Cytotoxicity model using human cardiomyocytes derived from pluripotent cells (iPSCs) for cardiotoxicity safety assessment

Renata Damiani¹, Flavia Valgode¹, Priscila Passos¹, Marcos Valadares², Diogo Biagi², Olga Higa^{1,3}, Fabiana Medeiros^{1,3}

¹GLP Test Facility on Research and Innovation of Vitro Methods, Biosintesis Laboratory, São Paulo, Brazil, ²Research and Innovation, PluriCell Biotech, São Paulo, Brazil, ³Biotechnology Department, Nuclear and Energy Research Institute (IPEN/CNEN-SP), São Paulo, Brazil

In contemporary drug development, preclinical and clinical evaluation, cardiac safety concerns arise from a variety of drug-tissue interactions, including direct myocyte toxicity. In this study, *in vitro* cytotoxic studies were conducted on GLP conditions in human cardiomyocytes derived from pluripotent cells (iPSCs). Before testing, cell population purity, above 90%, were confirmed by troponin 1 antibody biomarker. iPSCs cells were incubated with DMSO and Doxorubicin for 48 hours in a 96-well plates. Three different dyes – MTS, MTT and NR – were used to evaluate cell viability. The results showed that the iPSCs derived cardiomyocyte model was sensitive to predictive moderate and severe drug-induced cardiotoxicity. According to these results, the *in vitro* cytotoxicity model using iPSCs derived cardiomyocytes can be applied in the safety assessment of novel drug candidates as well as to identify compounds that may cause cardiotoxicity.

*This study was supported by a innovative research grant PIPE program from the São Paulo Research Foundation, FAPESP.