Temperature anomalies of the hyperfine magnetic fields on ¹¹¹Cd probe nuclei in ferro- and antiferromagnetic phases of the ordered FeRh alloys

V. I. Krylov, B. Bosch-Santos, G. A. Cabrera-Pasca, A. W. Carbonari, R. N. Saxena, J. Mestnik-Filho

Instituto de Pesquisas Energéticas e Nucleares, IPEN, São Paulo, Brazil

FeRh ordered alloy crystallizes in the bcc B2 structure [1], presents first order phase transition from antiferromagnetic (AF) ordering at low temperature to ferromagnetic (F) state above 350 K [2], and shows significant magnetocaloric effect near RT [3]. Recently, FeRh alloy has also been considered as an interesting material for spintronics applications [4].

In the AF state, FeRh has compensated AFII-type magnetic structure with $\mu_{\text{Fe}}{=}3.3~\mu_{\text{B}}$ and $\mu_{\text{Rh}}{=}0$. In the F state of FeRh both Fe and Rh atoms have magnetic moments of $\mu_{\text{Fe}}{=}3.2~\mu_{\text{B}}$ and $\mu_{\text{Rh}}{=}0.9~\mu_{\text{B}}$, respectively [5]. The Fe - Rh compounds were studied by Mössbauer spectroscopy (MS) on ^{57}Fe [6, 7] and ^{119}Sn probe nuclei [8].

In this work, we have, for the first time, investigated the HFs for ^{111}Cd probe atoms in two FeRh samples of different composition by perturbed $\gamma\text{-}\gamma$ angular correlation (PAC) spectroscopy in the range from 40 K to a temperature above the T_{c} . The alloy Fe $_{0.48}\text{Rh}_{0.52}$ (A1 sample) is AF at low temperatures. At the temperature T_{t} = 345 K the first order phase transition is observed, and this compound becomes F at the temperatures lower than T_{c} = 685 K. The alloy Fe $_{0.52}\text{Rh}_{0.48}$ (A2 sample) is only ferromagnetic below T_{c} = 800 K. It was established that in both alloys ^{111}Cd probes substitute only Fe ions.

The HFs values extrapolated to 0 K were found to be $B_1(0)$ =8.70(5) T and $B_2(0)$ =5.53(5) T for AF and F ordering of A_1 and A_2 samples, respectively. The HF in the AF state is almost 60% higher than the HF in the F alloy. The dependences B_1 (T) and B_2 (T) show anomalous behavior. At T_t = 345 K, phase transition AF-F is accompanied by a sharp decrease in the HF at 111 Cd probe nuclei. Earlier, an increase of the corresponding HFs was observed for 57 Fe atoms and 119 Sn impurity atoms in the region of AF-F transition by MS in [6] and [8]. Analysis of B_1 (T) and B_2 (T) has allowed to obtain the temperature dependences of the competing contributions B_{Fe} (T) and B_{Rh} (T) to the HFs on 111 Cd probe nuclei in FeRh alloys.

- [1]. M. Fallot., Ann. Phys. (Paris) 10, 291 (1938)
- [2]. G. Shirane et al., Suppl. J. Appl. Phys. 33, 1044 (1963)
- [3]. M. P. Annaorazov et al., J. Appl. Phys. 79, 1689, (1996)
- [4]. X. Marti et al., Nature Materials, 13 April 2014
- [5]. F. Bertaut et al., Compt. Rend. 256, 1668 (1963)

- [6]. G. Shirane et al., Phys. Rev. 131, 183 (1963)
- [7]. Luke S.-J. Peng and Gary S. Collins., Mat. Res. Soc. Symp. Proc. 481, 631 (1998)
- [8]. N. N. Delyagin and E. N. Kornienko., Sov. Phys. JETP, 32, 832 (1971)