Cristallite size tuning on magnetocaloric effect of ball milled HoAl₂

<u>Vinícius Gomes de Paula</u>¹, Delcicleide Costa dos Reis², Luzeli Moreira da Silva², Adenilson Oliveira dos Santos², Rossano Lang Carvalho³, Larissa Otubo⁴, Adelino de Aguiar Coelho¹, Lisandro Cardoso¹

¹Instituto de Física Gleb Wataghin - UNICAMP, ²Universidade Federal do Maranhão, ³Universidade Federal de São Paulo - Campus São José dos Campos, ⁴Instituto de Pesquisas Energéticas e Nucleares

e-mail: vinicius.gomes.paula@gmail.com

The magnetocaloric effect (MCE) is the basis for alternative, environment-friendly new refrigeration technologies. It is an intrinsic property of all magnetic materials, occurring as a consequence of the coupling among external applied field and the magnetic sub-lattice. [1] In this study, we report on the synthesis, microstructural and magnetic characterization of mechanically milled HoAl₂ compound. The samples were investigated by using x-ray diffraction, scanning electron microscopy (SEM) and magnetization measurements. HoAl₂ polycrystalline sample were submitted to a milling process using high energy ball mill in order to produce metallic nanoparticles. The bulk sample show single phase with cubic MgCu₂- type structure. The lattice parameter was not significant changed by milling process up to 20 h of milling time. On the other hand, the crystallite size is strongly reduced reaching 28 nm for 20 h sample. Magnetic measurement show ferromagnetic phase transition around 32 K for bulk and all milled samples. A contribution related with spin reorientation is also observed below 20K, which becomes more pronounced as milling time increase. The magnetization of saturation reduces from 8.4 (bulk sample) to 6.2 $\mu_B/u.f.$ (20 h sample), due to the weakening of long-range magnetic ordering caused by size effects. The mechanical milling reduces the maximum values of magnetic entropy change (-DS_M ^{max}) from 30 J/kgK (bulk sample) to 15 J/kgK (20 h milled sample). A significant broadening in the $-DS_M$ peak profile is observed as the milling time increase, which enhance in the full width half maximum (δT_{FWHM}) of entropy change peak. High values of $\delta T_{\scriptscriptstyle FWHM}$ are associated with a large operation temperature range of magnetic refrigerator prototypes making the milled HoAl₂ interesting for magnetic refrigeration purposes.

Acknowledgements: CNPq and FAPEMA

References:

[1] V. K. Pecharsky et al., Phys. Rev. B 64, 144406 (2001).