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ABSTRACT 

 
Nuclear power plants must operate with minimal risk. The nuclear power plants licensing process is based on a 

paired model, combining probabilistic and deterministic approaches to improve fuel rod performance during both 

steady state and transient events. In this study, performance fuel codes were used to simulate the test rod IFA-

650-4, with a burnup of 92 GWd/MTU within a Halden reactor. In a loss-of-coolant test, the cladding failed within 

336 s after reaching a temperature of 800 °C. Nuclear systems work with many imprecise values that must be 

quantified and propagated. These sources were separated by physical models or boundary conditions describing 

fuel thermal conductibility, fission gas release, and creep rates. These factors change output responses. 

Manufacturing tolerances show dimensional variations for fuel rods, and boundary conditions within the system 

are characterized using small ranges that can spread throughout the system. To identify the input parameters that 

produce output effects, we used Pearson coefficients between input and output. These input values represent 

uncertainties using a stochastic technique that can define the effect of input parameters on the establishment of 

realistic safety limits. Random sampling provided a set of runs for independent variables proposed by Wilks' 

formulation. The number of samples required to achieve the 95th percentile, with 95% confidence, depending on 

verifying the confidence interval to each output. The FRAPTRAN code utilized a module to reproduce the plastic 

response, defining the failure limit of the fuel rod.  

 

 

1. INTRODUCTION  

 

Sensitivity analysis has long been the key issue for improving nuclear reactor design and safety. 

Nuclear fuel systems have at least three uncertainty sources that must calculate results with 

variations. First imprecision source is the manufacturing tolerances regarding core 

components. Second cause arises from environment determining boundary conditions. The last 

source created by inaccuracy in the evaluation of physical models adopted. In recent decades, 

progress regarding uncertainty and sensitivity analysis (UASA) has been used for risk 

management. Uncertainty analyses follow the same stages as best-estimate models. First, they 

must identify key features of the input of the systems, which generate a global influence on 

output. Initially, this identification is based on the nuclear plant type and the licensing code. 

The computed uncertainty of inputs differs from the elements considered as output items, and 

a large amount of code is run to identify the inner propagation models (using the Monte Carlo 

simulation). The key features of the uncertainty source must be identified, such as 

manufacturing tolerances, initial conditions, and the aggregated effect spread through inner 

physical models. 
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In this study, the major goals were to measure the uncertainty for light water reactors (LWRs), 

do a fuel analysis during transients (such as during a loss-of-coolant accident or LOCA), and 

test reactivity initiated accidents (RIAs). We also describe a method for estimating more 

realistic safety bands based on those uncertainties. To do this, it was necessary to quantify the 

uncertainty contribution of each input, producing a sensitivity analysis for the effect reduction 

of the largest contributors. By examining the correlation indices, we can reduce the impact on 

changes in fuel designs.  

 

Building a UASA consists of measuring and quantifying inaccuracies. This stage utilized a 

probability density function (PDF), where uncertainties are spread from inputs into the nuclear 

system. Gaussian functions represent the deviances of the input parameter, as derived from 

empirical experiments. The interpretation of results was based on a simulation using fuel code 

coupled as the optimization software. The last phase sought to discover dependencies between 

the input and output using the Pearson or Spearman correlation indices. 

1.1 Reactor Safety Regulation and Probabilistic Methods 

 

The safety assessment process used by nuclear plants estimates the failure of structural 

elements. Safety thresholds were developed empirically, based on conservative analyses. These 

rules defined the criterion for the Emergency Cool Cooling System (ECCS) guidelines, which 

is the most critical safety system for nuclear plants. ECCS shows functions predominantly for 

guaranteeing the integrity of the reactor core in case of accidents. In 1974, the emergency 

cooling criteria was used to create the Design Bases Accident (DBA), which sets forth the 

minimum RIA a facility must be able to withstand. The DBA, however, has drawbacks due to 

its conservative rules [1]. Nuclear systems are extremely nonlinear, and the assumptions 

adopted helped solve this problem in a simple manner. In last decade, the rules have been 

revised to allow for practical methods of complementing risk assessments using a purely 

deterministic approach. The amended Code of Federal Regulations (10-CFR50.46) adopted 

Best Estimate (BE) models in its search for realistic models for LOCA accidents due to cold 

leg rupture of pressurized water reactors [2]. 

1.2 Best Estimate  

 

USNRC proposed the first initiatives to define uncertainty analysis in 1988. New rules set to 

the licensing process of LWRs based on the code scaling, applicability, and uncertainty 

(CSAU) methodologies [3]. Worldwide, many models were created for risk analyses as applied 

to the licensing of nuclear units. In Italy, the University of Pisa created the Based-on-Accuracy 

Extrapolation (UMAE) [4], and UMAE-CSAU is considered as percussion models for 

licensing [5]. Use of the Best Estimate Plus Uncertainty (BEPU) model introduced between 

1974 and 1986 [6]. Currently, CFR guidelines allow the use of coupled models that use best 

estimate methods coupled with the conservative models. BE methods are used for licensing 

codes for the calculation of nuclear transients in a more realistic way, versus the classical style. 

A risk analysis must identify all parameters that could affect a system’s response. The fuel code 

can calculate uncertainties using physical models such as the thermal conductivity of the fuel. 

These rules define the safety criterion and margins only by deterministic limits. The risk 

assessment may make estimates based on a combination of both conservative and probabilistic 

models [7]. The treatment of uncertainty aims for an increased power output by the reactors, 

with a lower investment.  
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1.2 Fuel Code Performance 

 

In 1975, the first version of fuel performance code was presented in A Computer Code for the 

Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods (FRAPCON) 

[8]. The system code simulates fuel performance for the licensing process used by the USNRC 

guideline Standard Review Plan Section 4.2. The fuel code is an analytical tool that calculates 

behavior under the irradiation of an LWR fuel rod. The code is applied when power variations 

and boundary conditions are slow enough so that the term permanent regime is applied. Also, 

it can include many situations (such as long periods at a constant power, or slow power ramps) 

which are typical of normal operations within a nuclear reactor. The fuel code calculates the 

time variances for all significant variables of the fuel rod, including; fuel temperatures, 

deformations, densification, swelling, and fission gas release (FGR). These fuel codes use a 

finite difference heat conduction model within the mechanical model (FRACAS), and for the 

solution of thermal equations in a transient. The physical models must consider a loss of 

mechanical propensities by the irradiation. Capabilities for modeling uncertainty were also 

incorporated into the physical models of FRAPCON. The FRAPTRAN (fuel rod analysis 

program transient) is used to calculate the thermal and mechanical fuel response to a regime of 

LWR transients [9]. 

1.3 DAKOTA Toolkit  

 

In 1996, work began on a software (developed at Sandia National Laboratories or SNL) for 

global optimization of complex systems. The Design Analysis Kit for Optimization and 

Terascale applications (DAKOTA) uses the C++ object-oriented programming language, and 

currently produces a flexible interface for iteration at a systems level. The computational 

models used in DAKOTA were evaluated based on a system’s structural mechanics. It also 

checks for heat transfer, fluid mechanics, physical shock, and nuchal systems and makes it 

possible to predict the behavior of complex systems.  

 

Often, DAKOTA simulations are used as virtual prototypes to obtain acceptable or optimized 

designs for a given system. Its interface is well generalized, encompassing fuel performance 

codes such as FRAPCON. The analysis kit contains several algorithms capable of 

implementing optimization models and quantifying uncertainty [10]. The toolkit has several 

resources allowing for complex projects that lead to a better understanding of the behaviors of 

the system. It was created for uncertainties treatment, having the ability to perform an analysis 

of complex systems. It also implements sampling models such as Monte Carlo and Latin 

Hypercube Sampling (LHS). The fuel codes, along with DAKOTA, help perform the 

sensitivity and variance analyses. 

 

 

2. OVERVIEW OF UNCERTAINTY ANALYSIS METHODOLOGIES 

 

2.1. Sample Size Determination for Tolerance Limits 

 

The Wilks’ formulation serves to determine the minimum number of code runs needed to reach 

significance, combined with the desired confidence level within tolerance bounds. Wilks 

proposed a way for estimating sample sizes as a function of the tolerance limits using Static-

Order [11]. The formula proves that a random sample of a population between two different 
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orders do not show any dependence on the population tested [12]. Eqs. (1) and (2) describe the 

Wilks’ formulation: 

 

  n1       (1) 

 

  1)1(1 nn n      (2) 

 

where β is the expected tolerance interval, β = 0.95, γ is the confidence level (γ=0.95), α is the 

quantile, and N (α, β) describes the sample size [13]. Since 1990, the Wilks’ formulation has 

been used in the determination of nuclear safety. The minimum number of trials for a given 

95% quantile, and a confidence level of 95% is shown in Table 1 [14]. 

 

Table 1: Number minimum of trials 

 
Confidence level One-side Two-side 

β\α 0.90 0.95 0.99 0.90 0.95 0.99 
0.90 22 45 230 38 77 388 
0.95 29 59 299 46 93 473 
0.99 44 90 459 64 130 662 

 

2.2 Latin Hypercube Sample  

 

Latin Hypercube Sample (LHS) is a way to perform random sampling (such as a Monte Carlo 

sampling) resulting in a robust analysis. Uncertainty is represented by a probability distribution 

using LHS and executed with the DAKOTA package. The LHS technique requires that all 

uncertain input variables are independent. Nuclear units show increased risks depending on the 

lifetimes of operations, using a random sample according to the combined probability Gaussian 

distributions. Nuclear fuel tolerances are shown as normal distributions, based on their mean 

and standard deviations. The uncertainty modeling consists of the dimension of variation used 

for each uncertain parameter, quantified by a probability density function (PDF). The 

deviations used are epistemic, and the uncertainty space created from input parameters are 

specified by their possible deviations. 

2.3 Uncertainty Propagation  

 

Monte Carlo simulations utilizing FRAPCON have a high computational cost, but are widely 

used. The fuel code produces the propagation of uncertainties, calculated using all physical 

models defined by the performance codes, based on the Monte Carlo method. For each input 

(constructed by a Gaussian distribution) different values are repeatedly calculated for each of 

the uncertainty parameters. The quality of sensibility founded is independent from the number 

of parameters used. The UASA related to accidents have been applied to over 50 input items, 

and an estimated five outputs. The spread of uncertainties influences the results produced in 

the simulations performed by fuel codes [15], [16]. DAKOTA makes it possible to simulate 

input variabilities and models, to identify parameters, to quantify uncertainty and its 

propagation, and to control parameters of governing equations of the system. Summary, the 

propagation is calculated by the FRAPCON and FRAPTRAN codes. 
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2.4. Sensitivity Analysis 

 

Global sensitivity analysis was used to measure how the output uncertainty of a model could 

be assigned to distinct sources of uncertainty by the model input. A local analysis assumes that 

a single model assessment measuring the local impact of uncertainty items is spread into the 

model. There are several methods to measure sensitivity, such as a Pearson product, Spearman 

rank, and Kendall rank.  

 

The sensitivity analysis calculates how the degree of input uncertainty acts on the results from 

a given model. Two correlation coefficients (namely Pearson and Spearman) were used as 

measures of the relationship between input and output. Eq. (3) expresses the Pearson 

correlation, and eq. (4) describes the Spearman rank correlation: 

 

  

   
















n

y
y

n

x
x

n

yx
yx

r

i

i

i

i

ii

ii

s
2

2

2

2

    (3) 

 

 

where xi and yi are values of n pairs of two variables of interest.  

 

The Pearson correlation detects a linear dependence amongst variables, while the Spearman 

index defines a monotonic relationship. The correlations obtained by the Spearman or Pearson 

methods can produce better, more precise variability bands:  
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where rs is the coefficient of rank correlation, and di is the difference in rank between paired 

values of X and Y (calculated as [rank of Xi ] – [rank of Yi] .) n is the sample size or number of 

pair values (X and 𝑌) within the selected sample. 

 

However, to improve the statistical output results, 200 samples were used. The uncertainty 

quantification and sensitivity models have a complex scheme that is often executed with a set 

of random samples while varying the input parameters. 

 

 

3. THE HALDEN LOCA TEST IFA-650 SERIES 

 

In last few decades, the Halden reactor project (HRP) in Norway has conducted several fuel 

rod experiments for light water reactors. The IFA-650 series target provides the better 

understanding of fuel behaviors, such as fragmentation and relocation of the fuel pellet.  The 

IFA-650.4 rod experiment was performed in April of 2006 by HPR. Its irradiation cycle was 

conducted for 2305 days having a burnup of 92 GWd/MTU, with a short section of 50 cm cut 

from the fuel rod and irradiated by the fuel rod of a commercial LWR plant. The maximum 

cladding temperature was 800 °C, and was subject to severe deformation. The balloon area was 

434 mm2, and strain of 62% occurred at a temperature of 770–780 °C [16].  
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Figure 1: Plenum pressure and cladding outside temperature. 

3.1. Fuel Uncertainties  

 

We had to evaluate the sources of uncertainties arising from fuels using a statistical distribution. 

Gaussian curves are preferred for modeling because they faithfully reproduce mechanical 

tolerances. Distributions were centered on an average, and combined with their tolerances. For 

chosen sources of uncertainty, possible variations in the theoretical density of the fuel were 

evaluated, as well as deviations of the internal pressure on the gas and the rates of enrichment 

[19], [20]. In Table 2, exposed uncertainties parameters, which must spread through system. 

 

Table 2:  Uncertainty parameters 

 
Uncertainty parameter µ (mean) σ (sigma) 

Pellet outside diameter (mm) 8.1890 0.1638 
Cladding thickness (mm) 0.6299 0.0126 
Gap thickness (mm) 0.0851 0.0017 
Fuel density (%) 96.00 7.6800 
Cold plenum length (mm) 219.99 4.4000 
Cladding roughness (mm) 0.00050 0.0000075 
Fuel roughness (mm) 0.00199 0.0000299 
Increasing density (%) 100 1.00 
Enrichment (%) 3.50 0,175 
Fill gas pressure (MPa) 4.00 0.020 

 

 

3.2 Treatment of Uncertainty Boundary Conditions 

 

Following the hierarchy of causes to the uncertainty within fuel behavior, we must quantify the 

effects of the initial conditions. Nuclear reactors have several control parameters used to solve 

the physical models that contribute to improving incorrect responses. The linear heat rate is a 

power profile that explains boundary conditions for predicting fuel performance. All deviations 
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from the initial states of the burn cycle can be represented by uncertainties introduced via 

boundary conditions. In this case, the initial states available to the corrosion model and 

hydrogen pickup applied to the cladding. In Table 3, shown uncertainties due to boundary 

conditions. 

 

Table 3:  Boundary conditions used of Halden LOCA for IFA-650-4 rod 

Parameter Range Distribution 
Outlet pressure ± 1.0% Normal 
Mass flow rate ± 1.0% Normal 
Inlet temperature ± 1.5 % Normal 
Wall roughness ± 5.0% Normal 
Hydraulic diameter ± 1.0% Normal 
Flow area ± 1.0% Normal 

 

At the beginning of the blowdown phase, the linear heat rate of the fuel was 0.93 kW/m, and 

that of the heater was 1.5 kW/m. During the heat-up stage, heater power was regularly 

maintained. Subsequently (following the blowdown phase) the inlet cladding temperature 

reached 800 °C, and was maintained for five minutes. The coating failure occurred after 

blowdown at 366 s at a temperature of 785 °C. The temperature increase rate was 2 °C/s. In 

this sequence, water spray was turned on after cladding burst. 

 

 

4. RESULTS AND DISCUSSION 

 

Applying the UASA methodology after defining the uncertainties, the contour conditions 

offered by FRAPCON and FRAPTRAN were the simulations of type Monte-Carlo. Sensitivity 

was measured using the optimization package for the calculation of the coefficients which 

expresses the sensitivity analysis of the simulations. Fig. 2, shows uncertainties as time-of 

failure of fuel rod. The minimum number of run code adopted was 83 simulations. 

 

 

 
Figure 2: Plenum pressure for run code to propagate the uncertainty 

 

The values obtained are the results of a single case which exhibits an extended burn cycle, 

which produces degradation of materials as fuel and cladding. The sources of uncertainties 

used within normal distributions and standard deviation were practically limited to 1% of the 
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values. Nominal variables provide a table of priority variables in the simulated case. The results 

help to indicate the influence of the uncertainty sources of the input through the Pearson 

correlation coefficient. Fig. 3, shows sensitivity analyses for cladding outside diameter.  Fig. 

3, indicates the sensibility of cladding thickness. Fig. 4, presents of effects of uncertainty 

models of fuel performance code in safety parameters used in accident analysis. Fig. 5, 

indicates the influence of fission gas release model and fuel swelling. 

 

 
Figure 3: Influence of cladding outside diameter over safety parameters  

 

 

 
Figure 4: Influence of cladding thickness over safety parameters  

 

 

 
Figure 5: Sensitivity analysis of fuel gaseous swelling model   
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The mechanical tolerances also offer a considerable influence for IFA-650-4. Fig. 6, shows the 

power of corrosion model influencing safety parameters. 

 

 
Figure 6: Sensitivity analysis of corrosion model over safety parameters   

 

 

The internal standards of FRAPCON permit constructed sensitivity analysis based on thermal 

conductivity, thermal fuel expansion, fission gas release, fuel swelling, irradiation creep, 

cladding thermal expansion, and cladding corrosion cladding hydrogen pickup. The 

methodology, when applied, can predict the fuel rod experiment ifa-650-5, and the results were 

presented. 

 

 

4. CONCLUSIONS  

 

The recommended models for measuring uncertainties and performing sensitivity analyses help 

with the integration of fuel performance systems with the DAKOTA toolkit. Here, we 

investigated a loss-of-coolant accident by integrating the sensitivity analysis directly, using the 

Spearman index. DAKOTA statistical distributions implemented the model based on the mean 

and deviation of the variables.  

 

The licensing code FRAPCON, combined with FRAPTRAN, was used for two hundred 

simulations. In past versions, FRAPCON helped develop the SA using internal models for 

uncertainty propagations. The effects produced by manufacturing tolerances, combined with 

boundary conditions, are the basis for the sampling used. The models that describe the thermal 

conductivity of the fuel, FGR, and the creep rates are large sources of uncertainty in a 

sensitivity analysis. The methodology presented here was used to predict the results of the fuel 

rod experiment IFA-650-4. The results are presented. 
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