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Abstract. This paper reports the results of investigation carried out to evaluate the corrosion 

resistance of tin and copper in as-cast alloys represented by two sequential series, first: 

La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x = 0.0, 0.1, 0.2, 0.3 and 0.5) and second: 

La0.7Mg0.3Al0.3Mn0.4Sn0.5-yCuyNi3.8 (y = 0.0, 0.1, 0.2, 0.3 and 0.5). Electrochemical methods, 

specifically, polarization curves have been employed in this study. Copper substitution yielded good 

overall performance of the alloys. 

Introduction 

Hydrogen storage alloys are being studied because of their potential as effective clean 

energy storage materials. Specifically, AB5-type alloys are currently used as active materials in 

nickel metal hydride (Ni-MH) batteries. Ni-MH batteries have higher energy densities than lead-

acid and Ni-Cd batteries, but are relatively more expensive to manufacture given recent increases in 

material costs, particularly for Ni and Co. It has thus become necessary to develop lower cost alloys 

by partially or totally replacing Ni or Co with cheaper metals such as Mo, Fe, and Cu. Although 

such alloys are less expensive, their electrochemical performance is not yet satisfactory. It has 

therefore become necessary to improve the chemical properties and reduce the cost of the low Co 

AB5-type alloys [1–5]. 

The replacement of elements in LaNi5-type alloys is the most efficient method to obtain 

desirable characteristics for negative electrodes of the nickel metal hydride batteries. La and Ni can 

be replaced by other elements: La by Pr, Mg, Ce, Nd or by mishmetal (Mm) [6-9]; and Ni by Mn, 

Co, Al, Cu or by Nb [10-12] to improve the hydrogen storage capacity, the stability of the hydride 

phase or the alloy corrosion resistance. 

Previous work by this author has shown the effect of Co substitution by Sn in 

La0.7Mg0.3Al0.3Mn0.4Co0.5−xSnxNi3.8 alloys. It was found that maximum discharge capacity decrease. 

However an increase of discharge capacity retention could be observed with substitution of Co 

by Sn [13]. Other work involved the replacement of Sn for Cu in La0.7Mg0.3Al0.3Mn0.4Sn0.5−yCuyNi3.8 

alloys. It was reported that Cu promotes an increase both on discharge capacity and discharge 

capacity retention at 100
th

 cycle [14]. 

     The aim of the present study was to evaluate the effect of Sn and Cu substitution on the 

corrosion resistance of LaNi5-type compound in 6.0 M potassium hydroxide solution. The alloys 

was subdivided in two series. The first was Co substitution by Sn and the second was Sn 

substitution by Cu. 
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Experimental 

 The nominal composition of the alloys can be represented by the following general formula: 

La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x = 0.0, 0.1, 0.2, 0.3 and 0.5) and La0.7Mg0.3Al0.3Mn0.4Sn0.5-

yCuyNi3.8 (y = 0.0, 0.1, 0.2, 0.3 and 0.5). The purity of all the elements was at least 99.9%. The 

alloys were prepared by induction heating in a water-cooled Cu crucible under an argon 

atmosphere. The ingots were re-melted twice to achieve homogeneity. 

 The materials characterization, such powder X-ray diffraction (XRD), scanning electron 

microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) of these alloys reported as 

previous work [13-14]. 

 In order to characterize the corrosion resistance of the alloys the polarization tests were carried 

out. The polarization curves were measured in a standard three-electrode electrochemical cell 

containing Pt mesh and a mercurous oxide (Hg/HgO/6.0M KOH) as the counter electrode (CE) and 

the reference electrodes (RE), respectively. The electrochemical behavior was evaluated with 

Solartron potentiostat (SI1287). 

 The working electrode was prepared by cold epoxy resin mounting after electric contact was 

established with copper wire. The surface for exposure to the electrolyte has been grounded and 

polished to obtain a 1µm finishing. 

 The electrochemical tests were carried out in a 6.0M potassium hydroxide solution (KOH) and at 

25 °C. All the reagents used for the test solution preparation were per analytical (p.a.) grade. Firstly, 

samples of all the alloys were immersed in the 6.0M KOH test solution, and the open circuit 

potential (OCP) was measured as a function of time. The potentiodynamic polarization curves were 

obtained with a scanning rate of 5mV/s from cathodic towards anodic direction. 

Results and discussion 

 Fig. 1 shows the polarization curves of the La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x = 0.0, 0.1, 0.2, 

0.3 and 0.5) alloys. All the electrodes alloys were tested in 6.0 M potassium hydroxide solution at 

25 °C and 5 mV/s.  Fig. 2 shows the corrosion potential and corrosion current obtained of Tafel 

polarization curves. All the results are summarized in Tab. 1. It could be observed that corrosion 

potential (Ecorr) tends to anodic values and corrosion current (Icorr) also increase 1120 mA/cm
2
 to 

3580 mA/cm
2
 with Sn substitution. This indicates a higher corrosion rate and lower corrosion 

resistance in the Sn-substituted alloys. As reported before [13], the formation of LaNiSn phase on 

microstructure of these alloys may explain the lower corrosion resistance of the Sn-content alloys. 
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Fig. 1. Polarization curves of the La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x = 0.0, 0.1, 0.2, 0.3 and 0.5) 

alloys in 6.0 M potassium hydroxide solution (25 °C, 5 mV/s). 
 

 
Fig. 2. Ecorr and Icorr behavior of the La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x = 0.0 a 0.5) alloys in  

6.0 M KOH at 25 °C and 5 mV/s. 

 

Table 1. Ecorr and Icorr of the La0.7Mg0.3Al0.3Mn0.4Co0.5-xSnxNi3.8 (x = 0.0 a 0.5) alloys in 6.0 M KOH 

at 25 °C and 5 mV/s. 

X Ecorr (V vs. Hg/HgO) Icorr (mA/cm
2
) 

0.0 -0.041 1120 

0.1 -0.066 2254 

0.2 -0.151 2744 

0.3 -0.160 3086 

0.5 -0.178 3580 
 

Fig. 3 shows the polarization curves of the La0.7Mg0.3Al0.3Mn0.4Sn0.5-yCuyNi3.8 (y = 0.0, 0.1, 

0.2, 0.3 and 0.5) alloys. All the electrodes alloys were tested in 6.0 M potassium hydroxide solution 

at 25 °C and 5 mV/s.  Figure 4 shows the corrosion potential and corrosion current obtained of 

Tafel polarization curves. All the results are summarized in Table 2. As can be seen the corrosion 

potential (Ecorr) tends to less anodic values and corrosion current (Icorr) decrease to 

 3580 mA/cm
2
 to 1356 mA/cm

2
 with Cu substitution in the alloys. However, in general, the addition 

of copper makes an improvement in corrosion resistance.  
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Fig. 3. Polarization curves of the La0.7Mg0.3Al0.3Mn0.4Sn0.5-yCuyNi3.8 (x = 0.0, 0.1, 0.2, 0.3 and 0.5) 

alloys in 6.0 M potassium hydroxide solution (25 °C, 5 mV/s). 
 

 
Figure 4. Ecorr and Icorr behavior of the La0.7Mg0.3Al0.3Mn0.4Sn0.5-yCuyNi3.8 (y = 0.0 a 0.5) alloys in 

6.0 M KOH at 25 °C and 5 mV/s. 
 

Table 2. Ecorr and Icorr of the La0.7Mg0.3Al0.3Mn0.4Sn0.5-yCuyNi3.8 (y = 0.0 a 0.5) alloys in 6.0 M KOH 

at 25 °C and 5 mV/s. 

Y Ecorr (V vs. Hg/HgO) Icorr (mA/cm
2
) 

0.0 -0.174 3580 

0.1 -0.036 1007 

0.2 -0.040 1104 

0.3 -0.045 1204 

0.5 -0.051 1356 
 

As reported before [13-15], the results of cyclic stability of the electrodes alloys confirm 

these results of corrosion resistance. The Cu substituting alloys increase the cyclic stability in 

comparison with Co and also Cu substitution yields an alloy with a better cyclic stability than Sn 

[13-15]. It can be concluded that the corrosion resistance is not the only mechanisms that directly 

affect the increased of cyclic stability of the electrodes. The decrepitation of the alloys during 

cycling battery charge/discharge better explain the cyclic stability of the alloys in the negative 

electrodes of Ni-MH batteries than corrosion resistance analyses. 
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Conclusions 

 This paper has shown that substituting Co for Sn and/or Cu in as-cast  La0.7Mg0.3Al0.3Mn0.4Co0.5-

xSnxNi3.8 (x = 0.0, 0.1, 0.2, 0.3 and 0.5) and La0.7Mg0.3Al0.3Mn0.4Sn0.5-yCuyNi3.8 (y = 0.0, 0.1, 0.2, 

0.3 and 0.5) alloys has substantial effects on the corrosion resistance of the LaNi5-type alloys. The 

substitution of elements in the alloys shows different variations corrosion behavior in strong 

alkaline solution (6.0 M KOH). The La0.7Mg0.3Al0.3Mn0.4Sn0.4Cu0.1Ni3.8 alloy shows the best 

corrosion resistance behavior. 
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