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Abstract
This study aimed to evaluate the sea urchin Lytechinus variegatus as an environmental biomonitor and contribute to the

knowledge of its nutritional aspects for two regions of the northern coast of the São Paulo State, Brazil. Mass fractions

were determined by instrumental neutron activation analysis. Concentrations of Ca, Cs, Cr, Fe, Rb, Sc, and Zn were higher

at Praia Grande (contaminated area), while As, Br, and Se higher at Praia Preta (control). An exploratory principal

component analysis indicated that Praia Grande was influenced by Cr, Cs, Fe and Zn possibly due to environmental

contamination. Results indicate the possibility of applying this organism for biomonitoring purposes for metals Cr, Fe, Zn

and the semimetal As.
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Introduction

Contaminant intake in coastal environments generally

occurs through domestic and industrial sewage, mining,

leaching and percolation activities from landfills, ship

releases, river transport, atmospheric deposition, agriculture

and intensive aquaculture activities, port and marine activ-

ities, oil extraction and accidental spills of various chemi-

cals, among others [1–4]. Contamination episodes in various

coastal regions of the world have led many countries to

establish extensive monitoring programs [5]. The worldwide

increase in pollutant levels has led to the formulation of

strategies to reduce impacts on estuarine and coastal

ecosystems [6]. Among these strategies is the use of cos-

mopolitan organisms for pollution assessments, in a strategy

known as biomonitoring [7], that makes use of the ability of

some organisms to absorb environmental contaminants to

perform qualitative and quantitative monitoring of ecosys-

tems [8, 9]. Among biomonitors, bivalves have been fre-

quently applied [10–12], although other organisms have also

been assessed regarding ecotoxicological assays, such as

algae, shellfish [13] and sea urchins [14].

Sea urchins are exclusively marine and benthic inver-

tebrates, and many are sessile or display reduced mobility.

They can be found in polar and tropical zones, with a wide

geographic distribution [15, 16]. The species Lytechinus

variegatus (Lamarck, 1816) is widely distributed, and can

be found from North Carolina, in the USA, to the Gulf of

Mexico and south Brazil. They are intolerant to suspended

particulate matter, leaving turbid areas. Certain cells pre-

sent in this species, generically called coelomocytes, are

able to respond to injuries, host invasion, and cytotoxic

agents [17]. Coelomocytes are regarded as the immune

effectors of the sea urchin. Spherulla cells, a type of

coelomocyte, have been observed as significantly increased

in animals collected from polluted seawaters and are, thus,
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considered adequate bioindicators of environmental stress

[18]. Regarding environmental assessments, although this

species of sea urchins has been widely used in ecotoxico-

logical assays [19–24], little is known about the potential

of these organisms as biomonitors in Brazil, however, due

to the urchins lack of mobility and also to the feeding of

organisms that live near the sediment, it is possible that this

organism can reproduce the marine conditions of the region

similar to the other biomonitors.

In the State of São Paulo, Brasil, São Sebastião, the

mainland (where the city is located) and the island (known

as Ilhabela) are separated by the São Sebastião Channel,

about 30 km long with two entrances, one to the south and

another to the north, with widths of about 7–6 km,

respectively [5]. This area is a center of intense tourism

activity that includes the São Sebastião Port, in activity

since the mid-nineteenth century. This terminal is respon-

sible for chronic oil spills and accidents, significantly

impacting the environment [25]. In the northern portion of

the São Sebastião Port, located on the continental margin,

is the largest and most important Brazilian petroleum ter-

minal, the Almirante Barroso Maritime Terminal

(TEBAR), located in the São Sebastião Channel.

Ilhabela is the second largest sea island in Brazil, with 44

beaches. From the east to the south, its beaches directly face

the Atlantic Ocean. The west side directly faces São Sebas-

tião City and Ports, including the TEBAR terminal. In sum-

mer, the predominant marine current causes the sea to enter

the channel by north in the SW direction towards the south of

the channel [26]. One of these beaches, Praia Grande, has

water quality ranging from regular to poor [27]. Although

water quality can be measured in terms of biological

parameters originated by anthropogenic activities, other

alterations can also suggest pollution by toxic metals from

TEBAR, as well as others contributors, due to sea currents.

Instrumental neutron activation analysis (INAA) has

been applied in several areas of knowledge and has the

advantage of being a multielemental technique that

requires no sample digestion. In addition, only a small

amount of sample is required and limits of detection (LOD)

ranging from 0.1 to 7.0 mg kg-1 can be obtained for the

most elements [28, 29]. In Brazil, this analytical technique

has been previously used for monitoring purposes [5, 30].

In this context, the aim of the present study was to

analyze L. variegatus sea urchin tissues from São Sebas-

tião/Ilhabela, in southern Brazil, from a control area (Praia

Preta) and a contaminated area (Praia Grande), regarding

the concentration of some trace elements (As, Ba, Br, Co,

Cr, Rb, Sb and Sc) and micronutrients (Ca, Fe, K, Na, Se

and Zn) by INAA. In addition, the application of this

species in biomonitoring studies was also evaluated. This

study intends to contribute with data on the nutritional and

toxic constituents of this organism, as well as its use as a

biomonitor, since scarce data is available in the literature in

this regard.

Experimental

Sample collection and processing

Sea urchins of the species L. variegatus were collected in

partnership with the Laboratory of Evolutionary Histo-

physiology at the Department of Cell Biology and Devel-

opment of the Biomedical Sciences Institute of the

University of São Paulo. The Marine Biology Center of the

University of São Paulo was used as support base. This

study was approved by the Ethical Committee on animal

use from the Biomedical Sciences Institute.

Sampling was performed by means of free diving. After

collection, the specimens were transferred to nylon canvas

bags and subsequently to 30 L gallons with intermittent

aeration for transport to the laboratory.

All the animals were collected under ICMBio permition

(SISBIO n.30422) and in agreement with the Brazilian law

[31, 32]. Samples (n = 20 for each site) were collected in

the spring, November 2015, at two sites on the northern

coast of the State of São Paulo, Praia Preta: Ilhabela

(23.900034 S, 45.225448 W), this location was chosen

because it is on the east coast of the island, in the open sea

and therefore was considered a control site, free from direct

anthropogenic activities; and Praia Grande: São Sebastião

(23.824822 S, 45.417718 W) a site with anthropogenic

activities, close to the TEBAR maritime terminal. At the

moment of specimen collection, temperatures were 24.0 �C
at Praia Preta and 23.3 �C at Praia Grande. Dissolved

oxygen values were 3.2 and 5.1 mg L-1, respectively.

Figure 1 displays the location of the sampling sites.

After biometric measurements (Table 1 in supplementary

information), sea urchin tissues were dissected, and gonads

and gut composite samples (n = 20 organisms from each

site) were stored in Falcon-type tubes. Samples were then

frozen and stored in a Styrofoam box for transport to the

Research Reactor Center (CRPq), Nuclear and Energy

Research Institute (IPEN), São Paulo. After arrival, the

samples were stored in a - 20 �C freezer until analysis.

Samples were transferred to previously sterilized Petri

dishes. All material used for sample manipulation was

previously soaked in a 5% neutral Extran solution, fol-

lowed by a 10% nitric acid solution and finally, washed

with Milli-Q water. The drying process was performed in a

ventilated oven at 40 �C until constant weight. After dry-

ing, samples were then transferred and homogenized in an

agate mortar and subsequently passed through a 0.250 mm

nylon sieve (60 mesh) and stored in polyethylene bottles.

Only one replicate was made for each organism due to the
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small amount of material available for all analyzes per-

formed: INAA and atomic absorption spectrometry or

which will be used for another assay.

Red spherule count

Absolute and relative red spherule cells counts were per-

formed in a Neubauer chamber. An aliquot of the coelomic

fluid was added to this chamber and the number of total

cells was obtained by counting the cells per quadrant. This

result was considered in the correlation study with the

INAA analyzed chemical elements.

Analytical INAA procedure

Single and multi-element synthetic standards were pre-

pared by pipetting aliquots of standard solutions from

Assurance� Multi-Element Solution Standards (SPEX

CERTIPREP, USA), onto small Whatman no. 41 filter

paper sheets. Ca, Fe, Na and K elements were pipetted

directly onto the filter paper, from the standard stock

solution at 10 mg L-1. The other elements were diluted

from the standard stock solution (1 mg L-1) with the use

of calibrated volumetric flasks. The pipetted standards were

then folded and placed in polyethylene bags, sealed and

maintained in closed containers until analysis. These

synthetic standards are important for the calculation of the

Z-score in order to validate the certified reference materials

(CRMs) for this methodology.

Two CRMs from marine organisms (mussel tissue:

NIST SRM 2976 and oyster tissue: NIST SRM 1566b)

were used, while the third material was chosen taking into

account the number of certified reference values for several

elements (peach leaves: NIST SRM 1547). Only one

replicate of each CRMs was prepared for each irradiation.

Sea urchin tissue samples, four samples each time, ref-

erence materials (one sample of each one) and synthetic

standards were irradiated for a daily cycle (6–7 h), under a

thermal neutron flux of 1–5 9 1012 cm-2 s-1 in the IEA-

R1 nuclear research reactor at IPEN. Two counting series

were performed: the first, after 1 week of decay and the

second, 2 weeks after irradiation, to determine As, Ba, Br,

Ca, Co, Cr, Cs, Fe, K, Na, Rb, Sc, Se and Zn concentra-

tions. The samples and standards were counted on a gamma

ray spectrometer consisting of a hyper pure germanium

semiconductor crystal detector (HPGe) associated with a

CANBERRA electronic data acquisition system, with a

resolution of 1.21 and 2.23 keV for the 57Co and 60Co

photopeaks, respectively. Data analysis was performed by

using the VERSAO2 in-house software to identify the

gamma-ray peaks, while the concentration results were

obtained by using the Microsoft Excel� package. The

Fig. 1 Location and collection of the L. variegatus urchins at São Sebastião and Ilhabela
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precision and accuracy of the method were verified by

mean of the CRM results and the Z-score criterion [33].

The expanded uncertainty was calculated from the error

and uncertainty propagations throughout the experiment,

presented in Fig. 2. Moisture content was determined for

the CRMs by drying at 85 �C for 2 h, obtaining 9.14, 9.39

and 9.49% for mussel tissue, oyster tissue, and peach

leaves, respectively. These moisture content correspond to

values normally found (7–9%). In addition the Z-score

values indicated that the standard values found are close to

what was expected. Therefore the drying procedure change

not brought greater uncertainties to results. The irradiation

and counting procedure in the gamma spectrometer are the

major contributors of uncertainties. The LOD and limits of

quantification (LOQ) of the INAA technique for the ana-

lyzed elements were obtained according to [29].

Statistical analyses

In order to statistically evaluate the observed concentration

variations and if these were significant or not, the Shapiro–

Wilk test was performed to test the data set normality and

the Levene test for homoscedasticity (p\ 0.05, at 95%

CI). The means were tested with the independent t test (by

variables) where p\ 0.05 at 95% CI indicates an actual

concentration difference between sites. The Grubbs test (at

95% CI) was performed for outlier detection. An explora-

tory principal component analysis (PCA) was applied in

order to investigate separation of the study regions by the

determined elements. Statistical analyses were performed

using the Statistica� (ver. 13.1), Microsoft Excel� (ver.

2016), and Past� (ver. 3) softwares.

Results and discussion

As stated previously, the production of red spherule cells in

sea urchins is a response to environmental stress exposure

[18, 24]. In the present study, the red spherule cell counts

in organisms from Praia Grande (contaminated site) was

6.7 ± 2.6% (mean ± SD, 95% CI) while Praia Preta

(control site) showed counts of 4.1 ± 1.5% (mean ± SD,

95% CI). The t-test, p\ 0.05 (95% CI) indicated signifi-

cant differences between the sites (p = 0.001), but no

relationship was found between the spherule cells and the

analyzed elements. This may indicate that the analyzed

elements do not affect the amount of red spherule cells.

However, these cells may be sensitive to other elements,

and are especially susceptible to biological contamination.

According to [18, 24] these cells act as bactericidals and

play a role in inflammatory processes. Differences in the

number of red spherule cells may indicate that Praia

Grande is exposed to environmental stress, probably due to

anthropogenic activities.

The CRM analyses were used for the validation of the

INAA methodology, regarding precision and accuracy, by

mean of the Z-criterion [33]. The results presented |Z|\ 2

values for the analyzed elements, confirming the preci-

sion and accuracy of the INAA method, except for Na on

NIST SRM 1547 in peach leaves. For Co Z\ 2 was found

only one of the three CRMs analyzed in this work, then

Co results were excluded from this study. The Z-scores

for the analyzed reference material are presented in

Fig. 3.

Table 1 presents the results (mean ± expanded uncer-

tainty of the mean, with k = 2), in dry weight (d.w.), for

the analyzed sea urchin tissues by INAA in both sites. All

data including combined standard uncertainty can be found

in Tables 2 and 3 in supplementary information. The LOD

and LOQ, number of individuals (n), as well the p-values

for the t-test are also presented.

Figure 4 displays box plot graphs presenting mean val-

ues for the analyzed elements at both sites. Elements As, Br

and Se presented higher mean values at Praia Preta (con-

trol), while Ca, Cr, Co, Fe, Rb, Sc and Zn presented higher

total mass fraction values at Praia Grande (contaminated).

Na and K showed similar mean values and were not sig-

nificantly different between sites. Results for Ba in Praia

Fig. 2 Ishikawa diagram for

uncertainty contributions in the

INAA method [5]
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Grande did not allow the plotting of a box plot graph, since

they were below the LOQ.

The t-Student statistical test was applied to the INAA

results and confirmed the results displayed by the box plot

graphs, that urchins from Praia Grande, supposedly an

impacted site, presented higher levels of Ca, Cr, Cs, Fe, Rb,

Sc, and Zn compared to Praia Preta (p\ 0.05, Table 1).

As, Br and Se were present in higher significant concen-

trations at Praia Preta, while K and Na showed no signif-

icant differences between sites.

No statistically significant difference between the study

areas (t-test, p\ 0.05, 95% CI) was observed for Na at

Praia Preta (20,000 ± 300 mg kg-1) and at Praia Grande

(23,900 ± 300 mg kg-1) for K at Praia Preta

(17,800 ± 1100 mg kg-1) and at Praia Grande

(20,300 ± 1100 mg kg-1). Comparing these results with

other organisms [5, 34], the sea urchin species evaluated

herein is rich in Na and K, but these elements are not of

interest in environmental biomonitoring due to their asso-

ciation with salinity.

For Rb, concentrations at Praia Preta were

8 ± 2 mg kg-1 and at Praia Grande were

12 ± 2 mg kg-1. Further data are needed to evaluate Rb

for biomonitoring studies, since there is not enough data in

the literature to conduct comparisons with other bentonic

organisms.

Statistical t-test (p-value\ 0.05 at 95% CI) were per-

formed to verify whether there is a difference between the

sex and to the analyzed elements and also to the collection

regions. Results for the region of Praia Preta (control)

showed that there were no significant differences between

the sexes, except for element Rb, whose average concen-

tration was 6 ± 1 mg kg-1 for males and 10 ± 2 mg kg-1

for females. The value of p-value for Rb is 0.003, so there

Fig. 3 Z-scores for the elements

determined in the CRMs

Table 1 Total mass fraction (mg kg-1, d.w.) from sea L. variegatus urchin tissues by INAA

Control point (Praia Preta) Contaminated point (Praia Grande)

Mean ± Uexp Range nb Mean ± Uexp Range n LOD LOQ p-values

As 33.2 ± 0.8 (16.5–49.4) 20 25.3 ± 0.7 (16.1–54.0) 19 0.8 2.5 0.01

Ba 28 ± 12 (9–52) 5 10 ± 3 (\LQ) \LQ 4 3.8 11.4 0.13

Br 514 ± 8 (223–786) 20 300 ± 4 (196–396) 19 0.07 0.21 0.00

Ca 8200 ± 2400 (4497–13,407) 6 12,100 ± 1700 (7750–17,295) 11 1700 5200 0.04

Cr 0.8 ± 0.1 (0.2–1.4) 14 1.6 ± 0.2 (1.0–2.7) 10 0.13 0.39 0.00

Fe 1380 ± 90 (585–2341) 11 1920 ± 150 (1340–2775) 11 10 30 0.03

K 17,800 ± 1100 (12,260–21,160) 14 20,300 ± 1100 (14,336–31,037) 15 1900 5800 0.12

Na 20,000 ± 300 (14,107–25,069) 18 23,900 ± 300 (13,700–47,350) 16 20 60 0.11

Rb 8 ± 2 (4.6–12.0) 12 12 ± 2 (17.8–19.3) 11 0.6 1.8 0.01

Se 3.5 ± 0.3 (1.5–4.8) 18 2.1 ± 0.1 1.4–2.9) 16 0.1 0.3 0.00

Zn 40 ± 2 (24–58) 12 59 ± 1 (40–70) 12 0.5 1.5 0.00

Csa 61 ± 6 (24–100) 10 125 ± 13 (83–171) 6 9 27 0.00

Sca 20 ± 1 (4–50) 15 229 ± 8 (158–300) 8 1.3 4 0.00

p-value and Uexp at 95% of significance
aTotal mass fraction in lg kg-1

bNumber of results used for mean calculation
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was a significant difference. In relation to the Praia Grande

sea urchins, t-test results also indicate that there was no

significant difference in concentration for the elements

analyzed. However, for the Rb element, whose p-value was

0.06, is at the limit of the significant difference which may

indicate a bias of the females to have a higher Rb content

than males, independently of the collection sites, under the

conditions of this work.

An exploratory PCA, was performed with some

assumptions: missing data were filled with mean values

and Pearson (r) values with correlation values above |0.5|

were considered as loading factors (Table 2). In order to

verify the existence of a relationship among the elements

routinely investigated in environmental biomonitoring,

elements that presented no relation in the correlation matrix

Fig. 4 Box plot (mean) for the elements determined by INAA (d.w.) in L. variegatus, from both the Praia Preta and Praia Grande sites

Table 2 Exploratory PCA factorial for the sea urchin analyses with

Pearson correlation values (values[ 0.5, bolded, were considered

component factors)

F1 F2 F3

As - 0.037 2 0.807 - 0.183

Cr 0.897 0.021 0.166

Cs 0.724 0.233 - 0.068

Fe 0.670 - 0.387 - 0.207

Sc 0.381 - 0.178 0.852

Se - 0.082 2 0.847 0.046

Zn 0.669 0.058 - 0.431

EV (%) 34.0 23.0 14.6

EV explained variance
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(Ba, Ca, Rb) and high abundance elements in marine

environments (Br, Na and K) were suppressed for the

exploratory factorial PCA analysis, in order to verify if a

separation of the regions by the determined elements was

present. Figure 5 displays the PCA results from the

F1 9 F2 factors.

The PCA indicated that three main factors that influ-

enced the investigated elements, which in total explain

71.6% of the total variance of the results. The case pro-

jection graph represented in Fig. 5, demonstrate that Factor

1 is responsible for grouping the elements that separated

Praia Preta from Praia Grande.

Factor 1, that explains 34.0% of the total data variance,

relates Cr, Cs, Fe and Zn to Praia Grande (contaminated

site). The exploratory PCA analysis, Cr, Cs, Fe, and Zn,

with 0.897, 0.724, 0.670, 0.669 r-values, respectively,

indicated that these elements are more related to Praia

Grande (Table 2). The environmentally relevant element in

this factor, Cr, was twofold at Praia Grande, contaminated

site, (1.6 ± 0.2 mg kg-1) compared to Praia Preta

(0.8 ± 0.1 mg kg-1). This pattern of influence for the

mentioned elements, except for the Cs, corroborates with

the studies done for Perna perna mussels indicating a

possible anthropic source, since there are illegal housing

occupations causing a worsening in the quality of the

waters of the region due to clandestine sewage connections

[27]. These issues could explain the increase of Zn con-

centration in relation to the control point [35]. In addition,

in the TEBAR region there is high activity of oil ship-

ments, effluents of the oil industry [5] which may be a

source of these elements.

Factor 2, which explains 23.0% of the total data vari-

ance, comprises As (33.2 ± 0.8 mg kg-1) and Se

(3.5 ± 0.3 mg kg-1) at Praia Preta (control site) and As

(25.3 ± 0.7 mg kg-1) and Se (2.1 ± 0.1 mg kg-1) at

Praia Grande (contaminated site). Significant concentration

differences between both sites were observed by the t-test

for both elements.

Factor 3, which accounts for 14.6% of the variance in

exploratory PCA, reflects the high Sc concentrations at

Praia Grande. This element was the most different between

collection sites, with values of 229 ± 8 lg kg-1 at Praia

Grande and 20.3 ± 0.8 lg kg-1 at Praia Preta. These

results may suggest an anthropogenic source contribution

for this element, however there is not enough data in the

literature to conduct comparisons with other bentonic

organisms and about biological contamination for Sc in

these regions.

Table 3 presents the results obtained in the present study

in comparison with other studies conducted in the same

region (São Sebastião and Caraguatatuba) for sea urchins

and other benthic organisms, in both control and contam-

inated areas.

Concerning As, the concentrations in sea urchin in the

present study were much higher than those found by

Catharino et al. [5] in P. perna mussels from the same

region (Table 3). Quináglia [36] analyzed sediment cores

from southern coast of São Paulo, specifically the Santos

Estuarine System, and observed As concentrations ranging

from 10 to 20 mg kg-1, while concentrations ranging from

5 to 10 mg kg-1 for As were reported by Silva et al. [37] in

core sediment samples from the same estuarine region. At

the Cananeia Estuarine System, located on the southern

coast of São Paulo, the mean concentration for As in bot-

tom sediment samples was around 5 mg kg-1 [38]. Sedi-

ment plays an important role in the benthic environment

inhabited by L. variegatus, since urchin feeding is closer to

the sediment. Thus, As concentrations in the organism can

be influenced by sediment concentration.

Concerning Br concentrations (Table 3), this element

was present in higher concentrations at Praia Preta

(514 ± 8 mg kg-1) compared to Praia Grande

(300 ± 4 mg kg-1). Br is present in sea water at about

67 mg kg-1 and in sediment around 60 mg kg-1 [37].

Differences in concentrations may be related to the avail-

ability of this element in the sea urchin food chain. There is

evidence that L. variegatus naturally accumulates Br, given

the high concentration at both sites, since Br concentrations

are generally high for benthic organisms, according to the

study performed with P. perna mussels [30], presented in

Table 3.

This species of urchin accumulates high amounts of Ca

(8200 ± 2400 mg kg-1 at Praia Preta and

12,100 ± 1700 mg kg-1 at Praia Grande sites). This can

be due to the fact that sea urchins use Ca to produce and

maintain the exoskeleton, as well as the fact that Ca plays a

very important role in reproduction [39]. Ca concentrations
Fig. 5 Principal component analysis (F1 9 F2 factors); PP Praia

Preta, PG Praia Grande
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found in the evaluated sea urchins were much higher than

those found for P. perna mussel and oyster tissue from the

same region, at both sites (Table 3).

Cr concentrations observed herein were in the same

order of magnitude as those observed in oysters, but much

higher than those found in P. perna mussels, in the same

region as the present study. Catharino et al. [5] suggested

anthropogenic contamination regarding this element.

Regarding Fe, the concentrations observed herein were

much higher than those found for oysters and mussels,

while the levels in oysters and mussels organisms were of

the same order of magnitude. Catharino et al. [5], while

studying P. perna mussels, concluded that anthropogenic

contribution regarding this element, due to outputs of

municipal effluents, industrial effluents, the presence of

TEBAR and intense boat movement [5]. The results of the

present study also suggest an anthropogenic contribution

for Fe in the region.

Concerning Zn, the same concentration magnitude were

observed in sea urchins and oysters, and higher than mus-

sels. Studies conducted on other biomonitor organisms in the

same area [5, 30, 34] indicate higher Zn concentrations in

impacted sites, especially in domestic sewage sludge [35]

indicating possible environmental contamination.

Conclusions

The INAA technique for multi-elemental analysis allows

for precise and accurate results regarding nutrients (Ca, Fe,

K, and Na), micronutrients (Br, Se and Zn) and mineral

trace elements (As, Cr, Cs, Rb, and Sc) concentrations.

Red spherule cell counts for the organisms from Praia

Grande (contaminated site) were higher than for Praia Preta

(control site). Differences in the number of red spherule

cells may indicate that Praia Grande is exposed to envi-

ronmental stress, probably due to anthropogenic activities.

The PCA indicated a possibility for environmental

contamination for metals such Cr, Cs, Fe and Zn due the

TEBAR activities and sewage effluents discharge. The

elements As, Br and Se, present in higher concentrations in

sea urchins influenced Praia Preta site (control). Praia

Grande (contaminated), on the other hand, presented higher

concentrations for Ca, Cr, Cs, Fe, Rb, Sc and Zn, while Ba,

K and Na showed no significant differences between sites.

The present study contributed to knowledge on the

mineral composition of the sea urchin L. variegatus, indi-

cating that this species is rich in As, Ca, Fe, Na and K,

when compared to other marine organisms. This study

seems to indicate the possibility of applying the sea urchin

L. variegatus (Lamarck, 1816) for biomonitoring purposes,

mainly for the metals Cr, Fe and Zn and the semi-metal As.

However, further studies are required to evaluate the spe-

cies biomonitoring capability with regard to other metals.

Table 3 Total mass fraction results (mean ± expanded uncertainty, k = 2) (mg kg-1) in sea urchins and other organisms, year of publication

and references

Control points (mean ± Uexp) Impacted points (mean ± Uexp) Samples Study areas Years References

As 33.2 ± 0.8 25.3 ± 0.6 Urchin São Sebastião 2016 This study

2.74 ± 0.04 1.95 ± 0.03 Mussel 2007 [5]

Br 514 ± 8 300 ± 4 Urchin São Sebastião 2016 This study

250 ± 30 270 ± 30 Mussel Caraguatatuba 2012 [30]

Ca 8200 ± 2300 12,000 ± 1600 Urchin São Sebastião 2016 This study

1200 ± 200 2800 ± 600 Oyster 2016 [34]

434 ± 18 1031 ± 42 Mussel 2007 [5]

Cr 0.8 ± 0.1 1.6 ± 0.2 Urchin São Sebastião 2016 This study

0.4 ± 0.1 1.2 ± 0.6 Oyster 2016 [34]

0.20 ± 0.01 0.18 ± 0.01 Mussel 2008 [5]

Fe 1380 ± 90 1900 ± 150 Urchin São Sebastião 2016 This study

18 ± 2 58 ± 3 Oyster 2016 [34]

27 ± 1 46 ± 3 Mussel 2008 [5]

Zn 40 ± 2 59 ± 1 Urchin São Sebastião 2016 This study

91 ± 18 51 ± 7 Oyster 2016 [34]

11.3 ± 0.3 13.1 ± 0.3 Mussel 2007 [5]
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