO_2 -7wt%Gd₂O₃ were performed with additions of Al(OH)₃ and U₃O₈.
- U₃O₈ addition does not interfere in the sintering behavior of the UO₂-Gd₂O₃ system when aluminum is added as a sintering aid.
- The presence of aluminum greatly improves the sinterability of the UO₂-Gd₂O₃ system.
- The characteristics of UO_2 -7wt% Gd_2O_3 pellets are adequate for use as fuel when $Al(OH)_3$ and U_3O_8 are added to the UO_2 - Gd_2O_3 .

A R T I C L E I N F O

Article history: Received 21 December 2016 Received in revised form 22 May 2017 Accepted 30 May 2017 Available online 3 June 2017

Keywords: Nuclear fuel Burnable poison Gadolinium oxide Uranium dioxide Sintering Fabrication

ABSTRACT

The incorporation of gadolinium as burnable poison directly into nuclear fuel is important for reactivity compensation, which enables longer fuel cycles. The function of the burnable poison fuel is to control the neutron population in the reactor core during its startup and the beginning of the fuel burning cycle to extend the use of the fuel. The implementation of UO₂-Gd₂O₃ poisoned fuel in Brazil has been proposed according to the future requirements established for the Angra-2 nuclear power plant. The UO₂ powder used is produced from the Ammonium Uranyl Carbonate (AUC). The incorporation of Gd₂O₃ powder directly into the AUC-derived UO₂ powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. The cause of the low densities is the bad sintering behavior of the UO₂-Gd₂O₃ mixed fuel, which shows a blockage in the sintering process that hinders the densification. This effect has been overcome by microdoping of the fuel with small quantities of aluminum. The process for manufacturing the fuel inevitably generates uranium-rich scraps from various sources. This residue is reincorporated into the production process in the form of U₃O₈ powder additions. The addition of U₃O₈ also hinders densification in sintering. This study was carried out to investigate the influence of both aluminum and U₃O₈ additives on the density of fuel pellets after sintering. As the effects of these additives are counterposed, this work studied the combined effect thereof, seeking to find an applicable composition for the production process. The experimental results demonstrated the effectiveness of aluminum, in the form of Al(OH)₃, as an additive to promote increase in the densification

* Corresponding author. Av. Prof. Lineu Prestes, 2242, Cidade Universitária, CEP 05508-000, São Paulo, SP, Brazil.

E-mail addresses: Irsantos@ipen.br (L.R. dos Santos), mdurazzo@ipen.br (M. Durazzo), elitaucf@ipen.br (E.F. Urano de Carvalho), humberto.riella@ufsc.br (H.G. Riella).

of the $(U,Gd)O_2$ pellets during sintering, even with high additions of U_3O_8 recycled from the manufacturing process.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Demands for extended fuel cycles and higher target burnups are a strong incentive to use Gd_2O_3 as a burnable poison in modern Pressurized Water Reactors. The use of a burnable poison in nuclear reactors provides the necessary negative moderator reactivity coefficient at the beginning of core life and helps shape core power distributions [1]. From a nuclear viewpoint, gadolinia is an excellent burnable poison, possessing a high-neutron absorption crosssection coupled to a burn-up rate that, if properly designed, can closely match ²³⁵U depletion, minimizing the reactivity penalty at the end-of-cycle (EOC) [2,3]. For these reasons, the implantation of UO_2 -Gd₂O₃ poisoned fuel in Brazil has been proposed in the future requirements established for the Angra-2 nuclear power plant.

From the different methods for the conversion of UF₆ to ceramic grade UO₂ on an industrial scale [4], the Ammonium Uranyl Carbonate (AUC) process [5] is the most attractive due to the smallest number of process steps involved. Due to the good characteristics of UO₂ powder derived from AUC, the fabrication process of UO₂-Gd₂O₃ fuel adopts the dry mechanical blending method to prepare the mixed powders. In this process, the Gd₂O₃ powder is incorporated to UO₂ powder and homogenized with no additional milling, prepressing and granulating steps, which are necessary when UO₂ powder is derived from other methods for the conversion of UF₆ [6,7]. Following this route, Gd₂O₃ powder is incorporated directly into UO₂ powder by mechanically dry mixing UO₂ and Gd₂O₃ powders, the so-called dry mechanical blending method. After blending, the UO₂-Gd₂O₃ mixed powders are pressed into pellet form, following sintering under reducing hydrogen atmosphere.

Experimental results [7-9] have shown that the incorporation of Gd₂O₃ powder into the AUC-derived UO₂ powder by the most attractive commercial method of dry mechanical blending leads to difficulties while obtaining sintered UO₂-Gd₂O₃ pellets with the minimum required density due to the deleterious effect of the Gd₂O₃ on the traditional UO₂ sintering behavior. Several studies have investigated the sintering of UO₂-Gd₂O₃ mixed oxides. The results have shown difficulties in sintering fuel pellets with the minimum specified density, of around 94% of the theoretical density. The sintering curves available in the literature show that the lower sintered densities are due to the abnormal sintering behavior of the UO₂-Gd₂O₃ fuel compared to the sintering behavior of the traditional UO₂ fuel. Dilatometric analyses show that at temperatures around 1100–1400 °C, the shrinkage of the UO₂-Gd₂O₃ pellets is delayed, the sintering rate decreases, and densification shifts to higher temperatures [7,9–11]. Previous work revealed the typical sintering curve showing this abnormal sintering behavior, as illustrated in Fig. 1 [9].

To overcome the problem of low densification of the UO_2 -Gd₂O₃ pellets in the sintering, Assmann et al. proposed the use of aluminum as a sintering aid [8]. The aluminum was added as Al(OH)₃ powder in the step of dry mixing of the UO₂ and Gd₂O₃ powders. The maximum aluminum concentration used was 200 ppm and depended on the concentration of Gd₂O₃ added to the fuel.

In a commercial UO₂ fuel pellet manufacturing process, defective sintered and green pellets are produced and they should be reused. A common recycling method is to oxidize them in the air to make recycled U_3O_8 powder, which is then added to UO_2 powder. INB (Indústrias Nucleares do Brasil S.A.) is the producer of UO_2 fuel pellets for the Brazilian nuclear power reactors. INB oxidizes the pellets at 380 °C during 20 h in an air atmosphere for dry recycling of defective UO_2 pellets. The pellets are spontaneously pulverized by the stress involved in the oxidation process. The U_3O_8 formed is then sieved through a sieve of 350 µm [12].

In this recycling process, however, the addition of U_3O_8 to UO_2 leads to a drop in the pellet density because the recycled U_3O_8 powder has a small surface area and thus poor sinterability compared to the raw UO_2 . In other words, the U_3O_8 addition decreases the sintered densities of UO_2 pellets because the specific surface area of the U_3O_8 powder is much lower (6.1 times) than that of UO_2 powder [12].

Therefore, both the addition of Gd_2O_3 (as burnable poison) and U_3O_8 (as recycling material) to the UO_2 powder causes the final density of the sintered pellets to decrease. As the use of $Al(OH)_3$ as a

Fig. 1. Effect of Gd₂O₃ on the sintering behavior of UO₂-Gd₂O₃ fuel pellets [9].

sintering aid has been demonstrated to be effective for Gd₂O₃ additions to the UO₂ [8], this work amplified previous studies [13,14] on the effect of Al(OH)₃ doping on the sintering of UO₂ pellets with combined additions of Gd₂O₃ and recycled U₃O₈ generated from defective UO₂-Gd₂O₃ pellets. The objective was to develop UO₂-Gd₂O₃ burnable poison containing pellets by using the mechanical blending of Al(OH)₃ as a sintering aid and U₃O₈ from the recycling of scrap.

2. Experimental

The process adopted to prepare UO₂-Gd₂O₃ pellets was through the dry mechanical mixing of UO₂ and Gd₂O₃ powders, together with densification additive Al(OH)₃ and fuel scrap as U₃O₈. The concentration of 7 wt% Gd₂O₃ was used in order to meet the specification for Angra-2 power plant. The concentrations of Al(OH)₃ and U₃O₈ as fuel scrap recycled are presented in Table 1. Two types of scrap were utilized in the study, green (GP) and sintered (SP) UO₂–Gd₂O₃ pellets (7 wt% Gd₂O₃). These are the main sources of recycling material in a typical manufacturing process. The U₃O₈ was produced by oxidation of scraps at 380 °C during 20 h, according to INB procedures [12].

The physical-chemical characteristics of UO₂ powder are typical for the powder derived from the AUC reconversion route [8]. The main impurities and physical characteristics of the UO₂ powder are listed in Table 2. The Gd₂O₃ powder was supplied by Alfa-Aesar (reference 11290) with purity 99.99%, particle size < 10 μ m. The Al(OH)₃ was also supplied by Alfa-Aesar (reference 12366).

The mixtures were prepared by using a Tubular Mixer for one hour to guarantee the homogeneity. The mixed powders were pressed under pressure of 400 MPa to produce green pellets 11.3 mm in diameter and about 12.7 mm in height. The green densities varied from 5.5 to 5.7 g/cm³ (50–52% of the UO₂ theoretical density, 10.96 g/cm³) and were calculated based on the mass and geometrical shape of the pellets.

The pellets were sintered under commercially pure hydrogen

Table 1

Concentration of additives adde	d to the UO ₂ -7wt%	Gd ₂ O ₃ powder

Al(OH) ₃ (wt%)	U ₃ O ₈ (wt%)	
	GP	SP
	(recycled green pellets)	(recycled sintered pellets)
0	0	0
	3	3
	7	7
	10	10
0.10	0	0
	3	3
	7	7
	10	10
0.15	0	0
	3	3
	7	7
	10	10
0.20	0	0
	3	3
	7	7
	10	10
0.25	0	0
	3	3
	7	7
	10	10
0.30	0	0
	3	3
	7	7
	10	10

Table

Physical-chemical characteristics of UO₂ powder.

Impurity	$(\mu g/g)$
Si	<0.112
Ca	<0.016
Fe	1.472 ± 0.126
Ni	0.224 ± 0.053
Zn	<1.223
Cl	<0.50
F	9.98 ± 1.60
N	13.42 ± 0.10
С	163.25 ± 11.57
Other	
0/U	2.25
Total U (%)	87.50 ± 0.50
Bulk Density (g/cm ³)	2.43 ± 0.01
Specific Surface Area (BET) (m ² /g)	5.24 ± 0.16
Average Particle Size (µm)	10.30 ± 0.71

(>99.95%) at 1750 °C during 4 h. Triplicate samples from each testing conditions were sintered. The main characteristics desired for the UO₂-Gd₂O₃ sintered pellets for use in the Angra-2 Pressurized Water Reactor are presented in Table 3. These were the parameters analyzed in this work.

The sintered pellets' density was determined by the immersion method. The method is based on the determination of the pellet volume and the volume of open and closed pores by measurement of the dry mass, the saturated mass and the immersed mass of the samples, according to the ISO 9278 standard [15]. Xylol was used as penetration immersion liquid.

The grain and pore sizes were determined by analyzing sections of the sintered pellets. The sintered pellets were sectioned axially and the sections were ground and polished according to traditional metallographic techniques. One sample of each combination of additive concentration was analyzed. Ten fields of each sample were analyzed. The mean grain size was determined by the linear intercept method (Heyn) according to the ASTM E112 standard [16]. The mean diameters of pores were measured directly from the polished sections of the sample by an image analysis system. The images were obtained with a scanning electron microscope using secondary electrons. Thermal etching was used to distinguish grain boundary. Thermal etching was carried out at 1400 °C for 3 h in a carbon dioxide atmosphere [12].

3. Results and discussion

Table 4 presents the results obtained for UO₂-7wt%Gd₂O₃ pellets with additions of 0, 3, 7 and 10 wt% of fuel scrap recycle. No addition of Al(OH)₃ was added to the samples. The specification for density has not been met, which is in agreement with the literature [8] and proved that it is necessary to use a sintering aid when Gd₂O₃ is incorporated into the UO₂ fuel. Fig. 2 shows that the final density achieved after sintering UO₂-7wt%Gd₂O₃ pellets without the addition of Al(OH)₃ did not meet the minimum specified value. The additions of U₃O₈ recycle further decrease the density of the pellets after sintering, even for small amounts of added U₃O₈. This behavior was also observed by Song et al. [17] and Yang et al. [18], who concluded that the UO₂ pellet density decreases almost linearly with the addition of U₃O₈. Fig. 2 also shows that the reduction of the sintered density was more pronounced in the case of the addition of U₃O₈ recycled from green pellets.

Fig. 3 shows a scanning electron micrograph illustrating the microstructure of a UO_2 -7wt%Gd₂O₃ pellet in which 10 wt% of U_3O_8 SP recycle was added, with no addition of Al(OH)₃. A high fraction of large pores can be seen due to the low density achieved after

Table 3

Main specifications for the UO₂-7wt%Gd₂O₃ sintered pellets.

density	9.98-10.28 g/cm ³
open porosity	≤3.0 vol%
average grain size	7 to 35 μ m in at least 90% of the cut surface
average size of pores	average diameter \leq 100 μm in at least 90% of the cut surface
resintering	change in density after annealing at 1700 $^\circ$ C during 24 h in a reducing atmosphere shall not be greater than 0.142 g/cm 3

Physical characteristics of UO₂-7wt%Gd₂O₃ sintered pellets without using densification additive Al (OH)₃.

U ₃ O ₈ (%)		density	open porosity(%)	average pore size (µm)	average grain size (µm)
SP	GP	(g/cm³)			
0	0	9.81 ± 0.02	4.02 ± 0.28	5.0 ± 4.1	4.4 ± 3.0
3	-	9.71 ± 0.02	3.64 ± 0.04	4.6 ± 3.6	4.7 ± 2.8
7	-	9.70 ± 0.01	3.74 ± 0.12	4.2 ± 3.5	3.9 ± 2.6
10	_	9.69 ± 0.00	3.78 ± 0.15	4.2 ± 3.0	4.4 ± 2.9
_	3	9.68 ± 0.01	3.89 ± 0.04	5.3 ± 4.2	4.0 ± 2.8
_	7	9.64 ± 0.01	4.17 ± 0.05	4.2 ± 3.5	4.5 ± 2.9
-	10	9.60 ± 0.01	4.55 ± 0.12	4.5 ± 3.7	4.2 ± 2.8

GP - recycled green pellets SP - recycled sintered pellets.

Fig. 2. Sintered densities of UO₂-7wt%Gd₂O₃ pellets with the addition of U₃O₈ recycle and no addition of Al(OH)₃.

sintering. The average grain size is smaller than the minimum value specified. Yang et al. [18] attributed the small grain size when U_3O_8 is added to the UO_2 to the presence of grapelike pore clusters that would not only reduce the density but also might act as obstacles to grain boundary migration, so grain growth could be impeded. This should be the cause for inhibiting the grain growth when U_3O_8 is added, although the pores were not observed in Fig. 3.

Table 5 presents the results obtained for UO₂-7wt%Gd₂O₃ pellets in which only Al(OH)₃ was added at concentrations of 0.10, 0.15, 0.20, 0.25 and 0.30 wt%. No U₃O₈ recycle was added. All UO₂-7wt% Gd₂O₃ sintered pellets showed physical characteristics in accordance with the specification. The addition of Al(OH)₃ promoted the densification in sintering and also the grain growth. Fig. 4 shows that the final density achieved after sintering UO₂-7wt%Gd₂O₃ pellets with the addition of Al(OH)₃ as a sintering aid met the minimum specified value for density. The values fit comfortably within the specified range even for small $Al(OH)_3$ addition, such as 0.10 wt%.

These results are in accordance with the results presented by Assmann et al. [8], where microdoping with 100 ppm of aluminum was enough to get the specified density after sintering $UO_2-Gd_2O_3$ pellets with 7 wt% Gd_2O_3 . The results presented in Fig. 4 showed that only 0.10 wt% of $Al(OH)_3$ (1000 ppm) is enough to meet the specification for the sintered density. This concentration is equivalent to 350 ppm of aluminum. The specification of the minimum density would be met with the addition of 190 ppm of aluminum, as illustrated in the graph. This is in accordance with what was stated by Assmann et al. [8].

Fig. 5 presents dilatometric curves illustrating the sintering behavior of UO_2 -7wt% Gd_2O_3 pellet with the addition of 0.20 wt%

Fig. 3. Micrograph illustrating the microstructure of $UO_2-7wt\%Gd_2O_3$ sintered pellet with the addition of U_3O_8 recycle SP and no addition of Al(OH)₃.

Al(OH)₃, which is the level of addition to achieve maximum densification of the system, as illustrated in Fig. 4. The dilatometric curves for UO₂-7wt% Gd₂O₃ pellet without Al(OH)₃ and for pure UO₂ pellet were also presented for comparison. The sintering behavior of UO₂-7wt% Gd₂O₃ and pure UO₂ pellets closely reproduced the results obtained in a previous work [9]. When Al(OH)₃ was added to the UO₂-7wt% Gd₂O₃ pellet, the densification before

the abrupt decrease in shrinkage due to the presence of Gd_2O_3 (sintering "blockage") was shifted towards lower temperatures, approaching the UO_2 curve. This demonstrates that the aluminum acted as a sintering aid.

Previous studies demonstrated that the retardation of shrinkage due to the presence of Gd_2O_3 is caused by the formation of pores during sintering. These new pores are formed due to the Kirkendall effect that occurs during the solubilization of gadolinium in the fluorite lattice of UO_2 [19]. The aluminum added as dopant also acts after the formation of the new pores due to the Kirkendall effect, recovering the densification in the final stage of sintering. As a result, the new pores would be eliminated and the total shrinkage during sintering approximates that achieved for pure UO_2 , as illustrated in Fig. 5.

Fig. 6 shows a scanning electron micrograph illustrating the microstructure of a UO_2 -7wt%Gd₂O₃ pellet in which 0.20 wt% of Al(OH)₃ was added, with no addition of U₃O₈. The average grain size was increased and the pore fraction was decreased compared with the pellet sintered without Al(OH)₃ addition (Fig. 3). This behavior is in accordance with other results from literature, which show that aluminum as a dopant improves grain growth in sintered UO₂ pellets, as well as other dopants such as Nb₂O₅ [18,20,21]. The microstructure is comparable to the microstructure of a typical pure ex-AUC UO₂ sintered pellet (Fig. 7) but with a slightly larger grain size.

Table 6 Presents the results obtained for sintered UO_2 -7wt% Gd_2O_3 pellets where the combined effects of both additives $Al(OH)_3$

Table 5

Physical characteristics of UO₂-7wt%Gd₂O₃ sintered pellets using Al(OH)₃ additive, without using U₃O₈ recycle.

y		8 (1)3,	8 9 9 9	
Al(OH) ₃ (%)	density (g/cm ³)	open porosity (%)	average pore size (µm)	average grain size (µm)
0.10	10.12 ± 0.02	0.20 ± 0.22	4.5 ± 3.7	10.0 ± 8.4
0.15	10.13 ± 0.03	0.11 ± 0.06	5.2 ± 4.1	8.6 ± 6.4
0.20	10.18 ± 0.03	0.15 ± 0.09	4.9 ± 4.4	10.4 ± 6.8
0.25	10.17 ± 0.02	0.20 ± 0.16	5.9 ± 4.3	10.9 ± 8.0
0.30	10.17 ± 0.02	0.20 ± 0.09	5.3 ± 4.9	9.9 ± 9.1

Fig. 4. Sintered densities of UO₂-7wt%Gd₂O₃ pellets with the addition of Al(OH)₃ and no addition of U₃O₈ recycle.

Fig. 5. Effect of Al(OH)₃ on the sintering behavior of UO₂-7wt%Gd₂O₃ pellets.

Fig. 6. Micrograph illustrating the microstructure of $UO_2\text{-}7wt\%Gd_2O_3$ sintered pellet with addition of 0.20 wt% Al(OH)_3 and no addition of U_3O_8 recycle.

Fig. 7. Micrograph illustrating the typical microstructure of ex-AUC UO_2 sintered pellet.

and U₃O₈ recycled from sintered pellets (SP) were evaluated.

It can be noted that the effects of the additives seem to be independent. The addition of Al(OH)₃ sufficiently increased the sintered density of UO₂-7wt%Gd₂O₃ for all levels of U₃O₈ additions. The specification for the density of all sintered pellets containing U₃O₈ recycle SP was met. A general lowering of the sintered densities was observed when U₃O₈ was added to the pellets doped with Al(OH)₃. Fig. 8 better illustrated this effect. The curves showed that the increasing of U₃O₈ concentration causes a decrease in the sintered density for all levels of Al(OH)3 additions. For Al(OH)3 additions higher than 0.20 wt%, the sintered densities tend to decrease for all concentrations of U₃O₈ added. For high U₃O₈ additions (7 and 10 wt%) and high addition of Al(OH)₃ (0.30 wt%), the sintered densities tend to decrease close to the minimum specified value. The highest densities were achieved for 0.20 wt% of Al(OH)₃ addition. For this level of Al(OH)₃ addition the density after sintering was placed comfortably within the specification range even for high concentrations of U_3O_8 added. Also, when 0.20 wt% of $Al(OH)_3$ was used as a sintering aid at the same time as U_3O_8 recycled from sintered pellets is added, the open porosity is lower than the maximum specified and the average grain size is higher than the minimum specified.

Fig. 9 illustrates the microstructure of a UO_2 -7wt%Gd₂O₃ pellet with additions of both Al(OH)₃ and U₃O₈ from sintered pellets (SP). The grain growth is expected with aluminum additions [18,20,21], even with the presence of Gd₂O₃ and U₃O₈, as can be seen in the microstructure. The microstructure shows regions with the grapelike pore clusters reported by Yang et al. [18], which would explain the lower sintered density when compared with the density achieved for pellets without U₃O₈ additions. A possible mechanism to explain the presence of the grapelike pore clusters could be the presence of U₃O₈ as agglomerates in the UO₂ powder after homogenization. After the reduction of U₃O₈ to UO₂ during the sintering cycle, these agglomerates would form a cluster of pores in a region where UO₂ would have low activity, which would make it difficult to eliminate this type of pores.

Table 7 presents the results obtained for sintered UO_2 -7wt% Gd_2O_3 pellets where the effects of U_3O_8 recycled from green pellets (GP) were evaluated. The results were similar to the results obtained from U_3O_8 recycled from sintered pellets (SP). However, when the added U_3O_8 is recycled from green pellets, the density

Table 6	
Physical characteristics of UO ₂ -7wt%Gd ₂ O ₃ sintered pellets using Al(OH) ₃ and U ₃ O ₈ recycled from sintered pellets (SP).	

composition		density (g/cm ³)	open porosity (%)	average pore size (µm)	average grain size (µm)
Al(OH) ₃ (wt%)	U ₃ O ₈ - SP (wt%)				
0.10	3	10.08 ± 0.02	0.21 ± 0.11	4.4 ± 3.6	9.3 ± 7.6
	7	10.07 ± 0.01	0.16 ± 0.06	4.3 ± 3.6	8.9 ± 7.6
	10	10.05 ± 0.02	0.14 ± 0.05	4.6 ± 3.8	8.5 ± 7.7
0.15	3	10.11 ± 0.02	0.16 ± 0.06	5.1 ± 4.1	7.8 ± 6.1
	7	10.10 ± 0.05	0.12 ± 0.06	5.2 ± 3.9	8.9 ± 9.3
	10	10.05 ± 0.06	0.48 ± 0.63	5.1 ± 4.0	8.5 ± 6.0
0.20	3	10.14 ± 0.01	0.17 ± 0.07	4.9 ± 4.6	9.5 ± 7.0
	7	10.12 ± 0.05	0.12 ± 0.03	5.1 ± 4.6	9.3 ± 6.4
	10	10.09 ± 0.02	0.14 ± 0.07	5.2 ± 4.5	9.6 ± 6.7
0.25	3	10.11 ± 0.02	0.19 ± 0.07	6.1 ± 4.6	10.4 ± 8.2
	7	10.08 ± 0.02	0.33 ± 0.17	5.9 ± 4.4	9.7 ± 7.9
	10	10.07 ± 0.03	0.12 ± 0.04	5.9 ± 4.4	10.6 ± 7.8
0.30	3	10.07 ± 0.06	0.13 ± 0.01	4.9 ± 4.5	9.5 ± 7.2
	7	10.03 ± 0.04	0.21 ± 0.18	5.2 ± 4.6	8.5 ± 6.3
	10	10.03 ± 0.03	0.35 ± 0.13	6.3 ± 6.4	9.4 ± 5.4

SP - recycled from sintered pellets.

Fig. 8. Sintered densities of UO2-7wt%Gd2O3 pellets with addition of Al(OH)3 and U3O8 recycled from sintered pellets.

decreasing is more accentuated for high U_3O_8 concentrations (7 and 10 wt%) and for low (0.10 wt%) and high (0.30 wt%) Al(OH)₃ additions. Fig. 10 illustrates these results. For intermediate additions of Al(OH)₃ (0.15–0.25 wt%) the densities of the sintered pellets were within the specified range.

The effects of the addition of U_3O_8 prepared from green (GP) and sintered (SP) pellets were similar. However, when the recycled U_3O_8 powder comes from green pellets, lower densities after sintering were observed for small additions of Al(OH)₃ (0.10 wt%). This could indicate that the amount of aluminum added was insufficient to improve the sintering of the system to compensate for the decrease in sintering caused by the addition of U_3O_8 from green pellets. An unexpected increase in dispersion of the results obtained for high concentrations of U_3O_8 (10 wt%) and Al(OH)₃ (0.30 wt%) was also observed. These observations could be related to the pore structure revealed by the microstructures. In general, a larger number of regions with grapelike pore clusters were observed, as illustrated in Fig. 11. Also, some regions with grapelike pore clusters were too large, as illustrated in Fig. 12. The pore structures suggest that high quantity of agglomerates were present when U_3O_8 from green pellets was added to the UO_2 powder. In addition, the size of U_3O_8 agglomerates from green pellets would be larger than the agglomerates from sintered pellets. This could be explained by a higher tendency to agglomerate for the U_3O_8 powder prepared from green pellets or by a higher resistance of these agglomerates to be disaggregated in the homogenization with UO_2 powder.

Fig. 13 presents dilatometric curves illustrating the sintering behavior of UO_2 -7wt% Gd_2O_3 pellet with additions of 0.20 wt% $Al(OH)_3$ and 7 wt% of U_3O_8 prepared from both sintered and green pellets. All the sintering curves were very similar, including the curve for the pellet without the addition of U_3O_8 . This shows that the presence of U_3O_8 did not alter the mechanism related to the presence of Gd_2O_3 and the role of aluminum in this mechanism.

The resintering test consists of subjecting the pellets to high temperature for a long time aiming to simulate the shrinkage

Fig. 9. Micrograph illustrating the microstructure of UO_2 -7wt%Gd₂O₃ sintered pellet with the addition of 0.20 wt% Al(OH)₃ and 7 wt% of U₃O₈ recycled from sintered pellets (SP).

during operation in the reactor core. The analysis is made by measuring the variation of the density of the sintered pellet after the resintering test. The test was performed at a temperature of 1720 °C for 24 h in a reducing atmosphere. The increase in density after resintering is expected to be less than 0.142 g/cm³, as recommended for the fuel to be used in the Angra-2 power reactor. Due to the experimental limitation in view of the high temperature of the resintering test and the long residence time at that temperature, only one sample was submitted to this test.

The resintering test was conducted using all the concentrations of the two types of U_3O_8 recycle (3, 7 and 10 wt%/SP and GP) combined with the concentration of 0.20 wt% Al(OH)₃. For the other concentrations of Al(OH)₃ (0.10, 0.15, 0.25 and 0.30 wt%), the concentration of U_3O_8 was fixed in 7 wt% for each type of U_3O_8 recycle (SP and GP). Table 8 presents the results obtained with the resintering test. The results showed that the densities measured after the resintering test were very close to the densities of the pellets before the test. The maximum variation was 0.04 g/cm³, well below the maximum recommended variation of 0.142 g/cm³.

Table 7

Physical characteristics of UO2-7wt%Gd2O3 sintered pellets using Al(OH)3 and U3O8 recycled from green pellets (GP)

composition		density (g/cm ³)	open porosity (%)	average pore size (µm)	average grain size (µm)
Al(OH) ₃ (wt%)	U ₃ O ₈ - GP (wt%)				
0.10	3	10.07 ± 0.01	0.18 ± 0.15	4.6 ± 4.2	9.8 ± 8.2
	7	10.00 ± 0.03	0.27 ± 0.06	4.7 ± 4.2	9.2 ± 7.3
	10	9.94 ± 0.02	0.69 ± 0.16	4.7 ± 4.0	8.7 ± 6.7
0.15	3	10.10 ± 0.02	0.33 ± 0.25	5.2 ± 4.2	8.9 ± 5.9
	7	10.08 ± 0.02	0.20 ± 0.07	5.0 ± 4.0	9.2 ± 6.0
	10	10.07 ± 0.02	0.16 ± 0.04	4.8 ± 4.0	9.1 ± 6.0
0.20	3	10.16 ± 0.01	0.15 ± 0.02	5.3 ± 4.9	10.3 ± 7.0
	7	10.15 ± 0.02	0.24 ± 0.08	5.9 ± 4.8	9.0 ± 6.9
	10	10.14 ± 0.04	0.20 ± 0.16	5.1 ± 4.1	8.0 ± 6.0
0.25	3	10.15 ± 0.03	0.15 ± 0.10	6.0 ± 4.5	10.8 ± 8.1
	7	10.11 ± 0.02	0.32 ± 0.05	5.9 ± 4.7	10.4 ± 8.1
	10	10.10 ± 0.01	0.18 ± 0.02	6.0 ± 4.5	10.6 ± 7.7
0.30	3	10.14 ± 0.03	0.17 ± 0.16	4.4 ± 3.6	8.4 ± 6.4
	7	10.09 ± 0.01	0.24 ± 0.07	6.5 ± 5.7	8.2 ± 7.0
	10	9.94 ± 0.12	0.42 ± 0.21	6.3 ± 4.9	7.6 ± 5.8

GP - recycled from green pellets.

Fig. 10. Sintered densities of UO₂-7wt%Gd₂O₃ pellets with the addition of Al(OH)₃ and U₃O₈ recycled from green pellets.

Table 8

Fig. 12. Micrograph illustrating the microstructure of UO_2 -7wt%Gd₂O₃ sintered pellet with the addition of 0.30 wt% Al(OH)₃ and 10 wt% of U₃O₈ recycled from green pellets (GP). Large size grapelike pore clusters region can be seen.

Density variation for UO_2 -7wt%Gd $_2O_3$ sintered pellets after resintering.					
Al(OH) ₃ (wt%)	U ₃ O ₈ (wt%)		sintered density	resintered density	density variation
	SP	GP	(g/cm ³)	(g/cm^3)	(g/cm ³)
0.10	7	_	10.07	10.09	0.02
0.10	_	7	9.99	10.00	0.01
0.15	7	_	10.11	10.11	0.00
0.15	_	7	10.08	10.09	0.01
0.20	no U3	08	10.18	10.18	0.00
	additio	on			
0.20	3	_	10.14	10.16	0.02
0.20	7	_	10.12	10.12	0.00
0.20	10	_	10.09	10.11	0.02
0.20	_	3	10.15	10.16	0.01
0.20	_	7	10.13	10.14	0.01
0.20	-	10	10.18	10.18	0.00
0.25	7	-	10.06	10.10	0.04
0.25	_	7	10.09	10.13	0.04
0.30	7	_	10.04	10.07	0.03
0.30	_	7	10.10	10.13	0.03

4. Conclusions

The experimental results showed the effectiveness of the Al(OH)₃ as an additive to promote the increase in the densification of the (U.Gd)O₂ pellets during sintering. It was found that the addition of Al(OH)₃ is essential to reach the desired density and open porosity. By using additions between 0.15 and 0.25 wt% Al(OH)₃, all the recommended features of the UO₂-7wt%Gd₂O₃ sintered pellets were achieved. The densities after sintering fit comfortably within the desired range even for U₃O₈ additions as large as 10 wt%. Furthermore, the open porosity, as well as the average size of pores, has complied with the recommendations for the fuel for the Angra-2 power reactor. This is valid for U₃O₈ recycled from both green and sintered UO₂-7wt%Gd₂O₃ defective pellets.

Regarding the average grain size, considering the values obtained and the error associated with them, it cannot be safely concluded that the recommendation for Angra-2 fuel was met. A complementary work regarding the dependence of grain size on the additives studied in this work is necessary.

Fig. 13. Effect of U₃O₈ on the sintering behavior of UO₂-7wt%Gd₂O₃ pellets doped with 0.20 wt% Al(OH)₃.

From the observations from the experimental sintering curves, it can be inferred that the aluminum acts in the sintering process both before and after pore formation due to the Kirkendall effect, which occurs when the gadolinium is solubilized in the fluorite lattice of UO₂. When aluminum is added, the densification before the gadolinium solubilization is shifted towards lower temperatures, approaching the UO₂ curve. After the formation of the new pores due to the Kirkendall effect, the aluminum acts recovering the densification in the final stage of sintering. The experimental results also showed that the presence of U₃O₈ does not alter the mechanism related to the presence of Gd₂O₃ and the role of aluminum in this mechanism. The sintering curves are very similar and the decrease in shrinkage during sintering due to the presence of U_3O_8 is negligible.

References

- [1] W. Böhm, H.D. Kiehlmann, A. Neufert, M. Peehs, Gd₂O₃ up to 9 weight percent. An established burnable poison for advanced fuel management in pressurized water reactors, Kerntechnik 50 (4) (1987) 234.
- [2] E. Hellstrand, Burnable poison reactivity control and other techniques to increase fuel burnup in LWR fuel cycles, Trans. Am. Nucl. Soc. 40 (1982) 181.
- [3] F.B. Skogen, L.A. Nielsen, R.G. Grummer, Operation experience with Exxon nuclear-supplied gadolinia in pressurized water reactors, Trans. Am. Nucl. Soc. 40 (1982) 194.
- [4] S.G. Brandberg, The conversion of uranium hexafluoride to uranium dioxide, Nucl. Technol. 18 (1973) 177.
- [5] H. Assmann, M. Becker, Technology of UO₂ fuel fabrication by the AUC powder process, Trans. Am. Nucl. Soc. 31 (1979) 147.
- [6] H. Assmann, W. Dörr, Microstructure and density of UO₂ pellets for light water reactors as related to powder properties, Mater. Sci. Monogr. 16 (1983) 707.
- R. Manzel, W. Dörr, Manufacturing and irradiation experience with UO₂/ Gd₂O₃ fuel, Am. Ceram. Soc. Bull. 59 (6) (1980) 601.
- [8] H. Assmann, M. Peehs, H. Roepenack, Survey of binary oxide fuel

manufacturing and quality control, J. Nucl. Mater 153 (1988) 115.

- [9] M. Durazzo, F.B.V. Oliveira, E.F. Urano de Carvalho, H.G. Riella, Phase studies in the UO₂-Gd₂O₃ system, J. Nucl. Mater 400 (2010) 1183.
- [10] K.W. Song, K.S. Kim, J.H. Yang, K.W. Kang, Y.H. Jung, A mechanism for the sintered density decrease of UO2-Gd2O3 pellets under an oxidizing atmosphere, J. Nucl. Mater 288 (2001) 92.
- [11] R. Yuda, K. Une, Effect of sintering atmosphere on the densification of UO₂-Gd₂O₃ compacts, J. Nucl. Mater 178 (1991) 195.
- [12] D.R. Costa, F.I. Ezequiel, I.P.R. Carnaval, R.A. Barbosa, Effects of U₃O₈ Addition on Microstructure of UO₂-Doped and Undoped Ceramic Fuel Pellets, 21° CBECIMAT - Congresso Brasileiro de Engenharia e Ciência dos Materiais. Cuiabá, MT, Brazil, November 09-13, 2014. http://www.metallum.com.br/ 21cbecimat/CD/PDF/114-002.pdf.
- [13] L. R. Santos, H. G. Riella. Effect of additives in sintering UO2-7wt%Gd2O3 fuel pellets. Seventh International Latin American Conference on Powder Technology, November 08-10, 2009, Atibaia, SP, Brazil,
- [14] L.R. Santos, H.G. Riella, Effect of densification additive (Al(OH)3) and U308 recycle in Sintering UO2-7wt%Gd2O3 fuel pellets. 2009 International Nuclear Atlantic Conference - INAC 2009, September 27-October 2, 2009. Rio de Ianeiro, RI, Brazil.
- [15] International Organization for Standardization, Nuclear Energy Uranium Dioxide Pellets — Determination of Density and Volume Fraction of Open and Closed Porosity, second ed., International Standard ISO-9278, 2008.
- [16] American Society for Testing and Materials, Standard Test Methods for Determining Average Grain Size, ASTM International, 2013, p. E112. ASTM. [17] K.W. Song, K.S. Kim, Y.M. Kim, Y.H. Jung, Sintering of mixed UO₂ and U₃O₈
- powder compacts, J. Nucl. Mat. 277 (2000) 123.
- [18] J.H. Yang, K.W. Kang, K.S. Kim, Y.W. Rhee, K.W. Song, Recycling process for sinter-active U₃O₈ powders, J. Nucl. Sci. Technol. 47 (6) (2010) 538.
- [19] M. Durazzo, A.M. Saliba-Silva, E.F. Urano de Carvalho, H.G Riella, Sintering behavior of UO2-Gd2O3 fuel: pore formation mechanism, J. Nucl. Mater 433 (2013) 334.
- [20] S. Kashibe, K. Une, Effect of additives (Cr₂O₃, Al₂O₃, SiO₂, MgO) on diffusional release of Xe from UO2 fuels, J. Nucl. Mater 254 (1998) 234.
- [21] D.R. Costa, F.J. Ezequiel, R. Gonzaga, S.H. Bernardelli, Individual influence of Al₂O₃ and Nb₂O₅ on grain growth of UO₂ sintered pellets manufactured at INB, in: 2013 International Nuclear Atlantic Conference - INAC 2013, November 24-29, 2013 (Recife, PE, Brazil).