Sr₂MgSi₂O₇:Eu²⁺, Dy³⁺ long persistent luminescence material synthesized by microwave-assisted solid-state method (MASS)

L. G. Merízio^{1,*}, E. Bonturim², I. G. N. Silva¹, L. C. V. Rodrigues¹, H. F. Brito¹

¹Chemistry Institute, University of São Paulo, SP, Brazil. ²Instituto de Pesquisas Energéticas e Nucleares, SP, Brazil * Corresponding author: lmerizio@ig.usp.br

Persistent luminescence materials can emit light for several hours after ceasing an irradiation source. Studies involving these materials have increased in lasts years mainly due to their singular properties ¹. Dissilicates ($Sr_2MgSi_2O_7$) present promising results, however the ordinary processes require high annealing temperatures and time (~1200 °C, 5 h). A current challenge is find alternatives synthesis methods that can reduce these elevated time and temperatures required. Microwave-Assisted Solid-State synthesis (MASS) is an excellent alternative that can achieve high temperatures in only a few minutes allowing synthesis times around 25 minutes. In this work, Sr₂MgSi₂O₇:Eu²⁺,Dy³⁺ was synthesized by MASS. The SrCO₃, (MgCO₃)₄(Mg(OH)₂), SiO₂, and R₂O₃, (R³⁺: Eu, Dy) precursors were grinded and then annealed in a domestic microwave oven using carbon as susceptor at 1000 W for 10 minutes and 900 W for 15 minutes. The excitation spectrum (Fig.1 left red) shows a broad band from 250 to 450 nm assigned to the Eu²⁺ 4f⁶5d¹ \leftarrow 4f⁷ transitions. Several Eu³⁺ 4f – 4f absorption peaks are observed at e.g. 396, 420 and 450 nm. The emission spectra (Fig. 1, left blue) shows a broad band centered at 470 nm arising from Eu²⁺ parity allowed $4f^{6}5d^{1} \rightarrow 4f^{7}$ transition with no Eu^{3+} emission, which indicates energy transfer from Eu^{3+} to Eu^{2+} . The CIE chromaticity diagram (Fig. 1 right) shows a blue color (x: 0.105; y: 0.236). An important characteristic of this material is the possibility to excite efficiently in the visible range (blue region), allowing applications in the storage of sun light energy.

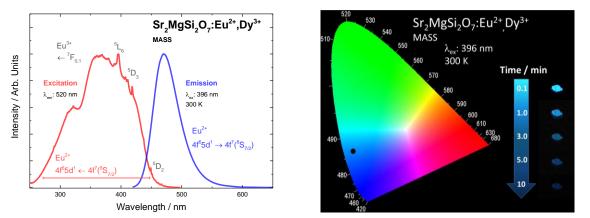


Fig. 1 – Excitation (left, red), emission (left, blue) spectra, CIE coordinates diagram and photos of persistent luminescence after ceasing 365 nm irradiation (right) of $Sr_2MgSi_2O_7$:Eu²⁺,Dy³⁺ material prepared by MASS.

Keywords: Blue emission photonic material, Light storage, Divalent europium (Eu²⁺), Persistent luminescence, Microwave-assisted solid-state synthesis (MASS).

Acknowledgements

This work was supported by CNPq and CAPES.

References

[1] H. F. Brito, J. Hölsä, T. Laamanen, M. Lastusaari, M. Malkamäki, L. C. V Rodrigues, Opt. Mater. Express. 2 (2012) 371–381.

18th International Conference on Luminescence – ICL 2017, from August 27th to September 1st 2017, João Pessoa, Paraíba, Brazil.